Wearables for Industrial Work Safety: A Survey
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
813278
This research was funded by European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie
PubMed
34199446
PubMed Central
PMC8199604
DOI
10.3390/s21113844
PII: s21113844
Knihovny.cz E-zdroje
- Klíčová slova
- IIoT, communications, data collection, localization, occupational safety, smart devices, wearables,
- MeSH
- hygiena práce * MeSH
- monitorování fyziologických funkcí MeSH
- nositelná elektronika * MeSH
- pracoviště MeSH
- průzkumy a dotazníky MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Today, ensuring work safety is considered to be one of the top priorities for various industries. Workplace injuries, illnesses, and deaths often entail substantial production and financial losses, governmental checks, series of dismissals, and loss of reputation. Wearable devices are one of the technologies that flourished with the fourth industrial revolution or Industry 4.0, allowing employers to monitor and maintain safety at workplaces. The purpose of this article is to systematize knowledge in the field of industrial wearables' safety to assess the relevance of their use in enterprises as the technology maintaining occupational safety, to correlate the benefits and costs of their implementation, and, by identifying research gaps, to outline promising directions for future work in this area. We categorize industrial wearable functions into four classes (monitoring, supporting, training, and tracking) and provide a classification of the metrics collected by wearables to better understand the potential role of wearable technology in preserving workplace safety. Furthermore, we discuss key communication technologies and localization techniques utilized in wearable-based work safety solutions. Finally, we analyze the main challenges that need to be addressed to further enable and support the use of wearable devices for industrial work safety.
Zobrazit více v PubMed
World Health Organisation Number of Deaths Due to Work-Related Accidents. [(accessed on 27 May 2021)]; Available online: https://gateway.euro.who.int/en/indicators/hfa_457-4071-number-of-deaths-due-to-work-related-accidents/visualizations/#id=19493&tab=graph.
Wu F., Wu T., Yuce M.R. Design and Implementation of a Wearable Sensor Network System for IoT-connected Safety and Health Applications; Proceedings of the 5th World Forum on Internet of Things (WF-IoT).; Limerick, Ireland. 15–18 April 2019; Piscatvey, NJ, USA: IEEE; 2019. pp. 87–90.
International Labor Organization World Statistics. [(accessed on 27 May 2021)]; Available online: https://www.ilo.org/moscow/areas-of-work/occupational-safety-and-health/WCMS_249278/lang–en/index.htm.
Worldometer Countries in the World by Population (2021) [(accessed on 27 May 2021)]; Available online: https://www.worldometers.info/world-population/population-by-country/
Masek P., Hudec D., Krejci J., Ometov A., Hosek J., Andreev S., Kroepfl F., Koucheryavy Y. Advanced Wireless m-Bus Platform for Intensive Field Testing in Industry 4.0-Based Systems; Proceedings of the 4th European Wireless Conference; Catania, Italy. 2–4 May 2018; Berlin, Germany: VDE; 2018. pp. 1–6.
Qaim W.B., Ometov A., Molinaro A., Lener I., Campolo C., Lohan E.S., Nurmi J. Towards Energy Efficiency in the Internet of Wearable Things: A Systematic Review. IEEE Access. 2020;8:175412–175435. doi: 10.1109/ACCESS.2020.3025270. DOI
Meticulous Research Industrial IoT (IIoT) Market Worth 263.4 Billion Dollars by 2027- Exclusive Report Covering Pre and Post COVID-19 Market Analysis and Forecasts by Meticulous Research. [(accessed on 27 May 2021)]; Available online: https://www.globenewswire.com/news-release/2020/06/19/2050758/0/en/Industrial-IoT-IIoT-Market-Worth-263-4-billion-by-2027-Exclusive-Report-Covering-Pre-and-Post-COVID-19-Market-Analysis-and-Forecasts-by-Meticulous-Research.html.
Hosek J., Masek P., Andreev S., Galinina O., Ometov A., Kropfl F., Wiedermann W., Koucheryavy Y. A SyMPHOnY of Integrated IoT Businesses: Closing the Gap between Availability and Adoption. IEEE Commun. Mag. 2017;55:156–164. doi: 10.1109/MCOM.2017.1700028. DOI
Gilchrist A. The Industrial Internet of Things—Industry 4.0. [(accessed on 27 May 2021)]; Available online: https://www.academia.edu/38736167/The_Industrial_Internet_of_Things_Industry_4_0.
BBC Unemployment Rate: How Many People Are Out of Work? [(accessed on 27 May 2021)]; Available online: https://www.bbc.com/news/business-52660591.
The Influence of the COVID-19 Pandemic on the Internet of Things (IoT) Market. [(accessed on 27 May 2021)]; Available online: https://projects.tuni.fi/a-wear/news/the-influence-of-the-covid-19-pandemic-on-the-internet-of-things-iot-market/
Estimote Workplace Safety with Wearables. [(accessed on 27 May 2021)]; Available online: https://estimote.com/wearable/
Allied Market Research Wearable Technology Market Overview. [(accessed on 27 May 2021)]; Available online: https://www.alliedmarketresearch.com/wearable-technology-market.
Industry ARC Wearable Technology Market—Industry Analysis, Market Size, Share, Trends, Application Analysis, Growth And Forecast 2020–2025. [(accessed on 27 May 2021)]; Available online: https://www.industryarc.com/Research/Wearable-Technology-Market-Research-504119.
Grand View Research Wearable Technology Market Size, Share; Trends Analysis Report by Product (Wrist-Wear, Eye-Wear, Head-Wear, Foot-Wear, Neck-Wear, Body-Wear), by Application, by Region, and Segment Forecasts, 2020–2027. [(accessed on 27 May 2021)]; Available online: https://www.grandviewresearch.com/industry-analysis/wearable-technology-market.
