UV-Mediated Photofunctionalization of Indirect Restorative Materials Enhances Bonding to a Resin-Based Luting Agent
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34195290
PubMed Central
PMC8181058
DOI
10.1155/2021/9987860
Knihovny.cz E-zdroje
- MeSH
- adsorpce MeSH
- analýza zatížení zubů MeSH
- design s pomocí počítače MeSH
- fotochemie metody MeSH
- keramika MeSH
- lidé MeSH
- palladium chemie MeSH
- pevnost v tahu MeSH
- povrchové vlastnosti MeSH
- prospektivní studie MeSH
- pryskyřičné cementy chemie MeSH
- testování materiálů MeSH
- uhlík MeSH
- uhlovodíky chemie MeSH
- ultrafialové záření MeSH
- vazba zubní MeSH
- ytrium chemie MeSH
- zirkonium chemie MeSH
- zlato chemie MeSH
- zubní porcelán MeSH
- zubní slitiny * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- Glass ceramics MeSH Prohlížeč
- lithia disilicate MeSH Prohlížeč
- palladium MeSH
- pryskyřičné cementy MeSH
- uhlík MeSH
- uhlovodíky MeSH
- ytrium MeSH
- yttria MeSH Prohlížeč
- zirkonium MeSH
- zlato MeSH
- zubní porcelán MeSH
- zubní slitiny * MeSH
PURPOSE: The potential of UV-mediated photofunctionalization to enhance the resin-based luting agent bonding performance to aged materials was investigated. METHODS: Sixty samples of each material were prepared. Yttria-stabilized zirconia (YZr) and Pd-Au alloy (Pd-Au) plates were fabricated and sandblasted. Lithium disilicate glass-ceramic (LDS) was CAD-CAM prepared and ground with #800 SiC paper. Half of the specimens were immersed in machine oil for 24 h to simulate the carbon adsorption. Then, all of the specimens (noncarbon- and carbon-adsorbed) were submitted to UV-mediated photofunctionalization with a 15 W UV-LED (265 nm, 300 mA, 7692 μW/cm2) for 0 (control groups), 5, and 15 min and subjected to contact angle (Ɵ) measurement and bonded using a resin cement (Panavia™ V5, Kuraray Noritake, Japan). The tensile bond strength (TBS) test was performed after 24 h. The Ɵ (°) and TBS (MPa) data were statistically analyzed using two-way ANOVA and Bonferroni correction tests (α = 0.05). RESULTS: In the carbon-adsorbed groups, UV-mediated photofunctionalization for 5 min significantly decreased Ɵ of all materials and increased TBS of YZr, and UV for 15 min significantly increased the TBS of LDS and Pd-Au. In noncarbon-adsorbed groups, UV-photofunctionalization did not significantly change the Ɵ or TBS except YZr specimens UV-photofunctionalized for 15 min. CONCLUSION: UV-mediated photofunctionalization might have removed the adsorbed hydrocarbon molecules from the materials' surfaces and enhanced bond strengths of Panavia™ V5 to YZr, LDS, and Pd-Au. Additionally, UV-mediated photofunctionalization improved the overall TBS of YZr. Further investigation on the optimum conditions of UV photofunctionalization on indirect restorative materials should be conducted.
