Fractionation of Heavy Metals in Multi-Contaminated Soil Treated with Biochar Using the Sequential Extraction Procedure

. 2021 Mar 17 ; 11 (3) : . [epub] 20210317

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33802758

Heavy metals (HMs) toxicity represents a global problem depending on the soil environment's geochemical forms. Biochar addition safely reduces HMs mobile forms, thus, reducing their toxicity to plants. While several studies have shown that biochar could significantly stabilize HMs in contaminated soils, the study of the relationship of soil properties to potential mechanisms still needs further clarification; hence the importance of assessing a naturally contaminated soil amended, in this case with Paulownia biochar (PB) and Bamboo biochar (BB) to fractionate Pb, Cd, Zn, and Cu using short sequential fractionation plans. The relationship of soil pH and organic matter and its effect on the redistribution of these metals were estimated. The results indicated that the acid-soluble metals decreased while the fraction bound to organic matter increased compared to untreated pots. The increase in the organic matter metal-bound was mostly at the expense of the decrease in the acid extractable and Fe/Mn bound ones. The highest application of PB increased the organically bound fraction of Pb, Cd, Zn, and Cu (62, 61, 34, and 61%, respectively), while the BB increased them (61, 49, 42, and 22%, respectively) over the control. Meanwhile, Fe/Mn oxides bound represents the large portion associated with zinc and copper. Concerning soil organic matter (SOM) and soil pH, as potential tools to reduce the risk of the target metals, a significant positive correlation was observed with acid-soluble extractable metal, while a negative correlation was obtained with organic matter-bound metal. The principal component analysis (PCA) shows that the total variance represents 89.7% for the TCPL-extractable and HMs forms and their relation to pH and SOM, which confirms the positive effect of the pH and SOM under PB and BB treatments on reducing the risk of the studied metals. The mobility and bioavailability of these metals and their geochemical forms widely varied according to pH, soil organic matter, biochar types, and application rates. As an environmentally friendly and economical material, biochar emphasizes its importance as a tool that makes the soil more suitable for safe cultivation in the short term and its long-term sustainability. This study proves that it reduces the mobility of HMs, their environmental risks and contributes to food safety. It also confirms that performing more controlled experiments, such as a pot, is a disciplined and effective way to assess the suitability of different types of biochar as soil modifications to restore HMs contaminated soil via controlling the mobilization of these minerals.

Zobrazit více v PubMed

Shakoor M.B., Ali S., Rizwan M., Abbas F., Bibi I., Riaz M., Khalil U., Niazi N.K., Rinklebe J. A review of biochar-based sorbents for separation of heavy metals from water. Int. J. Phytoremed. 2020;22:111–126. doi: 10.1080/15226514.2019.1647405. PubMed DOI

Awad M., Moustafa-Farag M., Wei L., Huang Q., Liu Z. Effect of garden waste biochar on the bioavailability of heavy metals and growth of Brassica juncea (L.) in a multi-contaminated soil. Arab. J. Geosci. 2020;13:439. doi: 10.1007/s12517-020-05376-w. DOI

Ministry of Environmental Protection PRC and Ministry of Land and Resources PRC, Report on Soil Pollution in China. [(accessed on 6 March 2021)];2014 Available online: http://www.sdpc.gov.cn/fzgggz/ncjj/zhdt/201404/t20140418-607888.html.

Lu K., Yang X., Gielen G., Bolan N., Ok Y.S., Niazi N.K., Xu S., Yuan G., Chen X., Zhang X., et al. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. J. Environ. Manag. 2017;186:285–292. doi: 10.1016/j.jenvman.2016.05.068. PubMed DOI

Sarwar N., Imran M., Shaheen M.R., Ishaque W., Kamran M.A., Matloob A., Rehim A., Hussain S. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere. 2017;171:710–721. doi: 10.1016/j.chemosphere.2016.12.116. PubMed DOI

Awasthi A.K., Li J., Pandey A.K., Khan J. Emerging and Eco-Friendly Approaches for Waste Management. Springer Singapore; Singapore: 2019. An Overview of the Potential of Bioremediation for Contaminated Soil from Municipal Solid Waste Site; pp. 59–68.