Statista Market Share of Wearables Unit Shipments Worldwide by Vendor from 1Q’14 to 1Q’20. [(accessed on 27 May 2021)]; Available online: https://www.statista.com/statistics/435944/quarterly-wearables-shipments-worldwide-market-share-by-vendor/
Ometov A., Shubina V., Klus L., Skibińska J., Saafi S., Pascacio P., Flueratoru L., Gaibor D.Q., Chukhno N., Chukhno O., et al. A Survey on Wearable Technology: History, State-of-the-Art and Current Challenges. Comput. Netw. 2021;193:108074. doi: 10.1016/j.comnet.2021.108074. DOI
Khakurel J., Melkas H., Porras J. Tapping into the Wearable Device Revolution in the Work Environment: A Systematic Review. Inf. Technol. People. 2018;31:791–818. doi: 10.1108/ITP-03-2017-0076. DOI
Dian F.J., Vahidnia R., Rahmati A. Wearables and the Internet of Things (IoT), Applications, Opportunities, and Challenges: A Survey. IEEE Access. 2020;8:69200–69211. doi: 10.1109/ACCESS.2020.2986329. DOI
Mardonova M., Choi Y. Review of Wearable Device Technology and Its Applications to the Mining Industry. Energies. 2018;11:547. doi: 10.3390/en11030547. DOI
Barata J., da Cunha P.R. Safety is the New Black: The Increasing Role of Wearables in Occupational Health and Safety in Construction; Proceedings of the International Conference on Business Information Systems; Seville, Spain. 26–28 June 2019; Berlin/Heidelberg, Germany: Springer; 2019. pp. 526–537.
Liberati A., Altman D.G., Tetzlaff J., Mulrow C., Gøtzsche P.C., Ioannidis J.P., Clarke M., Devereaux P.J., Kleijnen J., Moher D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies that Evaluate Health Care Interventions: Explanation and Elaboration. J. Clin. Epidemiol. 2009;62:e1–e34. doi: 10.1016/j.jclinepi.2009.06.006. PubMed DOI
Statista Occupational Injury Death Rate in 2018, by Private Industry Sector. [(accessed on 27 May 2021)]; Available online: https://www.statista.com/statistics/284861/occupational-injury-death-rate-in-2012-by-private-industry-sector/
Safe work Australia Fatality Statistics by Industry. [(accessed on 27 May 2021)]; Available online: https://www.safeworkaustralia.gov.au/statistics-and-research/statistics/fatalities/fatality-statistics-industry.
Quentic The Top 3 Most Dangerous Industry Sectors to Work at in Germany. [(accessed on 27 May 2021)]; Available online: https://www.quentic.com/blog/dv/2281-the-top-3-most-dangerous-industry-sectors-to-work-at-in-germany/
HSE Workplace Fatal Injuries in Great Britain. [(accessed on 27 May 2021)];2019 Available online: https://www.hse.gov.uk/statistics/pdf/fatalinjuries.pdf.
Constructconnect Avoiding OSHA’s Fatal Four—Caught-In/Between Hazards. [(accessed on 27 May 2021)]; Available online: https://www.aftermath.com/content/workplace-accident-statistics/
Awolusi I., Marks E., Hallowell M. Wearable Technology for Personalized Construction Safety Monitoring and Trending: Review of Applicable Devices. Autom. Constr. 2018;85:96–106. doi: 10.1016/j.autcon.2017.10.010. DOI
O Donovan R., Doody O., Lyons R. The Effect of Stress on Health and Its Implications for Nursing. Br. J. Nurs. 2013;22:969–973. doi: 10.12968/bjon.2013.22.16.969. PubMed DOI
Yaribeygi H., Panahi Y., Sahraei H., Johnston T.P., Sahebkar A. The impact of stress on body function: A review. Excli J. 2017;16:1057. PubMed PMC
Optalert Eagle Industrial. [(accessed on 27 May 2021)]; Available online: https://www.optalert.com/explore-products/eagle-industrial/
Qoowear Boosting The Safety Of Workers in Sub-Zero Environments. [(accessed on 27 May 2021)]; Available online: http://qoowear.com/
Eleksen Smart Workforce Safety. [(accessed on 27 May 2021)]; Available online: https://eleksen.com/
MyExposome Lightweight Simple Wristbands. [(accessed on 27 May 2021)]; Available online: http://www.myexposome.com/approach.
Laevo Exoskeletons Our Wearable Chest and Back Support. [(accessed on 27 May 2021)]; Available online: https://www.laevo-exoskeletons.com/en/laevo-v2.
DIGI Kinetic Creates An Innovative Wearable That Reduces Workplace Injuries And Increases Safety Using Digi IoT Solutions. [(accessed on 27 May 2021)]; Available online: https://www.digi.com/customer-stories/kinetic-wearable-reduces-workplace-injuries.
Masood J., Dacal-Nieto A., Alonso-Ramos V., Fontano M.I., Voilqué A., Bou J. Industrial Wearable Exoskeletons and Exosuits Assessment Process; Proceedings of the International Symposium on Wearable Robotics; Pisa, Italy. 16–20 October 2018; Berlin/Heidelberg, Germany: Springer; 2018. pp. 234–238.
Codered Signal 21 Speaker Microphone. [(accessed on 27 May 2021)]; Available online: https://www.coderedheadsets.com/Signal-21-Speaker-Microphone-p/signal21.htm.
Realwear RealWear—Digital Workflow with Industrial Wearable. [(accessed on 27 May 2021)]; Available online: https://www.gitex.com/video-gallery/realwear-digital-workflow-with-industrial-wearable.
Capgemini Augmented and Virtual Reality. [(accessed on 27 May 2021)]; Available online: https://www.capgemini.com/wp-content/uploads/2018/09/AR-VR-in-Operations1.pdf.
Solepower Powering the Future One Step at a Time. [(accessed on 27 May 2021)]; Available online: http://www.solepowertech.com/#solepower.
Guardhat Human Centric Solutions Built for the Real World. [(accessed on 27 May 2021)]; Available online: https://www.guardhat.com/
OilPrice Augmented Reality Is A Game Changer for Oil & Gas. [(accessed on 27 May 2021)]; Available online: https://oilprice.com/Energy/Energy-General/Augmented-Reality-Is-A-Game-Changer-For-Oil-Gas.html.
Mine Safety and Health Administration (MSHA) Heat Stress in Mining. [(accessed on 27 May 2021)]; Available online: https://www.msha.gov/sites/default/files/AlertsandHazards/HeatStress.pdf.
WebMDe Diastole vs. Systole: Know Your Blood Pressure Numbers. [(accessed on 27 May 2021)]; Available online: https://www.webmd.com/hypertension-high-blood-pressure/guide/diastolic-and-systolic-blood-pressure-know-your-numbers#1.
Fourier Blood Pressure Sensor DT098. [(accessed on 27 May 2021)]; Available online: https://fourieredu.com/fwp/store/products/blood-pressure-sensor.
