Effect of Biochar on Metal Distribution and Microbiome Dynamic of a Phytostabilized Metalloid-Contaminated Soil Following Freeze-Thaw Cycles
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
2019/03/X/NZ9/01276
Polish National Science Centre
PubMed
35683097
PubMed Central
PMC9181493
DOI
10.3390/ma15113801
PII: ma15113801
Knihovny.cz E-resources
- Keywords
- biochar, phytoremediation, post-industrial urban areas, soil carbon-type amendments, soil freeze–thaw,
- Publication type
- Journal Article MeSH
In the present paper the effectiveness of biochar-aided phytostabilization of metal/metalloid-contaminated soil under freezing-thawing conditions and using the metal tolerating test plant Lolium perenne L. is comprehensively studied. The vegetative experiment consisted of plants cultivated for over 52 days with no exposure to freezing-thawing in a glass greenhouse, followed by 64 days under freezing-thawing in a temperature-controlled apparatus and was carried out in initial soil derived from a post-industrial urban area, characterized by the higher total content of Zn, Pb, Cu, Cr, As and Hg than the limit values included in the classification provided by the Regulation of the Polish Ministry of Environment. According to the substance priority list published by the Toxic Substances and Disease Registry Agency, As, Pb, and Hg are also indicated as being among the top three most hazardous substances. The initial soil was modified by biochar obtained from willow chips. The freeze-thaw effect on the total content of metals/metalloids (metal(-loid)s) in plant materials (roots and above-ground parts) and in phytostabilized soils (non- and biochar-amended) as well as on metal(-loid) concentration distribution/redistribution between four BCR (community bureau of reference) fractions extracted from phytostabilized soils was determined. Based on metal(-loid)s redistribution in phytostabilized soils, their stability was evaluated using the reduced partition index (Ir). Special attention was paid to investigating soil microbial composition. In both cases, before and after freezing-thawing, biochar increased plant biomass, soil pH value, and metal(-loid)s accumulation in roots, and decreased metal(-loid)s accumulation in stems and total content in the soil, respectively, as compared to the corresponding non-amended series (before and after freezing-thawing, respectively). In particular, in the phytostabilized biochar-amended series after freezing-thawing, the recorded total content of Zn, Cu, Pb, and As in roots substantially increased as well as the Hg, Cu, Cr, and Zn in the soil was significantly reduced as compared to the corresponding non-amended series after freezing-thawing. Moreover, exposure to freezing-thawing itself caused redistribution of examined metal(-loid)s from mobile and/or potentially mobile into the most stable fraction, but this transformation was favored by biochar presence, especially for Cu, Pb, Cr, and Hg. While freezing-thawing greatly affected soil microbiome composition, biochar reduced the freeze-thaw adverse effect on bacterial diversity and helped preserve bacterial groups important for efficient soil nutrient conversion. In biochar-amended soil exposed to freezing-thawing, psychrotolerant and trace element-resistant genera such as Rhodococcus sp. or Williamsia sp. were most abundant.
Agricultural Research Ltd Zahradni 400 1 66441 Troubsko Czech Republic
Department of Botany Government Degree College Ramban 182144 India
See more in PubMed
Khalid S., Shahid M., Niazi N.K., Murtaza B., Bibi I., Dumat C. A comparison of technologies for remediation of heavy metal contaminated soils. J. Geochem. Explor. 2017;182:247–268. doi: 10.1016/j.gexplo.2016.11.021. DOI
Pourret O., Bollinger J.C., Hursthouse A. Heavy metal: A misused term? Acta Geochim. 2021;40:466–471. doi: 10.1007/s11631-021-00468-0. DOI
Khan S., Naushad M., Lima E.C., Zhang S., Shaheen S.M., Rinklebe J. Global soil pollution by toxic elements: Current status and future perspectives on the risk assessment and remediation strategies—A review. J. Hazard. Mat. 2021;417:126039. doi: 10.1016/j.jhazmat.2021.126039. PubMed DOI
Zhang J., Li C., Li G., He Y., Yang J., Zhang J. Effects of biochar on heavy metal bioavailability and uptake by tobacco (Nicotiana tabacum) in two soils. Agric. Ecosyst. Environ. 2021;317:107453. doi: 10.1016/j.agee.2021.107453. DOI
Thakare M., Sarma H., Datar S., Roy A., Pawar P., Gupta K., Pandit S., Prasad R. Understanding the holistic approach to plant-microbe remediation technologies for removing heavy metals and radionuclides from soil. Curr. Res. Biotechnol. 2021;3:84–98. doi: 10.1016/j.crbiot.2021.02.004. DOI
Palansooriya K.N., Shaheen S.M., Chene S.S., Tsange D.C.W., Hashimotof Y., Houg D., Bolanh N.S., Rinklebeb J., Oka Y.S. Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Environ. Int. 2020;134:105046. doi: 10.1016/j.envint.2019.105046. PubMed DOI
Wyszkowski M., Radziemska M. Influence of chromium (III) and (VI) on the concentration of mineral elements in oat (Avena sativa L.) Fres. Environ. Bull. 2013;22:979–986.