Botté S.E., Freije R.H., Marcovecchio J.E. Distribution of Several Heavy Metals in Tidal Flats Sediments within Bahía Blanca Estuary (Argentina) Water Air Soil Pollut. 2010;210:371–388. doi: 10.1007/s11270-009-0260-0. DOI

Gonzaga M.I.S., de Matias M.I.A.S., Andrade K.R., de Jesus A.N., da Cunha G.C., de Andrade R.S., de Santos J.C.J. Aged biochar changed copper availability and distribution among soil fractions and influenced corn seed germination in a copper-contaminated soil. Chemosphere. 2020;240:124828. doi: 10.1016/j.chemosphere.2019.124828. PubMed DOI

LI J., XU Y. Immobilization of Cd in paddy soil using moisture management and amendment. Environ. Sci. Pollut. Res. 2015;22:5580–5586. doi: 10.1007/s11356-014-3788-5. PubMed DOI

Liu D., Li S., Islam E., Chen J., Wu J., Ye Z., Peng D., Yan W., Lu K. Lead accumulation and tolerance of Moso bamboo (Phyllostachys pubescens) seedlings: Applications of phytoremediation. J. Zhejiang Univ. B. 2015;16:123–130. doi: 10.1631/jzus.B1400107. PubMed DOI PMC

Huang M., Zhu Y., Li Z., Huang B., Luo N., Liu C., Zeng G. Compost as a Soil Amendment to Remediate Heavy Metal-Contaminated Agricultural Soil: Mechanisms, Efficacy, Problems, and Strategies. Water Air Soil Pollut. 2016;227:359. doi: 10.1007/s11270-016-3068-8. DOI

Kabiri P., Motaghian H., Hosseinpur A. Effects of Walnut Leaves Biochars on Lead and Zinc Fractionation and Phytotoxicity in a Naturally Calcareous Highly Contaminated Soil. Water Air Soil Pollut. 2019;230:263. doi: 10.1007/s11270-019-4316-5. DOI

Wang X., Chang V.W.-C., Li Z., Chen Z., Wang Y. Co-pyrolysis of sewage sludge and organic fractions of municipal solid waste: Synergistic effects on biochar properties and the environmental risk of heavy metals. J. Hazard. Mater. 2021;412:125200. doi: 10.1016/j.jhazmat.2021.125200. PubMed DOI

Awad M.Y.M., El-Desoky M.A., Ghallab A., Abdel-Mawly S.E. Changes in Soil Zn and Mn Forms of Some Contaminated Egyptian Soils Treated with Organic Materials. Assiut J. Agric. Sci. 2017;48:269–285. doi: 10.21608/ajas.2016.3748. DOI

Zang F., Wang S., Nan Z., Ma J., Wang Y., Chen Y., Zhang Q., Li Y. Influence of pH on the release and chemical fractionation of heavy metals in sediment from a suburban drainage stream in an arid mine-based oasis. J. Soils Sediments. 2017;17:2524–2536. doi: 10.1007/s11368-017-1730-4. DOI

Awad M.Y.M., El-Desoky M., Abdel-Mawly S.E., Ghallab A. Ph.D. Thesis. Assiut University; Assiut, Egypt: 2007. Mobility of Heavy Metals in Some Contaminated Egyptian Soils Treated with Certain Organic Materials.

