Metabolism of 2,3-Dehydrosilybin A and 2,3-Dehydrosilybin B: A Study with Human Hepatocytes and Recombinant UDP-Glucuronosyltransferases and Sulfotransferases

. 2021 Jun 14 ; 10 (6) : . [epub] 20210614

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34198653

Grantová podpora
RVO 61989592 Univerzita Palackého v Olomouci
21-00551S Grantová Agentura České Republiky

2,3-Dehydrosilybin A and 2,3-dehydrosilybin B are a pair of enantiomers formed by the oxidation of the natural flavonolignans silybin A and silybin B, respectively. However, the antioxidant activity of 2,3-dehydrosilybin molecules is much stronger than that of their precursors. Here, we investigated the biotransformation of pure 2,3-dehydrosilybin A and 2,3-dehydrosilybin B in isolated human hepatocytes, and we also aimed to identify human UDP-glucuronosyltransferases (UGTs) and sulfotransferases (SULTs) with activity toward their respective enantiomers. After incubation with hepatocytes, both 2,3-dehydrosilybin A and 2,3-dehydrosilybin B were converted to hydroxyl derivatives, methylated hydroxyl derivatives, methyl derivatives, sulfates, and glucuronides. The products of direct conjugations predominated over those of oxidative metabolism, and glucuronides were the most abundant metabolites. Furthermore, we found that recombinant human UGTs 1A1, 1A3, 1A7, 1A8, 1A9, and 1A10 were capable of catalyzing the glucuronidation of both 2,3-dehydrosilybin A and 2,3-dehydrosilybin B. UGTs 1A1 and 1A7 showed the highest activity toward 2,3-dehydrosilybin A, and UGT1A9 showed the highest activity toward 2,3-dehydrosilybin B. The sulfation of 2,3-dehydrosilybin A and B was catalyzed by SULTs 1A1*1, 1A1*2, 1A2, 1A3, 1B1, 1C2, 1C4, and 1E1, of which SULT1A3 exhibited the highest activity toward both enantiomers. We conclude that 2,3-dehydrosilybin A and B are preferentially metabolized by conjugation reactions, and that several human UGT and SULT enzymes may play a role in these conjugations.

Zobrazit více v PubMed

Chambers C.S., Holeckova V., Petraskova L., Biedermann D., Valentova K., Buchta M., Kren V. The silymarin composition and why does it matter? Food Res. Int. 2017;100:339–353. doi: 10.1016/j.foodres.2017.07.017. PubMed DOI

Fenclova M., Stranska-Zachariasova M., Benes F., Novakova A., Jonatova P., Kren V., Vitek L., Hajslova J. Liquid chromatography-drift tube ion mobility-mass spectrometry as a new challenging tool for the separation and characterization of silymarin flavonolignans. Anal. Bioanal. Chem. 2020;412:819–832. doi: 10.1007/s00216-019-02274-3. PubMed DOI

Petraskova L., Kanova K., Biedermann D., Kren V., Valentova K. Simple and rapid HPLC separation and quantification of flavonoid, flavonolignans, and 2,3-dehydroflavonolignans in silymarin. Foods. 2020;9:116. doi: 10.3390/foods9020116. PubMed DOI PMC

Pyszková M., Biler M., Biedermann D., Valentová K., Kuzma M., Vrba J., Ulrichova J., Sokolova R., Mojović M., Bijelic A.P., et al. Flavonolignan 2,3-dehydroderivatives: Preparation, antiradical and cytoprotective activity. Free Radic. Biol. Med. 2016;90:114–125. doi: 10.1016/j.freeradbiomed.2015.11.014. PubMed DOI

Trouillas P., Marsal P., Svobodová A., Vostálová J., Gažák R., Hrbáč J., Sedmera P., Křen V., Lazzaroni R., Duroux J.-L., et al. Mechanism of the antioxidant action of silybin and 2,3-dehydrosilybin flavonolignans: A joint experimental and theoretical study. J. Phys. Chem. A. 2008;112:1054–1063. doi: 10.1021/jp075814h. PubMed DOI

Huber A., Thongphasuk P., Erben G., Lehmann W.D., Tuma S., Stremmel W., Chamulitrat W. Significantly greater antioxidant anticancer activities of 2,3-dehydrosilybin than silybin. Biochim. Biophys. Acta. 2008;1780:837–847. doi: 10.1016/j.bbagen.2007.12.012. PubMed DOI

Gabrielova E., Kren V., Jaburek M., Modriansky M. Silymarin component 2,3-dehydrosilybin attenuates cardiomyocyte damage following hypoxia/reoxygenation by limiting oxidative stress. Physiol. Res. 2015;64:79–91. doi: 10.33549/physiolres.932703. PubMed DOI

Svobodova A.R., Gabrielova E., Ulrichova J., Zalesak B., Biedermann D., Vostalova J. A pilot study of the UVA-photoprotective potential of dehydrosilybin, isosilybin, silychristin, and silydianin on human dermal fibroblasts. Arch. Dermatol. Res. 2019;311:477–490. doi: 10.1007/s00403-019-01928-7. PubMed DOI

Cho B.O., Ryu H.W., So Y., Jin C.H., Baek J.Y., Park K.H., Byun E.H., Jeong I.Y. Hepatoprotective effect of 2,3-dehydrosilybin on carbon tetrachloride-induced liver injury in rats. Food Chem. 2013;138:107–115. doi: 10.1016/j.foodchem.2012.10.026. PubMed DOI