Vernier Blood Pressure Sensor. [(accessed on 27 May 2021)]; Available online: https://www.vernier.com/product/blood-pressure-sensor/
Stergiou G.S., Alpert B., Mieke S., Asmar R., Atkins N., Eckert S., Frick G., Friedman B., Graßl T., Ichikawa T., et al. A Universal Standard for the Validation of Blood Pressure Measuring Devices: Association for the Advancement of Medical Instrumentation/European Society of Hypertension/International Organization for Standardization (AAMI/ESH/ISO) Collaboration Statement. Hypertension. 2018;71:368–374. doi: 10.1161/HYPERTENSIONAHA.117.10237. PubMed DOI
Pantelopoulos A., Bourbakis N.G. A Survey on Wearable Sensor-Based Systems for Health Monitoring and Prognosis. IEEE Trans. Syst. Man Cybern. Part Appl. Rev. 2009;40:1–12. doi: 10.1109/TSMCC.2009.2032660. DOI
Bard D.M., Joseph J.I., van Helmond N. Cuff-less Methods for Blood Pressure Telemonitoring. Front. Cardiovasc. Med. 2019;6:40. doi: 10.3389/fcvm.2019.00040. PubMed DOI PMC
Fotouhi-Ghazvini F., Abbaspour S. Wearable Sireless Sensors for Measuring Calorie Consumption. J. Med Signals Sensors. 2020;10:19. doi: 10.4103/jmss.JMSS_15_18. PubMed DOI PMC
Lester J., Hartung C., Pina L., Libby R., Borriello G., Duncan G. Validated Caloric Expenditure Estimation Using a Single Body-worn Sensor; Proceedings of the 11th International Conference on Ubiquitous Computing; Orlando, FL, USA. 30 September–3 October 2009; pp. 225–234.
Jain S.K., Bhaumik B. An Energy Efficient ECG Signal Processor Detecting Cardiovascular Diseases on Smartphone. IEEE Trans. Biomed. Circuits Syst. 2016;11:314–323. doi: 10.1109/TBCAS.2016.2592382. PubMed DOI
Azariadi D., Tsoutsouras V., Xydis S., Soudris D. ECG Signal Analysis and Arrhythmia Detection on IoT Wearable Medical Devices; Proceedings of the 5th International Conference on Modern Circuits and Systems Technologies (MOCAST); Thessaloniki, Greece. 12–14 May 2016; Piscatvey, NJ, USA: IEEE; 2016. pp. 1–4.
Li M., Xiong W., Li Y. Wearable Measurement of ECG Signals Based on Smart Clothing. Int. J. Telemed. Appl. 2020;2020:6329360. doi: 10.1155/2020/6329360. PubMed DOI PMC
QARDIO QARDIOCORE. [(accessed on 27 May 2021)]; Available online: https://www.getqardio.com/qardiocore-wearable-ecg-ekg-monitor-iphone/
Athavale Y., Krishnan S. Biosignal Monitoring Using Wearables: Observations and Opportunities. Biomed. Signal Process. Control. 2017;38:22–33. doi: 10.1016/j.bspc.2017.03.011. DOI
Subha D.P., Joseph P.K., Acharya R., Lim C.M. EEG Signal Analysis: A Survey. J. Med Syst. 2010;34:195–212. doi: 10.1007/s10916-008-9231-z. PubMed DOI
Wei Y., Wu Y., Tudor J. A Real-time Wearable Emotion Detection Headband based on EEG Measurement. Sens. Actuators Phys. 2017;263:614–621. doi: 10.1016/j.sna.2017.07.012. DOI
Ahn J.W., Ku Y., Kim H.C. A Novel Wearable EEG and ECG Recording System for Stress Assessment. Sensors. 2019;19:1991. doi: 10.3390/s19091991. PubMed DOI PMC
Emotiv Brain Controlled Technology. [(accessed on 27 May 2021)]; Available online: https://www.emotiv.com/brain-controlled-technology/
Hettiarachchi C., Kodithuwakku J., Manamperi B., Ifham A., Silva P. A Wearable System to Analyze the Human Arm for Predicting Injuries due to Throwing; Proceedings of the 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); Berlin, Germany. 23–27 July 2019; Piscatvey, NJ, USA: IEEE; 2019. pp. 3297–3301. PubMed
Milosevic B., Benatti S., Farella E. Design challenges for wearable EMG applications; Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE); Lausanne, Switzerland. 27–31 March 2017; Piscatvey, NJ, USA: IEEE; 2017. pp. 1432–1437.
Shimmer Shimmer3 EMG Unit. [(accessed on 27 May 2021)]; Available online: https://www.emotiv.com/brain-controlled-technology/
Myonetic Sports. [(accessed on 27 May 2021)]; Available online: https://www.myontec.com/sports.
MedlinePlus Diabetes. [(accessed on 27 May 2021)]; Available online: https://medlineplus.gov/ency/article/001214.htm.
Ciechanowski P.S., Katon W.J., Russo J.E., Hirsch I.B. The Relationship of Depressive Symptoms to Symptom Reporting, Self-Care and Glucose Control in Diabetes. Gen. Hosp. Psychiatry. 2003;25:246–252. doi: 10.1016/S0163-8343(03)00055-0. PubMed DOI
Rodin D., Kirby M., Sedogin N., Shapiro Y., Pinhasov A., Kreinin A. Comparative Accuracy of Optical Sensor-based Wearable System for Non-invasive Measurement of Blood Glucose Concentration. Clin. Biochem. 2019;65:15–20. doi: 10.1016/j.clinbiochem.2018.12.014. PubMed DOI
WHOOP Overview of the Whoop Strap 3.0. [(accessed on 27 May 2021)]; Available online: https://www.whoop.com/thelocker/whoop-strap-3-0-overview/
Bobrowski T., Schuhmann W. Long-Term Implantable Glucose Biosensors. Curr. Opin. Electrochem. 2018;10:112–119. doi: 10.1016/j.coelec.2018.05.004. DOI
Meetoo D., Wong L., Ochieng B. Smart Tattoo: Technology for Monitoring Blood Glucose in the Future. Br. J. Nurs. 2019;28:110–115. doi: 10.12968/bjon.2019.28.2.110. PubMed DOI
Bellmann B., Gemein C., Schauerte P. Regular Pulse Rate but Irregular Heart Rate? Neth. Heart J. 2016;24:435–437. doi: 10.1007/s12471-016-0832-8. PubMed DOI PMC
Ge Z., Prasad P., Costadopoulos N., Alsadoon A., Singh A., Elchouemi A. Evaluating the Accuracy of Wearable Heart Rate Monitors; Proceedings of the 2nd International Conference on Advances in Computing, Communication, & Automation (ICACCA)(Fall); Bareilly, India. 30 September–1 October 2016; Piscatvey, NJ, USA: IEEE; 2016. pp. 1–6.