Palansooriya K.N., Shaheen S.M., Chen S.S., Tsang D.C.W., Hashimoto Y., Hou D., Bolan N.S., Rinklebe J., Ok Y.S. Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Environ. Int. 2020;134:105046. doi: 10.1016/j.envint.2019.105046. PubMed DOI

He J., Li Y., Qi H., Li H., Zhang W. Biochar amendment changed soil-bound fractions of silver nanoparticles and ions but not their uptake by radish at an environmentally-relevant concentration. Biochar. 2020;2:307–317. doi: 10.1007/s42773-020-00061-3. DOI

Patel A.K., Das N., Goswami R., Kumar M. Arsenic mobility and potential co-leaching of fluoride from the sediments of three tributaries of the Upper Brahmaputra floodplain, Lakhimpur, Assam, India. J. Geochem. Explor. 2019;203:45–58. doi: 10.1016/j.gexplo.2019.04.004. DOI

Baran A., Mierzwa-Hersztek M., Gondek K., Tarnawski M., Szara M., Gorczyca O., Koniarz T. The influence of the quantity and quality of sediment organic matter on the potential mobility and toxicity of trace elements in bottom sediment. Environ. Geochem. Health. 2019;41:2893–2910. doi: 10.1007/s10653-019-00359-7. PubMed DOI PMC

Ahmad M., Ok Y.S., Rajapaksha A.U., Lim J.E., Kim B.-Y., Ahn J.-H., Lee Y.H., Al-Wabel M.I., Lee S.-E., Lee S.S. Lead and copper immobilization in a shooting range soil using soybean stover- and pine needle-derived biochars: Chemical, microbial and spectroscopic assessments. J. Hazard. Mater. 2016;301:179–186. doi: 10.1016/j.jhazmat.2015.08.029. PubMed DOI

Soil Survey Staff . Keys to Soil Taxonomy. 12th ed. U.S. Department of Agriculture, Natural Resources Conservation Service; Washington, DC, USA: 2014.

Richards L.A. Diagnosis and Improvement of Saline and Alkali Soils. Soil Sci. 1954;78:154. doi: 10.1097/00010694-195408000-00012. DOI

Nelson D., Sommers L.E. Total carbon, organic carbon, and organic matter. In: Page A.L., editor. Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties. 2nd ed. John Wiley & Sons; New York, NY, USA: 1982. pp. 539–579.

Burt R. Soil Survey Laboratory Methods Manual. Natural Resources Conservation Service, US Department of Agriculture; Washington, DC, USA: 2004.

USEPA . Test Methods for Evaluating Solid Waste. 3rd ed. Environmental Protection Agency; Washington, DC, USA: 1992. Method 1311 TCLP-Toxicity Characteristic Leaching Procedure.

Žemberyová M., Barteková J., Hagarová I. The utilization of modified BCR three-step sequential extraction procedure for the fractionation of Cd, Cr, Cu, Ni, Pb and Zn in soil reference materials of different origins. Talanta. 2006;70:973–978. doi: 10.1016/j.talanta.2006.05.057. PubMed DOI

Awad M.Y.M. Master’s Thesis. Menoufia University; Al Minufya, Egypt: 2001. Effect of Some Organic Compounds on Soil Properties and Plant Growth.

Rekaby S.A., Awad M.Y.M., Hegab S.A., Eissa M.A. Effect of some organic amendments on barley plants under saline condition. J. Plant Nutr. 2020;43:1840–1851. doi: 10.1080/01904167.2020.1750645. DOI

Dahlawi S., Naeem A., Rengel Z., Naidu R. Biochar application for the remediation of salt-affected soils: Challenges and opportunities. Sci. Total Environ. 2018;625:320–335. doi: 10.1016/j.scitotenv.2017.12.257. PubMed DOI

Senthilkumar R., Prasad D.M.R. Applications of Biochar for Environmental Safety. IntechOpen; Rijeka, Croatia: 2020. Sorption of Heavy Metals onto Biochar.

Lin H., Li G., Dong Y., Li J. Effect of pH on the release of heavy metals from stone coal waste rocks. Int. J. Miner. Process. 2017;165:1–7. doi: 10.1016/j.minpro.2017.05.001. DOI

Lu H., Zhang W., Yang Y., Huang X., Wang S., Qiu R. Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Res. 2012;46:854–862. doi: 10.1016/j.watres.2011.11.058. PubMed DOI

Yang X., Liu J., McGrouther K., Huang H., Lu K., Guo X., He L., Lin X., Che L., Ye Z., et al. Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil. Environ. Sci. Pollut. Res. 2016;23:974–984. doi: 10.1007/s11356-015-4233-0. PubMed DOI