U.S. Environmental Protection Agency (USEPA) Risk Assessment Guidance for Superfund (Rags). Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Interim. I. [(accessed on 2 April 2022)];2004 Available online: http://www.epa.gov/oswer/riskassessment/ragse/
ATSDR Substance Priority List. Agency for Toxic Substance and Disease Registry, U.S . Toxicological Profile for Cadmium. Department of Health and Humans Services, Public Health Service, Centers for Disease Control; Atlanta, GA, USA: 2019.
Nsanganwimana F., Souki K.S.A., Waterlot C., Douay F., Pelfrêne A., Ridošková A., Louvel B., Pourrut B. Potentials of Miscanthus x giganteus for phytostabilization of trace element-contaminated soils: Ex situ experiment. Ecotox. Environ. Safe. 2021;214:112125. doi: 10.1016/j.ecoenv.2021.112125. PubMed DOI
Trippe K.M., Manning V.A., Reardon C.L., Klein A.N., Weidman C., Ducey T.F., Novak J.M., Watts D.W., Rushmiller H., Spokas K.A., et al. Phytostabilization of acidic mine tailings with biochar, biosolids, lime, and locally-sourced microbial inoculum: Do amendment mixtures influence plant growth, tailing chemistry, and microbial composition? Appl. Soil Ecol. 2021;165:103962. doi: 10.1016/j.apsoil.2021.103962. PubMed DOI PMC
Green C., Hoffnagle A. Phytoremediation Field Studies Database for Chlorinated Solvents, Pesticides, Explosives and Metals. U.S. Environmental Protection Agency Office of Superfund Remediation and Technology Innovation Washington, DC, August 2004. [(accessed on 2 April 2022)]. Available online: https://clu-in.org/download/techdrct/td_hoffnagle-phytoremediation.pdf.
Garau N., Castaldi P., Diquattro S., Pinna M.V., Senette C., Roggero P.P., Garau G. Combining grass and legume species with compost for assisted phytostabilization of contaminated soils. Environ. Technol. Innov. 2021;22:101387. doi: 10.1016/j.eti.2021.101387. DOI
Wang J., Shi L., Zhai L., Zhang H., Wang S., Zou J., Shen Z., Lian C., Chen Y. Analysis of the long-term effectiveness of biochar immobilization remediation on heavy metal contaminated soil and the potential environmental factors weakening the remediation effect: A review. Ecotox. Environ. Safe. 2021;207:111261. doi: 10.1016/j.ecoenv.2020.111261. PubMed DOI
Radziemska M., Gusiatin Z.M., Cydzik-Kwiatkowska A., Cerdà A., Pecina V., Bęś A., Datta R., Majewski G., Mazur Z., Dzięcioł J., et al. Insight into metal immobilization and microbial community structure in soil from a steel disposal dump that was phytostabilized with composted, pyrolyzed or gasified wastes. Chemosphere. 2021;272:129576. doi: 10.1016/j.chemosphere.2021.129576. PubMed DOI
Fan J., Cai C., Chi H., Reid B.J., Coulon F., Zhang Y., Hou Y. Remediation of cadmium and lead polluted soil using thiol modified biochar. J. Hazard. Mat. 2020;388:22037. doi: 10.1016/j.jhazmat.2020.122037. PubMed DOI
