Ornamental Plant Efficiency for Heavy Metals Phytoextraction from Contaminated Soils Amended with Organic Materials
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34199536
PubMed Central
PMC8199650
DOI
10.3390/molecules26113360
PII: molecules26113360
Knihovny.cz E-zdroje
- Klíčová slova
- contaminated soil, heavy metals, organic materials, ornamental plants, phytoremediation,
- MeSH
- amarant růst a vývoj metabolismus MeSH
- biodegradace MeSH
- biomasa MeSH
- EDTA chemie MeSH
- huminové látky analýza MeSH
- látky znečišťující půdu analýza MeSH
- těžké kovy analýza MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Egypt MeSH
- Názvy látek
- EDTA MeSH
- huminové látky MeSH
- látky znečišťující půdu MeSH
- těžké kovy MeSH
Accumulation of heavy metals (HMs) by ornamental plants (OPs) from contaminated agriculture soils is a unique technique that can efficiently reduce the metal load in the food chain. Amaranthus tricolor L. has attractive characteristics acquiring a higher growth rate and large biomass when grown at heavy metal contaminated soils. Site-specific detailed information is not available on the use of A. tricolor plant in metal phytoremediation from the polluted sites. The study aimed to enhance the uptake of HMs (Pb, Zn, and Cu) via amending poultry litter extract (PLE), vinasse sugarcane (VSC), and humic acid (HA) as natural mobilized organic materials compared to ethylene diamine tetraacetic acid (EDTA), as a common mobilized chemical agent by A. tricolor plant. The studied soils collected from Helwan, El-Gabal El-Asfar (Cairo Governorate), Arab El-Madabeg (Assiut Governorate), Egypt, and study have been conducted under pot condition. Our results revealed all organic materials in all studied soils, except EDTA in EL-Gabal El-Asfar soil, significantly increased the dry weight of the A. tricolor plant compared to the control treatment. The uptake of Pb and Zn significantly (p > 0.05) increased due to applying all organic materials to the studied soils. HA application caused the highest uptake as shown in Pb concentration by more than 5 times in Helwan soil and EDTA by 65% in El-Gabal El-Asfar soil while VSC increased it by 110% in El-Madabeg soil. Also, an increase in Zn concentration due to EDTA application was 58, 42, and 56% for Helwan, El-Gabal El-Asfar, and El-Madabeg soil, respectively. In all studied soils, the application of organic materials increased the remediation factor (RF) than the control. El-Madabeg soil treated with vinasse sugarcane gave the highest RF values; 6.40, 3.26, and 4.02% for Pb, Zn, and Cu, respectively, than the control. Thus, we identified A. tricolor as a successful ornamental candidate that, along with organic mobilization amendments, most efficiently develop soil health, reduce metal toxicity, and recommend remediation of heavy metal-contaminated soils. Additionally, long-term application of organic mobilization amendments and continued growth of A. tricolor under field conditions could be recommended for future directions to confirm the results.
Agriculture Department The University of Swabi Khyber Paktunkhwa 94640 Pakistan
College of Agriculture Fujian Agriculture and Forestry University Fuzhou 350002 China
Department of Agronomy Faculty of Agriculture Kafrelsheikh University Kafr El Shaikh 33516 Egypt
Department of Agronomy MNS University of Agriculture Multan 60000 Pakistan
Department of Biology College of Science Taif University P O Box 11099 Taif 21944 Saudi Arabia
Department of Biotechnology College of Science Taif University P O Box 11099 Taif 21944 Saudi Arabia
Department of Soil Science Bahauddin Zakariya University Multan 06110 Pakistan
Department of Soils and Water Faculty of Agriculture Al Azhar University Assiut 71524 Egypt
Department of Soils and Water Faculty of Agriculture Assiut University Assiut 71524 Egypt