Zobrazit více v PubMed
Blunck U., Fischer S., Hajtó J., Frankenberger R. Ceramic laminate veneers: effect of preparation design and ceramic thickness on fracture resistance and marginal quality in vitro. Clinical Oral Investigations. 2020;24(8):2745–2754. doi: 10.1007/s00784-019-03136-z. PubMed DOI
Hori N., Att W., Ueno T., et al. Age-dependent degradation of the protein adsorption capacity of titanium. Journal of Dental Research. 2009;88(7):663–667. doi: 10.1177/0022034509339567. PubMed DOI
Foersterling H. U., Hallmeier K. H. Investigations of the adsorption of palladium on carbonaceous adsorbents modified with dimethylglyoxime, III the adsorption of palladium on a lignite in its unmodified form and modified with dimethylglyoxime. Carbon. 1990;28(4):503–508. doi: 10.1016/0008-6223(90)90045-Z. DOI
Soleimani M., Kaghazchi T. Adsorption of gold ions from industrial wastewater using activated carbon derived from hard shell of apricot stones - an agricultural waste. Bioresource Technology. 2008;99(13):5374–5383. doi: 10.1016/j.biortech.2007.11.021. PubMed DOI
Morra M., Cassinelli C., Bruzzone G., et al. Surface chemistry effects of topographic modification of titanium dental implant surfaces: 1. Surface analysis. The International Journal of Oral & Maxillofacial Implants. 2003;18(1):40–45. PubMed
Hayashi R., Ueno T., Migita S., et al. Hydrocarbon deposition attenuates osteoblast activity on titanium. Journal of Dental Research. 2014;93(7):698–703. doi: 10.1177/0022034514536578. PubMed DOI PMC
Ogawa T. Ultraviolet photofunctionalization of titanium implants. The International Journal of Oral & Maxillofacial Implants. 2014;29(1):e95–e102. doi: 10.11607/jomi.te47. PubMed DOI
Takeda S., Fukawa M., Hayashi Y., Matsumoto K. Surface OH group governing adsorption properties of metal oxide films. Thin Solid Films. 1999;339(1-2):220–224. doi: 10.1016/S0040-6090(98)01152-3. DOI
Jalili S., Keshavarz M. Zirconia (1 1 0) surface adsorption behavior – a density functional theory study. Computational and Theoretical Chemistry. 2020;1173, article 112702 doi: 10.1016/j.comptc.2020.112702. DOI
Boulet P., Knofel C., Kuchta B., Hornebecq V., Llewellyn P. L. Computational investigation of the adsorption of carbon dioxide onto zirconium oxide clusters. Journal of Molecular Modeling. 2012;18(11):4819–4830. doi: 10.1007/s00894-012-1486-0. PubMed DOI
Att W., Hori N., Iwasa F., Yamada M., Ueno T., Ogawa T. The effect of UV-photofunctionalization on the time-related bioactivity of titanium and chromium-cobalt alloys. Biomaterials. 2009;30(26):4268–4276. doi: 10.1016/j.biomaterials.2009.04.048. PubMed DOI
Ueno T., Yamada M., Suzuki T., et al. Enhancement of bone-titanium integration profile with UV-photofunctionalized titanium in a gap healing model. Biomaterials. 2010;31(7):1546–1557. doi: 10.1016/j.biomaterials.2009.11.018. PubMed DOI
Iwasa F., Hori N., Ueno T., Minamikawa H., Yamada M., Ogawa T. Enhancement of osteoblast adhesion to UV-photofunctionalized titanium via an electrostatic mechanism. Biomaterials. 2010;31(10):2717–2727. doi: 10.1016/j.biomaterials.2009.12.024. PubMed DOI
Lorenzetti M., Bernardini G., Luxbacher T., Santucci A., Kobe S., Novak S. Surface properties of nanocrystalline TiO2 coatings in relation to the in vitro plasma protein adsorption. Biomedical Materials. 2015;10(4, article 045012) doi: 10.1088/1748-6041/10/4/045012. PubMed DOI
Tabuchi M., Ikeda T., Hirota M., et al. Effect of UV photofunctionalization on biologic and anchoring capability of orthodontic miniscrews. The International Journal of Oral & Maxillofacial Implants. 2015;30(4):868–879. doi: 10.11607/jomi.3994. PubMed DOI
