Ornamental Plant Efficiency for Heavy Metals Phytoextraction from Contaminated Soils Amended with Organic Materials

. 2021 Jun 02 ; 26 (11) : . [epub] 20210602

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34199536

Accumulation of heavy metals (HMs) by ornamental plants (OPs) from contaminated agriculture soils is a unique technique that can efficiently reduce the metal load in the food chain. Amaranthus tricolor L. has attractive characteristics acquiring a higher growth rate and large biomass when grown at heavy metal contaminated soils. Site-specific detailed information is not available on the use of A. tricolor plant in metal phytoremediation from the polluted sites. The study aimed to enhance the uptake of HMs (Pb, Zn, and Cu) via amending poultry litter extract (PLE), vinasse sugarcane (VSC), and humic acid (HA) as natural mobilized organic materials compared to ethylene diamine tetraacetic acid (EDTA), as a common mobilized chemical agent by A. tricolor plant. The studied soils collected from Helwan, El-Gabal El-Asfar (Cairo Governorate), Arab El-Madabeg (Assiut Governorate), Egypt, and study have been conducted under pot condition. Our results revealed all organic materials in all studied soils, except EDTA in EL-Gabal El-Asfar soil, significantly increased the dry weight of the A. tricolor plant compared to the control treatment. The uptake of Pb and Zn significantly (p > 0.05) increased due to applying all organic materials to the studied soils. HA application caused the highest uptake as shown in Pb concentration by more than 5 times in Helwan soil and EDTA by 65% in El-Gabal El-Asfar soil while VSC increased it by 110% in El-Madabeg soil. Also, an increase in Zn concentration due to EDTA application was 58, 42, and 56% for Helwan, El-Gabal El-Asfar, and El-Madabeg soil, respectively. In all studied soils, the application of organic materials increased the remediation factor (RF) than the control. El-Madabeg soil treated with vinasse sugarcane gave the highest RF values; 6.40, 3.26, and 4.02% for Pb, Zn, and Cu, respectively, than the control. Thus, we identified A. tricolor as a successful ornamental candidate that, along with organic mobilization amendments, most efficiently develop soil health, reduce metal toxicity, and recommend remediation of heavy metal-contaminated soils. Additionally, long-term application of organic mobilization amendments and continued growth of A. tricolor under field conditions could be recommended for future directions to confirm the results.

Zobrazit více v PubMed

Lajayer A.B., Najafi N., Moghiseh E., Mosaferi M., Hadian J. Removal of heavy metals (Cu2+ and Cd2+) from effluent using gamma irradiation, titanium dioxide nanoparticles andmethanol. J. Nanostruct. Chem. 2018;8:483–496. doi: 10.1007/s40097-018-0292-3. DOI

Awad M.Y.M., Moustafa-Farag M., Wei L., Huang Q., Liu Z. Effect of garden waste biochar on the bioavailability of heavy metals and growth of Brassica juncea (L.) in a multi-contaminated soil. Arab. J. Geosci. 2020;13:439. doi: 10.1007/s12517-020-05376-w. DOI

Chu Y., Yang L., Wang X., Wang X., Zhou Y. Research on distribution characteristics, influencing factors, and maintenance effects of heavy metal accumulation in bioretention systems: Critical review. J. Sustain. Water Built Environ. 2021;7:03120001. doi: 10.1061/JSWBAY.0000930. DOI

Lajayer A.B., Ghorbanpour M., Nikabadi S. Heavy metals in contaminated environment: Destiny of secondary metabolite biosynthesis, oxidative status and phytoextraction in medicinal plants. Ecotoxicol. Environ. Saf. 2017;145:377–390. doi: 10.1016/j.ecoenv.2017.07.035. PubMed DOI

Feng N.X., Yu J., Zhao H.M., Cheng Y.T., Mo C.H., Cai Q.Y., Li Y.W., Li H., Wong M.H. Efficient phytoremediation of organic contaminants in soils using plant–endophyte partnerships. Sci. Total Environ. 2017;583:352–368. doi: 10.1016/j.scitotenv.2017.01.075. PubMed DOI

Antoniadis V., Levizou E., Shaheen S.M., Ok Y.S., Sebastian A., Baum C., Prasad M.N., Wenzel W.W., Rinklebe J. Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation—A review. Earth Sci. Rev. 2017;171:621–645. doi: 10.1016/j.earscirev.2017.06.005. DOI

Sarwar N., Imran M., Shaheen M.R., Ishaq W., Kamran A., Matloob A., Rehim A., Hussain S. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere. 2016;171:710–721. doi: 10.1016/j.chemosphere.2016.12.116. PubMed DOI

Fahimirad S., Hatami M. Heavy metal-mediated changes in growth and phytochemicals of edible and medicinal plants. In: Ghorbanpourm M., Varma A., editors. Medicinal Plants and Environmental Challenges. 1st ed. Springer; Berlin/Heidelberg, Germany: 2017. pp. 227–259.

