Metabolism of 2,3-Dehydrosilybin A and 2,3-Dehydrosilybin B: A Study with Human Hepatocytes and Recombinant UDP-Glucuronosyltransferases and Sulfotransferases
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
RVO 61989592
Univerzita Palackého v Olomouci
21-00551S
Grantová Agentura České Republiky
PubMed
34198653
PubMed Central
PMC8232340
DOI
10.3390/antiox10060954
PII: antiox10060954
Knihovny.cz E-zdroje
- Klíčová slova
- UDP-glucuronosyltransferase, dehydrosilybin, glucuronidation, metabolism, silybin, sulfation, sulfotransferase,
- Publikační typ
- časopisecké články MeSH
2,3-Dehydrosilybin A and 2,3-dehydrosilybin B are a pair of enantiomers formed by the oxidation of the natural flavonolignans silybin A and silybin B, respectively. However, the antioxidant activity of 2,3-dehydrosilybin molecules is much stronger than that of their precursors. Here, we investigated the biotransformation of pure 2,3-dehydrosilybin A and 2,3-dehydrosilybin B in isolated human hepatocytes, and we also aimed to identify human UDP-glucuronosyltransferases (UGTs) and sulfotransferases (SULTs) with activity toward their respective enantiomers. After incubation with hepatocytes, both 2,3-dehydrosilybin A and 2,3-dehydrosilybin B were converted to hydroxyl derivatives, methylated hydroxyl derivatives, methyl derivatives, sulfates, and glucuronides. The products of direct conjugations predominated over those of oxidative metabolism, and glucuronides were the most abundant metabolites. Furthermore, we found that recombinant human UGTs 1A1, 1A3, 1A7, 1A8, 1A9, and 1A10 were capable of catalyzing the glucuronidation of both 2,3-dehydrosilybin A and 2,3-dehydrosilybin B. UGTs 1A1 and 1A7 showed the highest activity toward 2,3-dehydrosilybin A, and UGT1A9 showed the highest activity toward 2,3-dehydrosilybin B. The sulfation of 2,3-dehydrosilybin A and B was catalyzed by SULTs 1A1*1, 1A1*2, 1A2, 1A3, 1B1, 1C2, 1C4, and 1E1, of which SULT1A3 exhibited the highest activity toward both enantiomers. We conclude that 2,3-dehydrosilybin A and B are preferentially metabolized by conjugation reactions, and that several human UGT and SULT enzymes may play a role in these conjugations.
Zobrazit více v PubMed
Chambers C.S., Holeckova V., Petraskova L., Biedermann D., Valentova K., Buchta M., Kren V. The silymarin composition and why does it matter? Food Res. Int. 2017;100:339–353. doi: 10.1016/j.foodres.2017.07.017. PubMed DOI
Fenclova M., Stranska-Zachariasova M., Benes F., Novakova A., Jonatova P., Kren V., Vitek L., Hajslova J. Liquid chromatography-drift tube ion mobility-mass spectrometry as a new challenging tool for the separation and characterization of silymarin flavonolignans. Anal. Bioanal. Chem. 2020;412:819–832. doi: 10.1007/s00216-019-02274-3. PubMed DOI
Petraskova L., Kanova K., Biedermann D., Kren V., Valentova K. Simple and rapid HPLC separation and quantification of flavonoid, flavonolignans, and 2,3-dehydroflavonolignans in silymarin. Foods. 2020;9:116. doi: 10.3390/foods9020116. PubMed DOI PMC
Pyszková M., Biler M., Biedermann D., Valentová K., Kuzma M., Vrba J., Ulrichova J., Sokolova R., Mojović M., Bijelic A.P., et al. Flavonolignan 2,3-dehydroderivatives: Preparation, antiradical and cytoprotective activity. Free Radic. Biol. Med. 2016;90:114–125. doi: 10.1016/j.freeradbiomed.2015.11.014. PubMed DOI
Trouillas P., Marsal P., Svobodová A., Vostálová J., Gažák R., Hrbáč J., Sedmera P., Křen V., Lazzaroni R., Duroux J.-L., et al. Mechanism of the antioxidant action of silybin and 2,3-dehydrosilybin flavonolignans: A joint experimental and theoretical study. J. Phys. Chem. A. 2008;112:1054–1063. doi: 10.1021/jp075814h. PubMed DOI
Huber A., Thongphasuk P., Erben G., Lehmann W.D., Tuma S., Stremmel W., Chamulitrat W. Significantly greater antioxidant anticancer activities of 2,3-dehydrosilybin than silybin. Biochim. Biophys. Acta. 2008;1780:837–847. doi: 10.1016/j.bbagen.2007.12.012. PubMed DOI
Gabrielova E., Kren V., Jaburek M., Modriansky M. Silymarin component 2,3-dehydrosilybin attenuates cardiomyocyte damage following hypoxia/reoxygenation by limiting oxidative stress. Physiol. Res. 2015;64:79–91. doi: 10.33549/physiolres.932703. PubMed DOI
Svobodova A.R., Gabrielova E., Ulrichova J., Zalesak B., Biedermann D., Vostalova J. A pilot study of the UVA-photoprotective potential of dehydrosilybin, isosilybin, silychristin, and silydianin on human dermal fibroblasts. Arch. Dermatol. Res. 2019;311:477–490. doi: 10.1007/s00403-019-01928-7. PubMed DOI