Choi S. H., Shin J., Cha J. K., Kwon J. S., Cha J. Y., Hwang C. J. Evaluation of success rate and biomechanical stability of ultraviolet-photofunctionalized miniscrews with short lengths. American Journal of Orthodontics and Dentofacial Orthopedics. 2021;159(2):158–166. doi: 10.1016/j.ajodo.2019.12.018. PubMed DOI
Roy M., Pompella A., Kubacki J., et al. Photofunctionalization of dental zirconia oxide: surface modification to improve bio-integration preserving crystal stability. Colloids and Surfaces B: Biointerfaces. 2017;156:194–202. doi: 10.1016/j.colsurfb.2017.05.031. PubMed DOI
Henningsen A., Smeets R., Heuberger R., et al. Changes in surface characteristics of titanium and zirconia after surface treatment with ultraviolet light or non-thermal plasma. European Journal of Oral Sciences. 2018;126(2):126–134. doi: 10.1111/eos.12400. PubMed DOI
Smeets R., Henningsen A., Heuberger R., Hanisch O., Schwarz F., Precht C. Influence of UV irradiation and cold atmospheric pressure plasma on zirconia surfaces: an in vitro study. The International Journal of Oral & Maxillofacial Implants. 2019;34(2):329–336. doi: 10.11607/jomi.7017. PubMed DOI
Choi S. H., Ryu J. H., Kwon J. S., et al. Effect of wet storage on the bioactivity of ultraviolet light- and non-thermal atmospheric pressure plasma-treated titanium and zirconia implant surfaces. Materials Science and Engineering: C. 2019;105, article 110049 doi: 10.1016/j.msec.2019.110049. PubMed DOI
Ali A., Takagaki T., Nikaido T., Abdou A., Tagami J. Influence of ambient air and different surface treatments on the bonding performance of a CAD/CAM composite block. The Journal of Adhesive Dentistry. 2018;20(4):317–324. doi: 10.3290/j.jad.a40993. PubMed DOI
Hirota M., Ozawa T., Iwai T., Mitsudo K., Ogawa T. UV-mediated photofunctionalization of dental implant: a seven-year results of a prospective study. Journal of Clinical Medicine. 2020;9(9):p. 2733. doi: 10.3390/jcm9092733. PubMed DOI PMC
Manso A. P., Carvalho R. M. Dental cements for luting and bonding restorations. Dental Clinics of North America. 2017;61(4):821–834. doi: 10.1016/j.cden.2017.06.006. PubMed DOI
Manso A. P., Silva N. R. F. A., Bonfante E. A., Pegoraro T. A., Dias R. A., Carvalho R. M. Cements and adhesives for all-ceramic restorations. Dental Clinics of North America. 2011;55(2):311–332. doi: 10.1016/j.cden.2011.01.011. PubMed DOI
Kameyama A., Haruyama A., Tanaka A., et al. Repair bond strength of a resin composite to plasma-treated or UV-Irradiated CAD/CAM ceramic surface. Coatings. 2018;8(7):p. 230. doi: 10.3390/coatings8070230. DOI
Klosa K., Wolfart S., Lehmann F., Wenz H.-J., Kern M. The effect of storage conditions, contamination modes and cleaning procedures on the resin bond strength to lithium disilicate ceramic. The Journal of Adhesive Dentistry. 2009;11(2):127–135. PubMed
Lapinska B., Rogowski J., Nowak J., Nissan J., Sokolowski J., Lukomska-Szymanska M. Effect of surface cleaning regimen on glass ceramic bond strength. Molecules. 2019;24(3):p. 389. doi: 10.3390/molecules24030389. PubMed DOI PMC
Angkasith P., Burgess J. O., Bottino M. C., Lawson N. C. Cleaning methods for zirconia following salivary contamination. Journal of Prosthodontics. 2016;25(5):375–379. doi: 10.1111/jopr.12441. PubMed DOI
Negreiros W. M., Ambrosano G. M. B., Giannini M. Effect of cleaning agent, primer application and their combination on the bond strength of a resin cement to two yttrium-tetragonal zirconia polycrystal zirconia ceramics. European Journal of Dentistry. 2017;11(1):6–11. doi: 10.4103/ejd.ejd_276_16. PubMed DOI PMC
Noronha M. D. S., Fronza B. M., André C. B., et al. Effect of zirconia decontamination protocols on bond strength and surface wettability. Journal of Esthetic and Restorative Dentistry. 2020;32(5):521–529. doi: 10.1111/jerd.12615. PubMed DOI