Venkatachalam P., Jayalakshmi N., Geetha N., Sahi S.V., Sharma N.C., Rene E.R., Sarkar S.K., Favas P.J. Accumulation efficiency, genotoxicity and antioxidant defense mechanisms in medicinal plant Acalypha indica L. under lead stress. Chemosphere. 2017;171:544–553. doi: 10.1016/j.chemosphere.2016.12.092. PubMed DOI

Fu F., Wang Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011;92:407–418. doi: 10.1016/j.jenvman.2010.11.011. PubMed DOI

Wang L., Ji B., Hu Y., Liu R., Sun W. A review on in situ phytoremediation of mine tailings. Chemosphere. 2017;184:594–600. doi: 10.1016/j.chemosphere.2017.06.025. PubMed DOI

Chowdhury R.A., Datta R., Sarkar D., editors. Green Chemistry. Elsevier; Amsterdam, The Netherlands: 2018. Heavy metal pollution and remediation; pp. 359–373.

Wang Q., Shaheen S.M., Jiang Y., Li R., Slaný M., Abdelrahman H., Zhang Z. Fe/Mn-and P-modified drinking water treatment residuals reduced Cu and Pb phytoavailability and uptake in a mining soil. J. Hazard. Mater. 2021;403:123628. doi: 10.1016/j.jhazmat.2020.123628. PubMed DOI

Naderi M.R., Shahraki A.D., Naderi R. Overview of phytoremediation soils contaminated with heavy metals. Hum. Environ. Quart. 2013;10:35–49.

Eissa M.A. Effect of sugarcane vinasse and EDTA on cadmium phytoextraction by two saltbush plants. Environ. Sci. Pollut. Res. 2016;23:10247–10254. doi: 10.1007/s11356-016-6261-9. PubMed DOI

Muthusaravanan S., Sivarajasekar N., Vivek J.S., Priyadharshini S.V., Paramasivan T., Dhakal N., Naushad M. Green Materials for Wastewater Treatment. Springer; Berlin/Heidelberg, Germany: 2020. Research updates on heavy metal phytoremediation: Enhancements, efficient post-harvesting strategies and economic opportunities; pp. 191–222.

Gupta A.K., Verma S.K., Khan K., Verma R.K. Phytoremediation using aromatic plants: A sustainable approach for remediation of heavy metals polluted sites. Environ. Sci. Technol. 2013;47:10115–10116. doi: 10.1021/es403469c. PubMed DOI

Zheljazkov V.D., Craker L.E., Xing B., Nielsen N.E., Wilcox A. Aromatic plant production on metal contaminated soils. Sci. Total Environ. 2008;395:51–62. doi: 10.1016/j.scitotenv.2008.01.041. PubMed DOI

Maleki M., Ghorbanpour M., Kariman K. Physiological and antioxidative responses of medicinal plants exposed to heavy metals stress. Plant Gene. 2017;11:247–254. doi: 10.1016/j.plgene.2017.04.006. DOI

Sun Y.B., Zhou Q.X., An J., Liu W.T., Liu R. Chelator-enhanced phytoextraction of heavy metals from contaminated soil irrigated by industrial wastewater with the hyperaccumulator plant (Sedum alfredii Hance) Geoderma. 2009;150:106–112. doi: 10.1016/j.geoderma.2009.01.016. DOI

Lajayer A.B., Moghadam N.K., Maghsoodi M.R., Ghorbanpour M., Kariman K. Phytoextraction of heavy metals from contaminated soil, water and atmosphere using ornamental plants: Mechanisms and efficiency improvement strategies. Environ. Sci. Pollut. Res. 2019;26:8468–8484. doi: 10.1007/s11356-019-04241-y. PubMed DOI

Cay S., Uyanik A., Engin M.S., Kutbay H.G. Effect of EDTA and tannic acid on the removal of cd, Ni, Pb and Cu from artificially contaminated soil by Althaea rosea Cavan. Int. J. Phyt. 2015;17:568–574. doi: 10.1080/15226514.2014.935285. PubMed DOI