Hanning C., Alexander-Williams J. Fortnightly Review: Pulse Oximetry: A Practical Review. BMJ. 1995;311:367–370. doi: 10.1136/bmj.311.7001.367. PubMed DOI PMC
Myzone MZ-3. [(accessed on 27 May 2021)]; Available online: https://www.myzone.org/mz-3.
Vermarien H. Encyclopedia of Medical Devices and Instrumentation. John Wiley & Sons Inc.; Hoboken, NJ, USA: 2006. Phonocardiography. DOI
Dwivedi A.K., Imtiaz S.A., Rodriguez-Villegas E. Algorithms for Automatic Analysis and Classification of Heart Sounds–A Systematic Review. IEEE Access. 2018;7:8316–8345. doi: 10.1109/ACCESS.2018.2889437. DOI
Wong C., Zhang Z.Q., Lo B., Yang G.Z. Wearable Sensing for Solid Biomechanics: A Review. IEEE Sens J. 2015;15:2747–2760.
Ometov A., Solomitckii D., Olsson T., Bezzateev S., Shchesniak A., Andreev S., Harju J., Koucheryavy Y. Secure and Connected Wearable Intelligence for Content Delivery at a Mass Event: A Case Study. J. Sens. Actuator Netw. 2017;6:5. doi: 10.3390/jsan6020005. DOI
Norris M., Anderson R., Kenny I.C. Method Analysis of Accelerometers and Gyroscopes in Running Gait: A Systematic Review. Proc. Inst. Mech. Eng. Part J. Sport. Eng. Technol. 2014;228:3–15. doi: 10.1177/1754337113502472. DOI
Webster M. Sweat. [(accessed on 27 May 2021)]; Available online: https://www.merriam-webster.com/dictionary/sweat.
Legner C., Kalwa U., Patel V., Chesmore A., Pandey S. Sweat Sensing in the Smart Wearables Ara: Towards Integrative, Multifunctional and Body-Compliant Perspiration Analysis. Sens. Actuators Phys. 2019;296:200–221. doi: 10.1016/j.sna.2019.07.020. DOI
Parrilla M., Guinovart T., Ferré J., Blondeau P., Andrade F.J. A Wearable Paper-based Sweat Sensor for Human Perspiration Monitoring. Adv. Healthc. Mater. 2019;8:1900342. doi: 10.1002/adhm.201900342. PubMed DOI
MyHealthyApple.com Top Four Sweat Sensor Telated Features Coming Soon to Your Smartwatches. [(accessed on 27 May 2021)]; Available online: https://www.myhealthyapple.com/top-four-sweat-sensors-related-features-coming-soon-to-your-smartwatch/#What_are_sweat_sensors.
Geneva I.I., Cuzzo B., Fazili T., Javaid W. Open Forum Infectious Diseases. Volume 6. Oxford University Press US; Cary, NC, USA: 2019. Normal Body Temperature: A Systematic Review; p. ofz032. PubMed PMC
F. MacDonald This is How a Norwegian Woman Survived the Lowest Body Temperature Ever Recorded. [(accessed on 27 May 2021)]; Available online: https://www.sciencealert.com/this-woman-survived-the-lowest-body-temperature-ever-recorded.
Thermometrics Accuracy Standards. [(accessed on 27 May 2021)]; Available online: https://www.thermometricscorp.com/rtd-accuracy.html.
Maxim Integrated Max30205 Human Body Temperature Sensor. [(accessed on 27 May 2021)]; Available online: https://www.maximintegrated.com/en/products/interface/sensor-interface/MAX30205.html.
Workerbase First Smartwatch for Industrial Use. [(accessed on 27 May 2021)]; Available online: https://workerbase.com/industrial-smartwatch.
Mohy-Ud-Din Z., Woo S.H., Lee J.H., Lee S.H., Young P.S., Won C.H., Cho J.H. Wireless skin temperature sensing patch; Proceedings of the IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems; Seoul, Korea. 20–22 August 2008; Piscatvey, NJ, USA: IEEE; 2008. pp. 258–260.
Svertoka E., Bălănescu M., Suciu G., Pasat A., Drosu A. Decision Support Algorithm Based on the Concentrations of Air Pollutants Visualization. Sensors. 2020;20:5931. doi: 10.3390/s20205931. PubMed DOI PMC
Svertoka E., Rusu-Casandra A., Marghescu I. State-of-the-Art of Industrial Wearables: A Systematic Review; Proceedings of the 13th International Conference on Communications (COMM); Bucharest, Romania. 18–20 June 2020; Piscatvey, NJ, USA: IEEE; 2020. pp. 411–415.
Cambridge Dictionary Atmospheric Pressure. [(accessed on 27 May 2021)]; Available online: https://dictionary.cambridge.org/ru.
Alex Yartsev Deranged Physiology. Physiological Effects of High and Low Barometric Pressure. [(accessed on 27 May 2021)]; Available online: https://derangedphysiology.com/main/cicm-primary-exam/required-reading/respiratory-system/Chapter%20923/physiological-effects-high-and-low-barometric-pressure.
Melamed Y., Shupak A., Bitterman H. Medical problems associated with underwater diving. N. Engl. J. Med. 1992;326:30–35. PubMed
Vandrico Inc Atheer Air Glasses. [(accessed on 27 May 2021)]; Available online: https://vandrico.com/wearables/device/atheer-air-glasses.html.
Maximum Yield Light Intensity. [(accessed on 27 May 2021)]; Available online: https://www.maximumyield.com/definition/2036/light-intensity.
National Optical Astronomic Observatory Recommended Light Levels. [(accessed on 27 May 2021)]; Available online: http://www.noao.edu/education/QLTkit/ACTIVITY_Documents/Safety/LightLevels_outdoor+indoor.pdf.
European Commission Health and Consumers. Scientific Committees. Health Effects of Artificial Light. [(accessed on 27 May 2021)]; Available online: https://ec.europa.eu/health/scientific_committees/opinions_layman/artificial-light/en/l-2/4-effects-health.htm#0.