Liu B., Ma R., Fan H. Evaluation of the impact of freeze-thaw cycles on pore structure characteristics of black soil using X-ray computed tomography. Soil Till. Res. 2021;206:104810. doi: 10.1016/j.still.2020.104810. DOI
Sorensen P.O., Finzi A.C., Giasson M.A., Reinmann A.B., Sanders-DeMott R., Templer P.H. Winter soil freeze-thaw cycles lead to reductions in soil microbial biomass and activity not compensated for by soil warming. Soil Biol. Biochem. 2018;116:39–47. doi: 10.1016/j.soilbio.2017.09.026. DOI
Kreyling J., Beierkuhnlein C., Jentsch A. Effects of soil freeze–thaw cycles differ between experimental plant communities. Basic Appl. Ecol. 2010;11:65–75. doi: 10.1016/j.baae.2009.07.008. DOI
Zhao Q., Li P., Stagnitti F., Ye J., Dong D., Zhang Y., Li P. Effects of aging and freeze-thawing on extractability of pyrene in soil. Chemosphere. 2009;76:447–452. doi: 10.1016/j.chemosphere.2009.03.068. PubMed DOI
Güllü H., Khudir A. Effect of freeze-thaw cycles on unconfined compressive strength of fine-grained soil treated with jute fiber, steel fiber and lime. Cold Reg. Sci. Technol. 2014;106–107:55–65. doi: 10.1016/j.coldregions.2014.06.008. DOI
Xie S.B., Qu J.J., Lai Y.M., Zhou Z.W., Xu X.T. Effects of freeze-thaw cycles on soil mechanical and physical properties in the Qinghai-Tibet Plateau. J. Mt. Sci. Engl. 2015;12:999–1009. doi: 10.1007/s11629-014-3384-7. DOI
Muehe E.M., Weigold P., Adaktylou I.J., Planer-Friedrich B., Kraemer U., Kappler A., Behrens S. Rhizosphere microbial community composition affects cadmium and zinc uptake by the metal-hyperaccumulating plant Arabidopsis helleri. ASM J. Appl. Environ. Microbiol. 2015;81:2173–2181. doi: 10.1128/AEM.03359-14. PubMed DOI PMC
Ministry of Environment . Regulation of the Minister of Environment on the Standards of the Soil Quality and Ground Quality of 1.09.2016. Ministry of Environment; Warsaw, Poland: 2016. Dziennik Ustaw No 165, Pos. 1359.
Bis Z., Nowak W. Method and Appliance for Auto-Thermal Valorization of Waste Solid Fuels as Well as the Biomass Used for Pure Generation of Electric Power and Heat. PL204294 (B1). 31 December 2009. [(accessed on 2 April 2022)]. Available online: https://pl.espacenet.com/publicationDetails/description?locale=pl_PL&CC=PL&date=20091231&NR=204294B1&ND=5&KC=B1&rnd=1640378047723&FT=D&DB=;
Mitchell K.J. Growth of pasture species under controlled environment. I. Growth at various levels of constant temperature. N. Z. J. Sci. Tech. 1956;38:203–216.
Cool M., Hannaway D.B., Larson C., Myers D. Perennial Ryegrass (Lolium perenne L.) Oregon State University; Corvallis, OR, USA: 2004. [(accessed on 2 April 2022)]. Forage Fact Sheet. Available online: https://www.cabi.org/isc/datasheet/31166#F4A5D70D-10CB-4516-8089-2E8BA501F206.
Hannaway D., Fransen S., Cropper J., Teel M., Chaney M., Griggs T., Halse R., Hart J., Cheeke P., Hansen D., et al. Perennial Ryegrass (Lolium perenne L.) PNW 503. 1999:1–20.