Liu J., Xin X., Zhou Q. Phytoremediation of contaminated soils using ornamental Plants. Environ. Rev. 2018;26:43–54. doi: 10.1139/er-2017-0022. DOI

Biswas G.C., Sarkar A., Rashid M.H., Shohan M.H., Islam M., Wang Q. Assessment of the irrigation feasibility of low-cost filtered municipal wastewater for red amaranth (Amaranthus tricolor L cv. Surma) Int. Soil Water Conserv. Res. 2015;3:239–252. doi: 10.1016/j.iswcr.2015.07.001. DOI

Watanabe T., Murata Y., Osaki M. Amaranthus tricolor has the potential for phytoremediation of cadmium-contaminated soils. Commun. Soil Sci. Plant Anal. 2009;40:3158–3169. doi: 10.1080/00103620903261676. DOI

Prapagdee B., Wankumpha J. Phytoremediation of cadmium polluted soil by Chlorophytumlaxum combined with chitosan immobilized cadmium-resistant bacteria. Environ. Sci. Pollut. Res. 2017;24:19249–19258. doi: 10.1007/s11356-017-9591-3. PubMed DOI

Cay S. Enhancement of cadmium uptake by A. tricolor caudatus, an ornamental plant, using tea saponin. Environ. Monit. Assess. 2016;188:320. doi: 10.1007/s10661-016-5334-z. PubMed DOI

Kabata-Pendias A., Pendias H. Trace Elements in Soils and Plants. CRC Press, Inc.; Boca Roton, FL, USA: 1992.

Awad M., Liu Z., Skalicky M., Dessoky E.S., Brestic M., Mbarki S., Rastogi A., El Sabagh A. Fractionation of heavy metals in multi-contaminated soil treated with biochar using the sequential extraction procedure. Biomolecules. 2021;11:448. doi: 10.3390/biom11030448. PubMed DOI PMC

Awad M.Y.M., El-Desoky M., Abdel-Mawly S., Mohamed A. Ph.D. Thesis. Faculty of Agriculture, Assiut University; Assiut, Egypt: 2007. Mobility of Heavy Metals in Some Contaminated Egyptian Soils Treated with Certain Organic Materials.

Yazdanbakhsh A., Alavi S.N., Valadabadi S.A., Karimi F., Karimi Z. Heavy metals uptake of salty soils by ornamental sunflower, using cow manure and biosolids: A case study in Alborz city, Iran. Air Soil Water Res. 2020;13 doi: 10.1177/1178622119898460. DOI

Li X., Zhu W., Meng G., Guo R., Wang Y. Phytoremediation of alkaline soils co-contaminated with cadmium and tetracycline antibiotics using the ornamental hyperaccumulators Mirabilis jalapa L. and Tagetes patula L. Environ. Sci. Pollut. Res. 2020;27:14175–14183. doi: 10.1007/s11356-020-07975-2. PubMed DOI

Ramamurthy A., Memarian R. Chelate enhanced phytoremediation of soil containing a mixed contaminant. Environ. Earth Sci. 2014;72:201–206. doi: 10.1007/s12665-013-2946-2. DOI

Lwin C.S., Seo B.H., Kim H.U., Owens G., Kim K.R. Application of soil amendments to contaminated soils for heavy metal immobilization and improved soil quality—A critical review. Soil Sci. Plant. Nutr. 2018;64:156–167. doi: 10.1080/00380768.2018.1440938. DOI

Halim M., Conte P., Piccolo A. Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances. Chemosphere. 2003;52:265–275. doi: 10.1016/S0045-6535(03)00185-1. PubMed DOI

Evangelou M.W.H., Daghan H., Schaeffer A. The influence of humic acids on the phytoextraction of cadmium from soil. Chemosphere. 2004;57:207–213. doi: 10.1016/j.chemosphere.2004.06.017. PubMed DOI

Lindsay W.L., Norvell W.A. Development of DTPA soil test for zinc, iron, manganese and copper. Soil Sci. Soc. Am. J. 1978;42:421–428. doi: 10.2136/sssaj1978.03615995004200030009x. DOI

US EPA . Recent Developments for In Situ Treatment of Metals Contaminated Soils. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, USEPA; Washington, DC, USA: 1996.

Burt R. Soil Survey Laboratory Methods Manual. Soil Survey Investigations Report No. 42, Version 4.0. Natural Resources Conservation Service, United States Department of Agriculture; Washington, DC, USA: 2004.