Nang E.E.K., Abuduxike G., Posadzki P., Divakar U., Visvalingam N., Nazeha N., Dunleavy G., Christopoulos G.I., Soh C.K., Jarbrink K., et al. Review of the Potential Health Effects of Light and Environmental Exposures in Underground Workplaces. Tunn. Undergr. Space Technol. 2019;84:201–209. doi: 10.1016/j.tust.2018.11.022. DOI
United States Department of Labor Occupational Safety and Health Administration. Standard 1926.56—Illumination. [(accessed on 27 May 2021)]; Available online: https://www.osha.gov/laws-regs/regulations/standardnumber/1926/1926.56.
Texas Instruments OPT3006 Ultra-Thin Ambient Light Sensor. [(accessed on 27 May 2021)]; Available online: https://www.ti.com/product/OPT3006.
The Free Dictionary Noise Level. [(accessed on 27 May 2021)]; Available online: https://www.thefreedictionary.com/noise+level.
Talukdar M. Noise Pollution and Its Control in Textile Industry. NISCAIR-CSIR; New Delhi, India: 2001.
Cambridge Dictionary Radiation. [(accessed on 27 May 2021)]; Available online: https://dictionary.cambridge.org/ru.
U.S.NRC Information for Radiation Workers. [(accessed on 27 May 2021)]; Available online: https://www.nrc.gov/about-nrc/radiation/health-effects/info.html.
EPA. United States Environmental Protection Agency Radiation Health Effects. [(accessed on 27 May 2021)]; Available online: https://www.epa.gov/radiation/radiation-health-effects.
Banafa A. The Internet of Everything. Discov. World Res. 2014 doi: 10.13140/2.1.3805.2487. DOI
Cambridge Dictionary Relative Humidity. [(accessed on 27 May 2021)]; Available online: https://dictionary.cambridge.org/ru.
Toftum J., Fanger P.O. Air Humidity Requirements for Human Comfort. Ashrae Trans. 1999;105:641.
Baughman A., Arens E.A. Indoor Humidity and Human Health–Part I: Literature Review of Health Effects of Humidity-Influenced Indoor Pollutants. Ashrae Trans. 1996;102:192–211.
Sensirion Datasheet sht1x (sht10, sht11, sht15) Humidity and Temperature Sensor. [(accessed on 27 May 2021)]; Available online: https://www.sparkfun.com/datasheets/Sensors/SHT1x_datasheet.pdf.
Milley M.A., O’Keefe G.B. Mountain Warfare and Cold Weather Operations. Headquarters Department of the Army Washington United States; Washington, DC, USA: 2016. Technical Report.
Cui W., Cao G., Park J.H., Ouyang Q., Zhu Y. Influence of Indoor Air Temperature on Human Thermal Comfort, Motivation and Performance. Build. Environ. 2013;68:114–122. doi: 10.1016/j.buildenv.2013.06.012. DOI
World Health Organization Radiation: The Ultraviolet (UV) Index. [(accessed on 27 May 2021)]; Available online: https://www.who.int/news-room/q-adetail/radiation-the-ultraviolet-(uv)-index.
Vanicek K., Frei T., Litynska Z., Schmalwieser A. UV-Index for the Public. Publication of the European Communities; Brussels, Belgium: 2000.
Banerjee S., Hoch E.G., Kaplan P.D., Dumont E.L. A Comparative Study of Wearable Ultraviolet Radiometers; Proceedings of the IEEE Life Sciences Conference (LSC); Sydney, Australia. 13–15 December 2017; Piscatvey, NJ, USA: IEEE; 2017. pp. 9–12.
Rapin M., Wacker J., Chételat O. Cooperative Sensors: A New Wired Body-Sensor-Network Approach for Wearable Biopotential Measurement; Proceedings of the 5th EAI International Conference on Wireless Mobile Communication and Healthcare; London, UK. 14–16 October 2015; pp. 151–154.
Domingo M.C. An Overview of the Internet of Things for People with Disabilities. J. Netw. Comput. Appl. 2012;35:584–596. doi: 10.1016/j.jnca.2011.10.015. DOI
Orfanidis C., Dimitrakopoulos K., Fafoutis X., Jacobsson M. Towards Battery-Free LPWAN Wearables; Proceedings of the 7th International Workshop on Energy Harvesting and Energy-Neutral Sensing Systems; New York, NY, USA. 10 November 2019; pp. 52–53.
Ometov A., Chukhno O., Chukhno N., Nurmi J., Lohan E.S. When Wearable Technology Meets Computing in Future Networks: A Road Ahead; Proceedings of the 18th ACM International Conference on Computing Frontiers; Virtual Event, Italy. 11–13 May 2021; pp. 185–190.
Pyattaev A., Johnsson K., Andreev S., Koucheryavy Y. Communication Challenges in High-Density Deployments of Wearable Wireless Devices. IEEE Wirel. Commun. 2015;22:12–18. doi: 10.1109/MWC.2015.7054714. DOI
Kaul A., Wheelock C. White Paper. Tractica; Boulder, CO, USA: 2016. Enterprise Wearable Technology Case Studies.
Gungor V.C., Hancke G.P. Industrial Wireless Sensor Networks: Challenges, Design Principles, and Technical Approaches. IEEE Trans. Ind. Electron. 2009;56:4258–4265. doi: 10.1109/TIE.2009.2015754. DOI
Bernal G., Colombo S., Al Ai Baky M., Casalegno F. Safety++ Designing IoT and Wearable Systems for Industrial Safety through a User Centered Design Approach; Proceedings of the 10th International Conference on PErvasive Technologies Related to Assistive Environments; Island of Rhodes, Greece. 21–23 June 2017; pp. 163–170.
Bezzateev S., Afanasyeva A., Voloshina N., Ometov A. Multi-Factor Authentication for Wearables: Configuring System Parameters with Risk Function; Proceedings of the 2nd International Conference on Advanced Wireless Information, Data, and Communication Technologies; Lviv, Ukraine. 13–14 November 2017; pp. 1–7.
Voigt P., Von dem Bussche A. The EU General Data Protection Regulation (GDPR). InA Practical Guide. 1st ed. Volume 10. Springer International Publishing; Cham, Switzerland: 2017. p. 3152676.
Djapic R., Vivier G., Zhen B., Wang J., Lee J., Haiming W. Wearables White Paper. TNO; Den Haag, The Netherlands: 2018.
Fernández-Garcia R., Gil I. An Alternative Wearable Tracking System Based on a Low-Power Wide-Area Network. Sensors. 2017;17:592. doi: 10.3390/s17030592. PubMed DOI PMC
AlertGPS AlertGPS Uses AT&T Connectivity to Help Keep Mobile Workers Safer. [(accessed on 27 May 2021)]; Available online: https://alertgps.com/wp-content/uploads/2018/04/AGPS-ATT-release-WorldSafetyDay2018-1.pdf.