Suk J., Jasprova J., Biedermann D., Petraskova L., Valentova K., Kren V., Muchova L., Vitek L. Isolated silymarin flavonoids increase systemic and hepatic bilirubin concentrations and lower lipoperoxidation in mice. Oxidative Med. Cell. Longev. 2019;2019:6026902. doi: 10.1155/2019/6026902. PubMed DOI PMC

Gabrielova E., Bartosikova L., Necas J., Modriansky M. Cardioprotective effect of 2,3-dehydrosilybin preconditioning in isolated rat heart. Fitoterapia. 2019;132:12–21. doi: 10.1016/j.fitote.2018.10.028. PubMed DOI

Diukendjieva A., Zaharieva M.M., Mori M., Alov P., Tsakovska I., Pencheva T., Najdenski H., Křen V., Felici C., Bufalieri F., et al. Dual SMO/BRAF inhibition by flavonolignans from Silybum marianum. Antioxidants. 2020;9:384. doi: 10.3390/antiox9050384. PubMed DOI PMC

Karas D., Gažák R., Valentová K., Chambers C., Pivodová V., Biedermann D., Křenková A., Oborná I., Kuzma M., Cvačka J., et al. Effects of 2,3-dehydrosilybin and its galloyl ester and methyl ether derivatives on human umbilical vein endothelial cells. J. Nat. Prod. 2016;79:812–820. doi: 10.1021/acs.jnatprod.5b00905. PubMed DOI

Zhan T., Digel M., Kuch E.M., Stremmel W., Fullekrug J. Silybin and dehydrosilybin decrease glucose uptake by inhibiting GLUT proteins. J. Cell. Biochem. 2011;112:849–859. doi: 10.1002/jcb.22984. PubMed DOI

Vue B., Zhang X., Lee T., Nair N., Zhang S., Chen G., Zhang Q., Zheng S., Wang G., Chen Q.H. 5- or/and 20-O-alkyl-2,3-dehydrosilybins: Synthesis and biological profiles on prostate cancer cell models. Bioorganic Med. Chem. 2017;25:4845–4854. doi: 10.1016/j.bmc.2017.07.035. PubMed DOI PMC

Vrba J., Papouskova B., Roubalova L., Zatloukalova M., Biedermann D., Kren V., Valentova K., Ulrichova J., Vacek J. Metabolism of flavonolignans in human hepatocytes. J. Pharm. Biomed. Anal. 2018;152:94–101. doi: 10.1016/j.jpba.2018.01.048. PubMed DOI

Valentova K., Havlik J., Kosina P., Papouskova B., Jaimes J.D., Kanova K., Petraskova L., Ulrichova J., Kren V. Biotransformation of silymarin flavonolignans by human fecal microbiota. Metabolites. 2020;10:29. doi: 10.3390/metabo10010029. PubMed DOI PMC

Gomez-Lechon M.J., Donato M.T., Castell J.V., Jover R. Human hepatocytes as a tool for studying toxicity and drug metabolism. Curr. Drug Metab. 2003;4:292–312. doi: 10.2174/1389200033489424. PubMed DOI

Pelter A., Hansel R. Structure of Silybin. 1. Degradative Experiments. Chem. Ber. 1975;108:790–802. doi: 10.1002/cber.19751080312. DOI

Gazak R., Marhol P., Purchartova K., Monti D., Biedermann D., Riva S., Cvak L., Kren V. Large-scale separation of silybin diastereoisomers using lipases. Process Biochem. 2010;45:1657–1663. doi: 10.1016/j.procbio.2010.06.019. DOI

Krenek K., Marhol P., Peikerova Z., Kren V., Biedermann D. Preparatory separation of the silymarin flavonolignans by Sephadex LH-20 gel. Food Res. Int. 2014;65:115–120. doi: 10.1016/j.foodres.2014.02.001. DOI

Modriansky M., Ulrichova J., Bachleda P., Anzenbacher P., Anzenbacherova E., Walterova D., Simanek V. Human hepatocyte—A model for toxicological studies. Functional and biochemical characterization. Gen. Physiol. Biophys. 2000;19:223–235. PubMed

Beekmann K., Actis-Goretta L., van Bladeren P.J., Dionisi F., Destaillats F., Rietjens I.M. A state-of-the-art overview of the effect of metabolic conjugation on the biological activity of flavonoids. Food Funct. 2012;3:1008–1018. doi: 10.1039/c2fo30065f. PubMed DOI

Chen Z., Zheng S., Li L., Jiang H. Metabolism of flavonoids in human: A comprehensive review. Curr. Drug Metab. 2014;15:48–61. doi: 10.2174/138920021501140218125020. PubMed DOI

Rowland A., Miners J.O., Mackenzie P.I. The UDP-glucuronosyltransferases: Their role in drug metabolism and detoxification. Int. J. Biochem. Cell Biol. 2013;45:1121–1132. doi: 10.1016/j.biocel.2013.02.019. PubMed DOI

Wang H., Cao G., Wang G., Hao H. Regulation of mammalian UDP-glucuronosyltransferases. Curr. Drug Metab. 2018;19:490–501. doi: 10.2174/1389200219666180307122945. PubMed DOI

Coughtrie M.W.H. Function and organization of the human cytosolic sulfotransferase (SULT) family. Chem. Biol. Interact. 2016;259:2–7. doi: 10.1016/j.cbi.2016.05.005. PubMed DOI

Riches Z., Stanley E.L., Bloomer J.C., Coughtrie M.W. Quantitative evaluation of the expression and activity of five major sulfotransferases (SULTs) in human tissues: The SULT “pie”. Drug Metab. Dispos. 2009;37:2255–2261. doi: 10.1124/dmd.109.028399. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...