Neugschwandtner R.W., Tlustoš P., Komárek M., Száková J. Phytoextraction of Pb and Cd from a contaminated agricultural soil using different EDTA application regimes: Laboratory versus field scale measures of efficiency. Geoderma. 2008;144:446–454. doi: 10.1016/j.geoderma.2007.11.021. DOI

Man Y., Wang B., Wang J., Slaný M., Yan H., Li P., El-Naggar A., Shaheen S.M., Rinklebe J., Feng X. Use of biochar to reduce mercury accumulation in Oryza sativa L: A trial for sustainable management of historically polluted farmlands. Environ. Int. 2021;153:106527. doi: 10.1016/j.envint.2021.106527. PubMed DOI

Awad M.Y.M. Master’s Thesis. Faculty of Agriculture Minufiya University; Shibin El Kom, Egypt: 2001. Effect of Some Organic Compounds on Soil Properties and Plant Growth.

Lin Z., Dou C., Li Y., Wang H., Niazi N.K., Zhang S., Ye Z. Nitrogen fertilizer enhances zinc and cadmium uptake by hyper-accumulator Sedum alfredii Hance. J. Soil Sediment. 2019 doi: 10.1007/s11368-019-02405-4. DOI

Shrestha P., Bellitürk K., Görres J.H. Phytoremediation of heavy metal-contaminated soil by switchgrass: A comparative study utilizing different composts and coir fiber on pollution remediation, plant productivity, and nutrient leaching. Int. J. Environ. Res. Public Health. 2019;16:1261. doi: 10.3390/ijerph16071261. PubMed DOI PMC

Arafat S., Yassen A., Abou-Seeda M. Agronomic evaluation of fertilizing efficiency of vinasse; Proceedings of the (ESSS) Golden Jubilee Congress; Cairo, Egypt. 23–25 October 2000.

Awad M. Poultry manure and humic acid foliar applications impact on caraway plants grown on a clay loam. J. Soil Sci. Agric. Eng. 2016;7:1–10. doi: 10.21608/jssae.2016.39337. DOI

Rekaby S.A., Awad M.Y., Hegab S.A., Eissa M.A. Effect of some organic amendments on barley plants under saline condition. J. Plant Nutr. 2020;43:1840–1851. doi: 10.1080/01904167.2020.1750645. DOI

Yassen A.A., Arafat S.M., Sahar M.Z. Maximizing use of vinasse and filter mud as by-products of sugar cane on wheat productions. J. Agric. Sic. Mansoura Univ. 2002;27:7865–7873.

Abd-El-Kaway A.M. Master’s Thesis. Faculty of Agricultue Assiut University; Assiut, Egypt: 2006. Utilization of Vinasse as a Source of Potassium for Some Crops Grown in Egypt.

Azhar A., Ashraf M., Hussain M., Ahmed R. EDTA-Induced improvement in growth and water relations of (Helianthus annus L.) plant grown in lead contaminated medium. Pak. J. Bot. 2009;41:3065–3074.

Napoli M., Cecchi S., Grassi C., Baldi A., Zanchi C.A., Orlandini S. Phytoextraction of copper from a contaminated soil using arable and vegetable crops. Chemosphere. 2019;219:122–129. doi: 10.1016/j.chemosphere.2018.12.017. PubMed DOI

Rahman A.M., Saha K.B., Chowdhury A.M.H., Chowdhury M.A.K., Mohiuddin K.M. Public perception and health implication of loom-dye effluent irrigation on growth of rice (Oryza sativa L.) and red amaranth (Amaranthus tricolor L.) seedlings. Environ. Sci. Pollut. Res. 2020 doi: 10.1007/s11356-020-08377-0. PubMed DOI

Wang S., Wei M., Cheng H., Wu B., Du D., Wang C. Indigenous plant species and invasive alien species tend to diverge functionally under heavy metal pollution and drought stress. Ecotoxicol. Environ. Saf. 2020;205:111160. doi: 10.1016/j.ecoenv.2020.111160. PubMed DOI

Shen Z.G., Li X.D., Wang C.C., Chen H.M., Chua H. Lead phytoextracting from contaminated soil with high-biomass plant species. J. Environ. Qual. 2002;31:1893–1900. doi: 10.2134/jeq2002.1893. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Heavy metals immobilization and improvement in maize (Zea mays L.) growth amended with biochar and compost

. 2021 Sep 16 ; 11 (1) : 18416. [epub] 20210916

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...