Saafi S., Hosek J., Kolackova A. Cellular-Enabled Wearables in Public Safety Networks: State of the Art and Performance Evaluation; Proceedings of the 12th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT); Brno, Czech Republic. 5–7 October 2020; Piscatvey, NJ, USA: IEEE; 2020. pp. 201–207.
Yang P., Wu W., Moniri M., Chibelushi C.C. Efficient Object Localization Using Sparsely Distributed Passive RFID Tags. IEEE Trans. Ind. Electron. 2012;60:5914–5924. doi: 10.1109/TIE.2012.2230596. DOI
Tei R., Yamazawa H., Shimizu T. BLE Power Consumption Estimation and its Applications to Smart Manufacturing; Proceedings of the 54th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE); Osaka, Japan. 28–30 July 2015; Piscatvey, NJ, USA: IEEE; 2015. pp. 148–153.
Ometov A. Short-Range Communications within Emerging Wireless Networks and Architectures: A Survey; Proceedings of the 14th Conference of Open Innovation Association FRUCT; Helsinki, Finland. 11–15 November 2013; Piscatvey, NJ, USA: IEEE; 2013. pp. 83–89.
Hayek A., Telawi S., Klos J., Börcsök J., Daou R.A.Z. Interoperability, Safety and Security in IoT. Springer; Berlin/Heidelberg, Germany: 2017. Smart Wearable System for Safety-Related Industrial IoT Applications; pp. 154–164.
Wu F., Redouté J.M., Yuce M.R. We-Safe: A Self-Powered Wearable IoT Sensor Network for Safety Applications Based on LoRa. IEEE Access. 2018;6:40846–40853. doi: 10.1109/ACCESS.2018.2859383. DOI
Tayeh G.B., Azar J., Makhoul A., Guyeux C., Demerjian J. A Wearable LoRa-Based Emergency System for Remote Safety Monitoring; Proceedings of the 2020 International Wireless Communications and Mobile Computing (IWCMC); Limassol, Cyprus. 15–19 June 2020; Piscatvey, NJ, USA: IEEE; 2020. pp. 120–125.
Borkar S.R. LPWAN Technologies for IoT and M2M Applications. Elsevier; Amsterdam, The Netherlands: 2020. Long-Term Evolution for Machines (LTE-M) pp. 145–166.
Zhang Z., Ma X., Zhu T., Liu G. Design of a NB-IoT-based Wearable Monitoring System; Proceedings of the 11th EAI International Conference on Mobile Multimedia Communications; Qingdao, China. 21–22 June 2018; Ghent, Belgium: European Alliance for Innovation (EAI); 2018. p. 250.
GSMA KT Pilots NB-IoT to Improve the Safety of Mountain and Water Sports. [(accessed on 27 May 2021)]; Available online: https://www.gsma.com/iot/mobile-iot-pilots-operator/kt/
IEEE Publishes 802 11ah™-2016 Standard Amendment Extending Range and Improving Energy Efficiency in the Sub 1 GHz Band. [(accessed on 27 May 2021)]; Available online: https://standards.ieee.org/news/2017/ieee802-11ah.html.
Tian L., Santi S., Seferagić A., Lan J., Famaey J. Wi-Fi HaLow for the Internet of Things: An Up-to-Date Survey on IEEE 802.11 ah Research. J. Netw. Comput. Appl. 2021;2021:103036. doi: 10.1016/j.jnca.2021.103036. DOI
Ometov A., Daneshfar N., Hazmi A., Andreev S., Carpio L.F.D., Amin P., Torsner J., Koucheryavy Y., Valkama M. System-Level Analysis of IEEE 802.11 ah Technology for Unsaturated MTC Traffic. Int. J. Sens. Netw. 2018;26:269–282. doi: 10.1504/IJSNET.2018.090480. DOI
Shafi M., Molisch A.F., Smith P.J., Haustein T., Zhu P., De Silva P., Tufvesson F., Benjebbour A., Wunder G. 5G: A Tutorial Overview of Standards, Trials, Challenges, Deployment, and Practice. IEEE J. Sel. Areas Commun. 2017;35:1201–1221. doi: 10.1109/JSAC.2017.2692307. DOI
Elbamby M.S., Perfecto C., Bennis M., Doppler K. Toward Low-Latency and Ultra-Reliable Virtual Reality. IEEE Netw. 2018;32:78–84. doi: 10.1109/MNET.2018.1700268. DOI
ur Rehman O., Javaid N., Bibi A., Khan Z.A. Performance Study of Localization Techniques in Wireless Body Area Sensor Networks; Proceedings of the IEEE 11th International Conference on Trust, Security and Privacy in Computing and Communications; Liverpool, UK. 25–27 June 2012; Piscatvey, NJ, USA: IEEE; 2012. pp. 1968–1975.
European Global Navigation Satellite Systems Agency GNSS User Technology Report. [(accessed on 27 May 2021)]; Available online: https://www.gsa.europa.eu/sites/default/files/uploads/technology_report_2020.pdf.
U-BLOX M10: Ultra-Low Power GNSS for Small, High-Performance Trackers and Wearables. [(accessed on 27 May 2021)]; Available online: https://www.u-blox.com/en/blogs/tech/u-blox-m10-ultra-low-power-gnss-small-high-performance-trackers-and-wearables.
Huang B., Liu M., Xu Z., Jia B. On the Performance Analysis of WiFi Based Localization; Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); Calgary, AB, Canada. 15–20 April 2018; Piscatvey, NJ, USA: IEEE; 2018. pp. 4369–4373.
Yang C., Shao H.R. WiFi-based Indoor Positioning. IEEE Commun. Mag. 2015;53:150–157. doi: 10.1109/MCOM.2015.7060497. DOI
Gómez-de Gabriel J.M., Fernández-Madrigal J.A., López-Arquillos A., Rubio-Romero J.C. Monitoring Harness Use in Construction with BLE Beacons. Measurement. 2019;131:329–340. doi: 10.1016/j.measurement.2018.07.093. DOI
Sun J., Gao M., Wang Q., Jiang M., Zhang X., Schmitt R. Smart Services for Enhancing Personal Competence in Industrie 4.0 Digital Factory. Logforum. 2018;14:51–57. doi: 10.17270/J.LOG.2018.239. DOI
Mokhtari G., Anvari-Moghaddam A., Zhang Q., Karunanithi M. Multi-Residential Activity Labelling in Smart Homes with Wearable Tags Using BLE Technology. Sensors. 2018;18:908. doi: 10.3390/s18030908. PubMed DOI PMC
Daixian Z., Kechu Y. Particle Filter Localization in Underground Mines Using UWB Ranging; Proceedings of the Fourth International Conference on Intelligent Computation Technology and Automation; Shenzhen, China. 28–29 March 2011; Piscatvey, NJ, USA: IEEE; 2011. pp. 645–648.