Department of Soils and Water Faculty of Agriculture Aswan University Aswan 81711 Egypt
Zobrazit více v PubMed
Lajayer A.B., Najafi N., Moghiseh E., Mosaferi M., Hadian J. Removal of heavy metals (Cu2+ and Cd2+) from effluent using gamma irradiation, titanium dioxide nanoparticles andmethanol. J. Nanostruct. Chem. 2018;8:483–496. doi: 10.1007/s40097-018-0292-3. DOI
Awad M.Y.M., Moustafa-Farag M., Wei L., Huang Q., Liu Z. Effect of garden waste biochar on the bioavailability of heavy metals and growth of Brassica juncea (L.) in a multi-contaminated soil. Arab. J. Geosci. 2020;13:439. doi: 10.1007/s12517-020-05376-w. DOI
Chu Y., Yang L., Wang X., Wang X., Zhou Y. Research on distribution characteristics, influencing factors, and maintenance effects of heavy metal accumulation in bioretention systems: Critical review. J. Sustain. Water Built Environ. 2021;7:03120001. doi: 10.1061/JSWBAY.0000930. DOI
Lajayer A.B., Ghorbanpour M., Nikabadi S. Heavy metals in contaminated environment: Destiny of secondary metabolite biosynthesis, oxidative status and phytoextraction in medicinal plants. Ecotoxicol. Environ. Saf. 2017;145:377–390. doi: 10.1016/j.ecoenv.2017.07.035. PubMed DOI
Feng N.X., Yu J., Zhao H.M., Cheng Y.T., Mo C.H., Cai Q.Y., Li Y.W., Li H., Wong M.H. Efficient phytoremediation of organic contaminants in soils using plant–endophyte partnerships. Sci. Total Environ. 2017;583:352–368. doi: 10.1016/j.scitotenv.2017.01.075. PubMed DOI
Antoniadis V., Levizou E., Shaheen S.M., Ok Y.S., Sebastian A., Baum C., Prasad M.N., Wenzel W.W., Rinklebe J. Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation—A review. Earth Sci. Rev. 2017;171:621–645. doi: 10.1016/j.earscirev.2017.06.005. DOI
Sarwar N., Imran M., Shaheen M.R., Ishaq W., Kamran A., Matloob A., Rehim A., Hussain S. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere. 2016;171:710–721. doi: 10.1016/j.chemosphere.2016.12.116. PubMed DOI
Fahimirad S., Hatami M. Heavy metal-mediated changes in growth and phytochemicals of edible and medicinal plants. In: Ghorbanpourm M., Varma A., editors. Medicinal Plants and Environmental Challenges. 1st ed. Springer; Berlin/Heidelberg, Germany: 2017. pp. 227–259.
Venkatachalam P., Jayalakshmi N., Geetha N., Sahi S.V., Sharma N.C., Rene E.R., Sarkar S.K., Favas P.J. Accumulation efficiency, genotoxicity and antioxidant defense mechanisms in medicinal plant Acalypha indica L. under lead stress. Chemosphere. 2017;171:544–553. doi: 10.1016/j.chemosphere.2016.12.092. PubMed DOI
Fu F., Wang Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011;92:407–418. doi: 10.1016/j.jenvman.2010.11.011. PubMed DOI
Wang L., Ji B., Hu Y., Liu R., Sun W. A review on in situ phytoremediation of mine tailings. Chemosphere. 2017;184:594–600. doi: 10.1016/j.chemosphere.2017.06.025. PubMed DOI
Chowdhury R.A., Datta R., Sarkar D., editors. Green Chemistry. Elsevier; Amsterdam, The Netherlands: 2018. Heavy metal pollution and remediation; pp. 359–373.
Wang Q., Shaheen S.M., Jiang Y., Li R., Slaný M., Abdelrahman H., Zhang Z. Fe/Mn-and P-modified drinking water treatment residuals reduced Cu and Pb phytoavailability and uptake in a mining soil. J. Hazard. Mater. 2021;403:123628. doi: 10.1016/j.jhazmat.2020.123628. PubMed DOI
Naderi M.R., Shahraki A.D., Naderi R. Overview of phytoremediation soils contaminated with heavy metals. Hum. Environ. Quart. 2013;10:35–49.
Eissa M.A. Effect of sugarcane vinasse and EDTA on cadmium phytoextraction by two saltbush plants. Environ. Sci. Pollut. Res. 2016;23:10247–10254. doi: 10.1007/s11356-016-6261-9. PubMed DOI
Muthusaravanan S., Sivarajasekar N., Vivek J.S., Priyadharshini S.V., Paramasivan T., Dhakal N., Naushad M. Green Materials for Wastewater Treatment. Springer; Berlin/Heidelberg, Germany: 2020. Research updates on heavy metal phytoremediation: Enhancements, efficient post-harvesting strategies and economic opportunities; pp. 191–222.