Cho B.O., Ryu H.W., So Y., Jin C.H., Baek J.Y., Park K.H., Byun E.H., Jeong I.Y. Hepatoprotective effect of 2,3-dehydrosilybin on carbon tetrachloride-induced liver injury in rats. Food Chem. 2013;138:107–115. doi: 10.1016/j.foodchem.2012.10.026. PubMed DOI
Suk J., Jasprova J., Biedermann D., Petraskova L., Valentova K., Kren V., Muchova L., Vitek L. Isolated silymarin flavonoids increase systemic and hepatic bilirubin concentrations and lower lipoperoxidation in mice. Oxidative Med. Cell. Longev. 2019;2019:6026902. doi: 10.1155/2019/6026902. PubMed DOI PMC
Gabrielova E., Bartosikova L., Necas J., Modriansky M. Cardioprotective effect of 2,3-dehydrosilybin preconditioning in isolated rat heart. Fitoterapia. 2019;132:12–21. doi: 10.1016/j.fitote.2018.10.028. PubMed DOI
Diukendjieva A., Zaharieva M.M., Mori M., Alov P., Tsakovska I., Pencheva T., Najdenski H., Křen V., Felici C., Bufalieri F., et al. Dual SMO/BRAF inhibition by flavonolignans from Silybum marianum. Antioxidants. 2020;9:384. doi: 10.3390/antiox9050384. PubMed DOI PMC
Karas D., Gažák R., Valentová K., Chambers C., Pivodová V., Biedermann D., Křenková A., Oborná I., Kuzma M., Cvačka J., et al. Effects of 2,3-dehydrosilybin and its galloyl ester and methyl ether derivatives on human umbilical vein endothelial cells. J. Nat. Prod. 2016;79:812–820. doi: 10.1021/acs.jnatprod.5b00905. PubMed DOI
Zhan T., Digel M., Kuch E.M., Stremmel W., Fullekrug J. Silybin and dehydrosilybin decrease glucose uptake by inhibiting GLUT proteins. J. Cell. Biochem. 2011;112:849–859. doi: 10.1002/jcb.22984. PubMed DOI
Vue B., Zhang X., Lee T., Nair N., Zhang S., Chen G., Zhang Q., Zheng S., Wang G., Chen Q.H. 5- or/and 20-O-alkyl-2,3-dehydrosilybins: Synthesis and biological profiles on prostate cancer cell models. Bioorganic Med. Chem. 2017;25:4845–4854. doi: 10.1016/j.bmc.2017.07.035. PubMed DOI PMC
Vrba J., Papouskova B., Roubalova L., Zatloukalova M., Biedermann D., Kren V., Valentova K., Ulrichova J., Vacek J. Metabolism of flavonolignans in human hepatocytes. J. Pharm. Biomed. Anal. 2018;152:94–101. doi: 10.1016/j.jpba.2018.01.048. PubMed DOI
Valentova K., Havlik J., Kosina P., Papouskova B., Jaimes J.D., Kanova K., Petraskova L., Ulrichova J., Kren V. Biotransformation of silymarin flavonolignans by human fecal microbiota. Metabolites. 2020;10:29. doi: 10.3390/metabo10010029. PubMed DOI PMC
Gomez-Lechon M.J., Donato M.T., Castell J.V., Jover R. Human hepatocytes as a tool for studying toxicity and drug metabolism. Curr. Drug Metab. 2003;4:292–312. doi: 10.2174/1389200033489424. PubMed DOI
Pelter A., Hansel R. Structure of Silybin. 1. Degradative Experiments. Chem. Ber. 1975;108:790–802. doi: 10.1002/cber.19751080312. DOI
Gazak R., Marhol P., Purchartova K., Monti D., Biedermann D., Riva S., Cvak L., Kren V. Large-scale separation of silybin diastereoisomers using lipases. Process Biochem. 2010;45:1657–1663. doi: 10.1016/j.procbio.2010.06.019. DOI
Krenek K., Marhol P., Peikerova Z., Kren V., Biedermann D. Preparatory separation of the silymarin flavonolignans by Sephadex LH-20 gel. Food Res. Int. 2014;65:115–120. doi: 10.1016/j.foodres.2014.02.001. DOI
Modriansky M., Ulrichova J., Bachleda P., Anzenbacher P., Anzenbacherova E., Walterova D., Simanek V. Human hepatocyte—A model for toxicological studies. Functional and biochemical characterization. Gen. Physiol. Biophys. 2000;19:223–235. PubMed
Beekmann K., Actis-Goretta L., van Bladeren P.J., Dionisi F., Destaillats F., Rietjens I.M. A state-of-the-art overview of the effect of metabolic conjugation on the biological activity of flavonoids. Food Funct. 2012;3:1008–1018. doi: 10.1039/c2fo30065f. PubMed DOI
Chen Z., Zheng S., Li L., Jiang H. Metabolism of flavonoids in human: A comprehensive review. Curr. Drug Metab. 2014;15:48–61. doi: 10.2174/138920021501140218125020. PubMed DOI
Rowland A., Miners J.O., Mackenzie P.I. The UDP-glucuronosyltransferases: Their role in drug metabolism and detoxification. Int. J. Biochem. Cell Biol. 2013;45:1121–1132. doi: 10.1016/j.biocel.2013.02.019. PubMed DOI
Wang H., Cao G., Wang G., Hao H. Regulation of mammalian UDP-glucuronosyltransferases. Curr. Drug Metab. 2018;19:490–501. doi: 10.2174/1389200219666180307122945. PubMed DOI
Coughtrie M.W.H. Function and organization of the human cytosolic sulfotransferase (SULT) family. Chem. Biol. Interact. 2016;259:2–7. doi: 10.1016/j.cbi.2016.05.005. PubMed DOI
Riches Z., Stanley E.L., Bloomer J.C., Coughtrie M.W. Quantitative evaluation of the expression and activity of five major sulfotransferases (SULTs) in human tissues: The SULT “pie”. Drug Metab. Dispos. 2009;37:2255–2261. doi: 10.1124/dmd.109.028399. PubMed DOI PMC