Qin Y., Wang F., Zhou C. A Distributed UWB-based Localization System in Underground Mines. J. Netw. 2015;10:134. doi: 10.4304/jnw.10.3.134-140. DOI
Otim T., Díez L.E., Bahillo A., Lopez-Iturri P., Falcone F. Effects of the Body Wearable Sensor Position on the UWB Localization Accuracy. Electronics. 2019;8:1351. doi: 10.3390/electronics8111351. DOI
Fargas B.C., Petersen M.N. GPS-Free Geolocation Using LoRa in Low-Power WANs; Proceedings of the Global Internet of Things Summit (GIOTS); Geneva, Switzerland. 6–9 June 2017; Piscatvey, NJ, USA: IEEE; 2017. pp. 1–6.
Podevijn N., Plets D., Trogh J., Martens L., Suanet P., Hendrikse K., Joseph W. TDoA-based Outdoor Positioning with Tracking Algorithm in a Public LoRa Network. Wirel. Commun. Mob. Comput. 2018;2018:1864209. doi: 10.1155/2018/1864209. DOI
Islam B., Islam M.T., Nirjon S. Feasibility of LoRa for Indoor Localization. Appl. Sci. 2017;2017:8565550.
Janssen T., Aernouts M., Berkvens R., Weyn M. Outdoor Fingerprinting Localization Using SigFox; Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN); Nantes, France. 24–27 September 2018; Piscatvey, NJ, USA: IEEE; 2018. pp. 1–6.
Anagnostopoulos G.G., Kalousis A. A Reproducible Analysis of RSSI Fingerprinting for Outdoor Localization Using SigFox: Preprocessing and Hyperparameter Tuning; Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN); Pisa, Italy. 30 September–3 October 2019; Piscatvey, NJ, USA: IEEE; 2019. pp. 1–8.
Chae S., Yoshida T. Application of RFID Technology to Prevention of Collision Accident With Heavy Equipment. Autom. Constr. 2010;19:368–374. doi: 10.1016/j.autcon.2009.12.008. DOI
Kanan R., Elhassan O., Bensalem R. An IoT-based Autonomous System for Workers’ Safety in Construction Sites with Real-Time Alarming, Monitoring, and Positioning Strategies. Autom. Constr. 2018;88:73–86. doi: 10.1016/j.autcon.2017.12.033. DOI
Quuppa Bluetooth Low Energy, Angle-of-Arrival, and the Magic Behind. [(accessed on 27 May 2021)]; Available online: https://quuppa.com/technology/overview/
Cao Z., Chen R., Guo G., Pan Y. iBaby: A Low Cost BLE Pseudolite Based Indoor Baby Care System; Proceedings of the 2018 Ubiquitous Positioning, Indoor Navigation and Location-Based Services (UPINLBS); Wuhan, China. 22–23 March 2018; pp. 1–6.
Rizos C., Lilly B., Robertson C., Gambale N. Open Cut Mine Machinery Automation: Going Beyond GNSS with Locata; Proceedings of the International Future Mining Conference; Sydney, Australia. 6–8 December 2011; Princeton, NJ, USA: Citeseer; 2011. pp. 22–23.
Zimmerman K.R., Cobb H.S., Bauregger F.N., Alban S., Montgomery P.Y., Lawrence D.G. A New GPS Augmentation Solution: Terralite’XPS System for Mining Applications and Initial Experience; Proceedings of the 18th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2005); Long Beach, CA, USA. 13–16 September 2005; pp. 2775–2788.
Trunzo A., Benshoof P., Amt J. The UHARS non-GPS based Positioning System; Proceedings of the 24th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2011); Portland, OR, USA. 19–23 September 2011; pp. 3582–3586.
Seguel F., Soto I., Adasme P., Krommenacker N., Charpentier P. Potential and Challenges of VLC based IPS in Underground Mines; Proceedings of the First South American Colloquium on Visible Light Communications (SACVLC); Santiago, Chile. 13 November 2017; Piscatvey, NJ, USA: IEEE; 2017. pp. 1–6.
Li B., Zhao K., Saydam S., Rizos C., Wang Q., Wang J. Investigation of Indoor Positioning Technologies for Underground Mine Environments; Proceedings of the IPIN (Short Papers/Work-in-Progress Papers); Pisa, Italy. 30 September–3 October 2019; Piscatvey, NJ, USA: IEEE; 2019. pp. 259–266.
Niu Q., Yang X., Yin Y. IPL: Image-Assisted Person Localization for Underground Coal Mines. Sensors. 2018;18:3679. doi: 10.3390/s18113679. PubMed DOI PMC
CDC Basic Tutorial on Wireless Communication and Electronic Tracking: Technology Overview. [(accessed on 27 May 2021)]; Available online: https://www.cdc.gov/niosh/mining/content/emergencymanagementandresponse/commtracking/commtrackingtutorial1.html#23TrackingSystemsPrinciplesofOperation.
Ouameur M.A., Caza-Szoka M., Massicotte D. Machine Learning Enabled Tools and Methods for Indoor Localization Using Low Power Wireless Network. Internet Things. 2020;12:100300. doi: 10.1016/j.iot.2020.100300. DOI
Anjum M., Khan M.A., Hassan S.A., Mahmood A., Gidlund M. Analysis of RSSI Fingerprinting in LoRa Networks; Proceedings of the 15th International Wireless Communications & Mobile Computing Conference (IWCMC); Tangier, Morocco. 24–28 June 2019; Piscatvey, NJ, USA: IEEE; 2019. pp. 1178–1183.