Gupta A.K., Verma S.K., Khan K., Verma R.K. Phytoremediation using aromatic plants: A sustainable approach for remediation of heavy metals polluted sites. Environ. Sci. Technol. 2013;47:10115–10116. doi: 10.1021/es403469c. PubMed DOI
Zheljazkov V.D., Craker L.E., Xing B., Nielsen N.E., Wilcox A. Aromatic plant production on metal contaminated soils. Sci. Total Environ. 2008;395:51–62. doi: 10.1016/j.scitotenv.2008.01.041. PubMed DOI
Maleki M., Ghorbanpour M., Kariman K. Physiological and antioxidative responses of medicinal plants exposed to heavy metals stress. Plant Gene. 2017;11:247–254. doi: 10.1016/j.plgene.2017.04.006. DOI
Sun Y.B., Zhou Q.X., An J., Liu W.T., Liu R. Chelator-enhanced phytoextraction of heavy metals from contaminated soil irrigated by industrial wastewater with the hyperaccumulator plant (Sedum alfredii Hance) Geoderma. 2009;150:106–112. doi: 10.1016/j.geoderma.2009.01.016. DOI
Lajayer A.B., Moghadam N.K., Maghsoodi M.R., Ghorbanpour M., Kariman K. Phytoextraction of heavy metals from contaminated soil, water and atmosphere using ornamental plants: Mechanisms and efficiency improvement strategies. Environ. Sci. Pollut. Res. 2019;26:8468–8484. doi: 10.1007/s11356-019-04241-y. PubMed DOI
Cay S., Uyanik A., Engin M.S., Kutbay H.G. Effect of EDTA and tannic acid on the removal of cd, Ni, Pb and Cu from artificially contaminated soil by Althaea rosea Cavan. Int. J. Phyt. 2015;17:568–574. doi: 10.1080/15226514.2014.935285. PubMed DOI
Liu J., Xin X., Zhou Q. Phytoremediation of contaminated soils using ornamental Plants. Environ. Rev. 2018;26:43–54. doi: 10.1139/er-2017-0022. DOI
Biswas G.C., Sarkar A., Rashid M.H., Shohan M.H., Islam M., Wang Q. Assessment of the irrigation feasibility of low-cost filtered municipal wastewater for red amaranth (Amaranthus tricolor L cv. Surma) Int. Soil Water Conserv. Res. 2015;3:239–252. doi: 10.1016/j.iswcr.2015.07.001. DOI
Watanabe T., Murata Y., Osaki M. Amaranthus tricolor has the potential for phytoremediation of cadmium-contaminated soils. Commun. Soil Sci. Plant Anal. 2009;40:3158–3169. doi: 10.1080/00103620903261676. DOI
Prapagdee B., Wankumpha J. Phytoremediation of cadmium polluted soil by Chlorophytumlaxum combined with chitosan immobilized cadmium-resistant bacteria. Environ. Sci. Pollut. Res. 2017;24:19249–19258. doi: 10.1007/s11356-017-9591-3. PubMed DOI
Cay S. Enhancement of cadmium uptake by A. tricolor caudatus, an ornamental plant, using tea saponin. Environ. Monit. Assess. 2016;188:320. doi: 10.1007/s10661-016-5334-z. PubMed DOI
Kabata-Pendias A., Pendias H. Trace Elements in Soils and Plants. CRC Press, Inc.; Boca Roton, FL, USA: 1992.
Awad M., Liu Z., Skalicky M., Dessoky E.S., Brestic M., Mbarki S., Rastogi A., El Sabagh A. Fractionation of heavy metals in multi-contaminated soil treated with biochar using the sequential extraction procedure. Biomolecules. 2021;11:448. doi: 10.3390/biom11030448. PubMed DOI PMC
Awad M.Y.M., El-Desoky M., Abdel-Mawly S., Mohamed A. Ph.D. Thesis. Faculty of Agriculture, Assiut University; Assiut, Egypt: 2007. Mobility of Heavy Metals in Some Contaminated Egyptian Soils Treated with Certain Organic Materials.
Yazdanbakhsh A., Alavi S.N., Valadabadi S.A., Karimi F., Karimi Z. Heavy metals uptake of salty soils by ornamental sunflower, using cow manure and biosolids: A case study in Alborz city, Iran. Air Soil Water Res. 2020;13 doi: 10.1177/1178622119898460. DOI
Li X., Zhu W., Meng G., Guo R., Wang Y. Phytoremediation of alkaline soils co-contaminated with cadmium and tetracycline antibiotics using the ornamental hyperaccumulators Mirabilis jalapa L. and Tagetes patula L. Environ. Sci. Pollut. Res. 2020;27:14175–14183. doi: 10.1007/s11356-020-07975-2. PubMed DOI
Ramamurthy A., Memarian R. Chelate enhanced phytoremediation of soil containing a mixed contaminant. Environ. Earth Sci. 2014;72:201–206. doi: 10.1007/s12665-013-2946-2. DOI
Lwin C.S., Seo B.H., Kim H.U., Owens G., Kim K.R. Application of soil amendments to contaminated soils for heavy metal immobilization and improved soil quality—A critical review. Soil Sci. Plant. Nutr. 2018;64:156–167. doi: 10.1080/00380768.2018.1440938. DOI
Halim M., Conte P., Piccolo A. Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances. Chemosphere. 2003;52:265–275. doi: 10.1016/S0045-6535(03)00185-1. PubMed DOI
Evangelou M.W.H., Daghan H., Schaeffer A. The influence of humic acids on the phytoextraction of cadmium from soil. Chemosphere. 2004;57:207–213. doi: 10.1016/j.chemosphere.2004.06.017. PubMed DOI
Lindsay W.L., Norvell W.A. Development of DTPA soil test for zinc, iron, manganese and copper. Soil Sci. Soc. Am. J. 1978;42:421–428. doi: 10.2136/sssaj1978.03615995004200030009x. DOI
US EPA . Recent Developments for In Situ Treatment of Metals Contaminated Soils. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, USEPA; Washington, DC, USA: 1996.