Wege H. A., Aguilar J. A., Rodríguez-Valverde M. Á., Toledano M., Osorio R., Cabrerizo-Vílchez M. Á. Dynamic contact angle and spreading rate measurements for the characterization of the effect of dentin surface treatments. Journal of Colloid and Interface Science. 2003;263(1):162–169. doi: 10.1016/S0021-9797(03)00114-0. PubMed DOI
Tsujimoto A., Iwasa M., Shimamura Y., Murayama R., Takamizawa T., Miyazaki M. Enamel bonding of single-step self-etch adhesives: influence of surface energy characteristics. Journal of Dentistry. 2009;38(2):123–130. doi: 10.1016/j.jdent.2009.09.011. PubMed DOI
Nakhaei K., Ishijima M., Ikeda T., Ghassemi A., Saruta J., Ogawa T. Ultraviolet light treatment of titanium enhances attachment, adhesion, and retention of human oral epithelial cells via decarbonization. Materials. 2021;14(1):p. 151. doi: 10.3390/ma14010151. PubMed DOI PMC
Takahashi A., Takagaki T., Wada T., Uo M., Nikaido T., Tagami J. The effect of different cleaning agents on saliva contamination for bonding performance of zirconia ceramics. Dental Materials Journal. 2018;37(5):734–739. doi: 10.4012/dmj.2017-376. PubMed DOI
Yang B., Lange-Jansen H. C., Scharnberg M., et al. Influence of saliva contamination on zirconia ceramic bonding. Dental Materials. 2008;24(4):508–513. doi: 10.1016/j.dental.2007.04.013. PubMed DOI
Janyavula S., Lawson N., Cakir D., Beck P., Ramp L. C., Burgess J. O. The wear of polished and glazed zirconia against enamel. Journal of Prosthetic Dentistry. 2013;109(1):22–29. doi: 10.1016/S0022-3913(13)60005-0. PubMed DOI
Noro A., Kaneko M., Murata I., Yoshinari M. Influence of surface topography and surface physicochemistry on wettability of zirconia (tetragonal zirconia polycrystal) Journal of Biomedical Materials Research Part B Applied Biomaterials. 2013;101B(2):355–363. doi: 10.1002/jbm.b.32846. PubMed DOI
Tabari K., Hosseinpour S., Mohammad-Rahimi H. The impact of plasma treatment of Cercon® zirconia ceramics on adhesion to resin composite cements and surface properties. Journal of Lasers in Medical Sciences. 2017;8(Suppl 1):S56–S61. doi: 10.15171/jlms.2017.s11. PubMed DOI PMC
Carvalho R. F., Rippe M. P., Melo R. M., Bottino M. A., Souza R. O. A. Resin bond strength to zirconia: effects of surface treatments and resin cements. General Dentistry. 2019;67(1):71–77. PubMed
Farina A. P., Cechin D., Vidal C. M. P., Leme-Kraus A. A., Bedran-Russo A. K. Removal of water binding proteins from dentin increases the adhesion strength of low-hydrophilicity dental resins. Dental Materials. 2020;36(10):e302–e308. doi: 10.1016/j.dental.2020.07.004. PubMed DOI
Ueno T., Ikeda T., Tsukimura N., et al. Novel antioxidant capability of titanium induced by UV light treatment. Biomaterials. 2016;108:177–186. doi: 10.1016/j.biomaterials.2016.08.050. PubMed DOI
Hirota M., Ikeda T., Sugita Y., Ishijima M., Hirota S., Ogawa T. Impaired osteoblastic behavior and function on saliva-contaminated titanium and its restoration by UV treatment. Materials Science & Engineering, C: Materials for Biological Applications. 2019;100:165–177. doi: 10.1016/j.msec.2019.03.008. PubMed DOI
Baeza-Robleto S. J., Villa-Negrete D. M., García-Contreras R., Scougall-Vílchis R. J., Guadarrama-Quiroz L. J., Robles-Bermeo N. L. Effects of ultraviolet irradiation on the bond strength of a composite resin adhered to stainless steel crowns. Pediatric Dentistry. 2013;35(1):23–26. PubMed
Reza F., Ibrahim N. S. Effect of ultraviolet light irradiation on bond strength of fiber post: evaluation of surface characteristic and bonded area of fiber post with resin cement. European Journal of Dentistry. 2015;9(1):74–79. doi: 10.4103/1305-7456.149646. PubMed DOI PMC
Rupp F., Scheideler L., Olshanska N., de Wild M., Wieland M., Geis-Gerstorfer J. Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces. Journal of Biomedical Materials Research. Part A. 2006;76A(2):323–334. doi: 10.1002/jbm.a.30518. PubMed DOI