Ali A., Guo D., Zhang Y., Sun X., Jiang S., Guo Z., Huang H., Liang W., Li R., Zhang Z. Using bamboo biochar with compost for the stabilization and phytotoxicity reduction of heavy metals in mine-contaminated soils of China. Sci. Rep. 2017;7:2690. doi: 10.1038/s41598-017-03045-9. PubMed DOI PMC

Zhang Z., Solaiman Z.M., Meney K., Murphy D.V., Rengel Z. Biochars immobilize soil cadmium, but do not improve growth of emergent wetland species Juncus subsecundus in cadmium-contaminated soil. J. Soils Sediments. 2013;13:140–151. doi: 10.1007/s11368-012-0571-4. DOI

Jiang J., Xu R., Jiang T., Li Z. Immobilization of Cu(II), Pb(II) and Cd(II) by the addition of rice straw derived biochar to a simulated polluted Ultisol. J. Hazard. Mater. 2012;229–230:145–150. doi: 10.1016/j.jhazmat.2012.05.086. PubMed DOI

Ozcan N., Altundag H. Speciation of heavy metals in street dust samples from sakarya I. Organized industrial district using the bcr sequential extraction procedure by ICP-OES. Bull. Chem. Soc. Ethiop. 2013;27:205–212. doi: 10.4314/bcse.v27i2.5. DOI

Golui D., Datta S.P., Dwivedi B.S., Meena M.C., Trivedi V.K., Jaggi S., Bandyopadhyay K.K. Assessing Geoavailability of Zinc, Copper, Nickel, Lead and Cadmium in Polluted Soils Using Short Sequential Extraction Scheme. Soil Sediment Contam. Int. J. 2021;30:74–91. doi: 10.1080/15320383.2020.1796924. DOI

Feng X.H., Zhai L.M., Tan W.F., Liu F., He J.Z. Adsorption and redox reactions of heavy metals on synthesized Mn oxide minerals. Environ. Pollut. 2007;147:366–373. doi: 10.1016/j.envpol.2006.05.028. PubMed DOI

Liu Y., Wang Y., Lu H., Lonappan L., Brar S.K., He L., Chen J., Yang S. Biochar application as a soil amendment for decreasing cadmium availability in soil and accumulation in Brassica chinensis. J. Soils Sediments. 2018;18:2511–2519. doi: 10.1007/s11368-018-1927-1. DOI

Lucchini P., Quilliam R.S., DeLuca T.H., Vamerali T., Jones D.L. Increased bioavailability of metals in two contrasting agricultural soils treated with waste wood-derived biochar and ash. Environ. Sci. Pollut. Res. 2014;21:3230–3240. doi: 10.1007/s11356-013-2272-y. PubMed DOI

Lei S., Shi Y., Qiu Y., Che L., Xue C. Performance and mechanisms of emerging animal-derived biochars for immobilization of heavy metals. Sci. Total Environ. 2019;646:1281–1289. doi: 10.1016/j.scitotenv.2018.07.374. PubMed DOI

Karami N., Clemente R., Moreno-Jiménez E., Lepp N.W., Beesley L. Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. J. Hazard. Mater. 2011;191:41–48. doi: 10.1016/j.jhazmat.2011.04.025. PubMed DOI

Park J.H., Choppala G., Lee S.J., Bolan N., Chung J.W., Edraki M. Comparative Sorption of Pb and Cd by Biochars and Its Implication for Metal Immobilization in Soils. Water Air Soil Pollut. 2013;224:1711. doi: 10.1007/s11270-013-1711-1. DOI

Cantrell K.B., Hunt P.G., Uchimiya M., Novak J.M., Ro K.S. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour. Technol. 2012;107:419–428. doi: 10.1016/j.biortech.2011.11.084. PubMed DOI

Houben D., Evrard L., Sonnet P. Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere. 2013;92:1450–1457. doi: 10.1016/j.chemosphere.2013.03.055. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...