Li S., Qin Z., Song H., Si C., Sun B., Yang X., Zhang R. A Lightweight and Aggregated System for Indoor/Outdoor Detection Using Smart Devices. Future Gener. Comput. Syst. 2020;107:988–997. doi: 10.1016/j.future.2017.05.028. DOI
Adebomehin A., Walker S. Enhanced Satellite Positioning Methods Using UltraWideband D2D-based Localization for Ultra-Dense 5G Wireless Setting. J. Physics: Conf. Ser. 2019;1152:012026. doi: 10.1088/1742-6596/1152/1/012026. DOI
Ranjan A., Misra P., Dwivedi B., Sahu H.B. Studies on Propagation Characteristics of Radio Waves for Wireless Networks in Underground Coal Mines. Wirel. Pers. Commun. 2017;97:2819–2832. doi: 10.1007/s11277-017-4636-y. DOI
Liu G., Chen P. Design of Wireless Communication System in Mine. J. Phys. Conf. Ser. 2020;1626:012031. doi: 10.1088/1742-6596/1626/1/012031. DOI
Umetsu Y., Nakamura Y., Arakawa Y., Fujimoto M., Suwa H. EHAAS: Energy Harvesters as a Sensor for Place Recognition on Wearables; Proceedings of the IEEE International Conference on Pervasive Computing and Communications (PerCom); Kyoto, Japan. 11–15 March 2019; Piscatvey, NJ, USA: IEEE; 2019. pp. 1–10.
Harkanson R., Kim Y. Applications of Elliptic Curve Cryptography: A Light Introduction to Elliptic Curves and a Survey of their Applications; Proceedings of the 12th annual conference on cyber and information security research; Oak Ridge, TN, USA. 4–6 April 2017; pp. 1–7.
Ometov A., Masek P., Malina L., Florea R., Hosek J., Andreev S., Hajny J., Niutanen J., Koucheryavy Y. Feasibility Characterization of Cryptographic Primitives for Constrained (Wearable) IoT Devices; Proceedings of the IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops); Pisa, Italy. 21–25 March 2016; Piscatvey, NJ, USA: IEEE; 2016. pp. 1–6.
Ching K.W., Singh M.M. Wearable Technology Devices Security and Privacy Vulnerability Analysis. Int. J. Netw. Secur. Its Appl. 2016;8:19–30. doi: 10.5121/ijnsa.2016.8302. DOI
Shubina V., Ometov A., Andreev S., Niculescu D., Lohan E.S. Privacy versus Location Accuracy in Opportunistic Wearable Networks; Proceedings of the 2020 International Conference on Localization and GNSS (ICL-GNSS); Tampere, Finland. 2–4 June 2020; Piscatvey, NJ, USA: IEEE; 2020. pp. 1–6.
Shubina V., Holcer S., Gould M., Lohan E.S. Survey of Decentralized Solutions with Mobile Devices for User Location Tracking, Proximity Detection, and Contact Tracing in the COVID-19 Era. Data. 2020;5:87. doi: 10.3390/data5040087. DOI
Shubina V., Ometov A., Niculescu D., Lohan E.S. Challenges of Privacy-aware Localization on Wearable Devices; Proceedings of the XXXV Finnish URSI Convention on Radio Science; Tampere, Finland. 20–25 August 2019.
Shubina V., Ometov A., Basiri A., Lohan E.S. Effectiveness Modelling of Digital Contact-Tracing Solutions for Tackling the COVID-19 Pandemic. J. Navig. 2021:1–34. doi: 10.1017/S0373463321000175. DOI
Kim K.J., Shin D.H. An Acceptance Model for Smart Watches. Internet Res. 2015;25:527–541. doi: 10.1108/IntR-05-2014-0126. DOI
Venkatesh V., Thong J.Y., Xu X. Unified Theory of Acceptance and Use of Technology: A Synthesis and the Road Ahead. J. Assoc. Inf. Syst. 2016;17:328–376. doi: 10.17705/1jais.00428. DOI
Jacobs J.V., Hettinger L.J., Huang Y.H., Jeffries S., Lesch M.F., Simmons L.A., Verma S.K., Willetts J.L. Employee Acceptance of Wearable Technology in the Workplace. Appl. Ergon. 2019;78:148–156. doi: 10.1016/j.apergo.2019.03.003. PubMed DOI
Kritzler M., Bäckman M., Tenfält A., Michahelles F. Wearable Technology as a Solution for Workplace Safety; Proceedings of the 14th International Conference on Mobile and Ubiquitous Multimedia; Linz, Austria. 30 November–2 December 2015; pp. 213–217.
Younan M., Houssein E.H., Elhoseny M., Ali A.A. Challenges and Recommended Technologies for the Industrial Internet of Things: A Comprehensive Review. Measurement. 2020;151:107198. doi: 10.1016/j.measurement.2019.107198. DOI
Wang F., Zhang X. Dynamic Computation Offloading and Resource Allocation Over Mobile Edge Computing Networks with Energy Harvesting Capability; Proceedings of the IEEE International Conference on Communications (ICC); Kansas City, MO, USA. 20–24 May 2018; Piscatvey, NJ, USA: IEEE; 2018. pp. 1–6.
Li C., Bai J., Tang J. Joint Optimization of Data Placement and Scheduling for Improving User Experience in Edge Computing. J. Parallel Distrib. Comput. 2019;125:93–105. doi: 10.1016/j.jpdc.2018.11.006. DOI
Dionisi A., Marioli D., Sardini E., Serpelloni M. Autonomous Wearable System for Vital Signs Measurement with Energy-Harvesting Module. IEEE Trans. Instrum. Meas. 2016;65:1423–1434. doi: 10.1109/TIM.2016.2519779. DOI
Zhao J., Lin Y., Wu J., Nyein H.Y.Y., Bariya M., Tai L.C., Chao M., Ji W., Zhang G., Fan Z., et al. A Fully Integrated and Self-Powered Smartwatch for Continuous Sweat Glucose Monitoring. ACS Sens. 2019;4:1925–1933. doi: 10.1021/acssensors.9b00891. PubMed DOI
Dohan K. The Three Most Common Mining Industry Cyber Threats. [(accessed on 27 May 2021)]; Available online: https://www.nozominetworks.com/blog/the-three-most-common-mining-industry-cyber-threats/
Nguyen M., Gani M.O., Raychoudhury V. Yours Truly? Survey on Accessibility of our Personal Data in the Connected World; Proceedings of the IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops); Kyoto, Japan. 11–15 March 2019; Piscatvey, NJ, USA: IEEE; 2019. pp. 292–297.
Taherdoost H., Sahibuddin S., Namayandeh M., Jalaliyoon N., Kalantari A., Chaeikar S.S. Smart Card Adoption Model: Social and Ethical Perspectives. Science. 2012;3:1792–1796.
Applications and Innovations on Sensor-Enabled Wearable Devices