Burt R. Soil Survey Laboratory Methods Manual. Soil Survey Investigations Report No. 42, Version 4.0. Natural Resources Conservation Service, United States Department of Agriculture; Washington, DC, USA: 2004.
Neugschwandtner R.W., Tlustoš P., Komárek M., Száková J. Phytoextraction of Pb and Cd from a contaminated agricultural soil using different EDTA application regimes: Laboratory versus field scale measures of efficiency. Geoderma. 2008;144:446–454. doi: 10.1016/j.geoderma.2007.11.021. DOI
Man Y., Wang B., Wang J., Slaný M., Yan H., Li P., El-Naggar A., Shaheen S.M., Rinklebe J., Feng X. Use of biochar to reduce mercury accumulation in Oryza sativa L: A trial for sustainable management of historically polluted farmlands. Environ. Int. 2021;153:106527. doi: 10.1016/j.envint.2021.106527. PubMed DOI
Awad M.Y.M. Master’s Thesis. Faculty of Agriculture Minufiya University; Shibin El Kom, Egypt: 2001. Effect of Some Organic Compounds on Soil Properties and Plant Growth.
Lin Z., Dou C., Li Y., Wang H., Niazi N.K., Zhang S., Ye Z. Nitrogen fertilizer enhances zinc and cadmium uptake by hyper-accumulator Sedum alfredii Hance. J. Soil Sediment. 2019 doi: 10.1007/s11368-019-02405-4. DOI
Shrestha P., Bellitürk K., Görres J.H. Phytoremediation of heavy metal-contaminated soil by switchgrass: A comparative study utilizing different composts and coir fiber on pollution remediation, plant productivity, and nutrient leaching. Int. J. Environ. Res. Public Health. 2019;16:1261. doi: 10.3390/ijerph16071261. PubMed DOI PMC
Arafat S., Yassen A., Abou-Seeda M. Agronomic evaluation of fertilizing efficiency of vinasse; Proceedings of the (ESSS) Golden Jubilee Congress; Cairo, Egypt. 23–25 October 2000.
Awad M. Poultry manure and humic acid foliar applications impact on caraway plants grown on a clay loam. J. Soil Sci. Agric. Eng. 2016;7:1–10. doi: 10.21608/jssae.2016.39337. DOI
Rekaby S.A., Awad M.Y., Hegab S.A., Eissa M.A. Effect of some organic amendments on barley plants under saline condition. J. Plant Nutr. 2020;43:1840–1851. doi: 10.1080/01904167.2020.1750645. DOI
Yassen A.A., Arafat S.M., Sahar M.Z. Maximizing use of vinasse and filter mud as by-products of sugar cane on wheat productions. J. Agric. Sic. Mansoura Univ. 2002;27:7865–7873.
Abd-El-Kaway A.M. Master’s Thesis. Faculty of Agricultue Assiut University; Assiut, Egypt: 2006. Utilization of Vinasse as a Source of Potassium for Some Crops Grown in Egypt.
Azhar A., Ashraf M., Hussain M., Ahmed R. EDTA-Induced improvement in growth and water relations of (Helianthus annus L.) plant grown in lead contaminated medium. Pak. J. Bot. 2009;41:3065–3074.
Napoli M., Cecchi S., Grassi C., Baldi A., Zanchi C.A., Orlandini S. Phytoextraction of copper from a contaminated soil using arable and vegetable crops. Chemosphere. 2019;219:122–129. doi: 10.1016/j.chemosphere.2018.12.017. PubMed DOI
Rahman A.M., Saha K.B., Chowdhury A.M.H., Chowdhury M.A.K., Mohiuddin K.M. Public perception and health implication of loom-dye effluent irrigation on growth of rice (Oryza sativa L.) and red amaranth (Amaranthus tricolor L.) seedlings. Environ. Sci. Pollut. Res. 2020 doi: 10.1007/s11356-020-08377-0. PubMed DOI
Wang S., Wei M., Cheng H., Wu B., Du D., Wang C. Indigenous plant species and invasive alien species tend to diverge functionally under heavy metal pollution and drought stress. Ecotoxicol. Environ. Saf. 2020;205:111160. doi: 10.1016/j.ecoenv.2020.111160. PubMed DOI
Shen Z.G., Li X.D., Wang C.C., Chen H.M., Chua H. Lead phytoextracting from contaminated soil with high-biomass plant species. J. Environ. Qual. 2002;31:1893–1900. doi: 10.2134/jeq2002.1893. PubMed DOI