Santibáñez C., Verdugo C., Ginocchio R. Phytostabilization of copper mine tailings with biosolids: Implications for metal uptake and productivity of Lolium perenne. Sci. Total Environ. 2008;395:1–10. doi: 10.1016/j.scitotenv.2007.12.033. PubMed DOI
Arienzo M., Adamo P., Cozzolino V. The potential of Lolium perenne for revegetation of contaminated soils from a metallurgical site. Sci. Total Environ. 2004;319:13–25. doi: 10.1016/S0048-9697(03)00435-2. PubMed DOI
Pichtel J., Salt C.A. Vegetative growth and trace metal accumulation in metalliferous waste. J. Environ. Qual. 1998;27:618–624. doi: 10.2134/jeq1998.00472425002700030020x. DOI
van der Ent A., Baker A.J.M., Reeves R.D., Pollard A.J., Schat H. Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant Soil. 2013;362:319–334. doi: 10.1007/s11104-012-1287-3. DOI
Lambrechts T., Couder E., Bernal M.P., Faz Á., Iserentant A., Lutts S. Assessment of heavy metal bioavailability in contaminated soils from a former mining area (La Union, Spain) using a rhizospheric test. Water Air Soil Pollut. 2011;217:333–346. doi: 10.1007/s11270-010-0591-x. DOI
Boyd R.S. Ecology of metal hyperaccumulation. New Phytol. 2004;162:563–567. doi: 10.1111/j.1469-8137.2004.01079.x. PubMed DOI
Hou R., Wang L., O’Connor D., Tsang D.C.W., Rinklebe J., Hou D. Effect of immobilizing reagents on soil Cd and Pb lability under freeze-thaw cycles: Implications for sustainable agricultural management in seasonally frozen land. Environ. Int. 2020;144:106040. doi: 10.1016/j.envint.2020.106040. PubMed DOI
Pueyo M., Mateu J., Rigol A., Vidal M., López-Sánchez J.F., Rauret G. Use of the modified BCR three-step sequential ex-traction procedure for the study of trace element dynamics in contaminated soils. Environ. Pollut. 2008;152:330–341. doi: 10.1016/j.envpol.2007.06.020. PubMed DOI
Caporaso J.G., Lauber C.L., Walters W.A., Berg-Lyons D., Lozupone C.A., Turnbaugh P.J., Fierer N., Knight R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA. 2011;108:4516–4522. doi: 10.1073/pnas.1000080107. PubMed DOI PMC
Edgar R.C., Haas B.J., Clemente J.C., Quince C., Knight R. UCHIME improves sensitivity and speed of chimera detection. Oxford J. Bioinform. 2011;27:2194–2200. doi: 10.1093/bioinformatics/btr381. PubMed DOI PMC
Edgar R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nature Meth. 2013;10:996–998. doi: 10.1038/nmeth.2604. PubMed DOI
Bokulich N.A., Rideout J.R., Kopylova E., Bolyen E., Patnode J., Ellett Z., McDonald D., Wolfe B., Maurice C.F., Dutton R.J., et al. A standardized, extensible framework for optimizing classification improves marker-gene taxonomic assignments. PeerJ Prepr. 2015;3:e934v2.
Dhariwal A., Chong J., Habib S., King I., Agellon L.B., Xia J. Microbiome Analyst—A web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 2017;45:180–188. doi: 10.1093/nar/gkx295. PubMed DOI PMC
Chong J., Liu P., Zhou G., Xia J. Using Microbiome Analyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat. Protoc. 2020;15:799–821. doi: 10.1038/s41596-019-0264-1. PubMed DOI
McMurdie P.J., Holmes S. Waste not, want not: Why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 2014;10:e1003531. doi: 10.1371/journal.pcbi.1003531. PubMed DOI PMC
Guo X., Han W., Zhang G., Yang Y., Wei Z., He Q., Wu Q. Effect of inorganic and organic amendments on maize bio-mass, heavy metals uptake and their availability in calcareous and acidic washed soil. Environ. Technol. Innov. 2020;19:101038. doi: 10.1016/j.eti.2020.101038. DOI
Kurzemann F.R., Juárez N.F.D., Probst M., Gómez-Brandón M., Partl C., Insam H. Effect of biomass fly ashes from fast pyrolysis bio-oil production on soil properties and plant yield. J. Environ. Manag. 2021;298:113479. doi: 10.1016/j.jenvman.2021.113479. PubMed DOI
Feng Z., Ji S., Ping J., Cui D. Recent advances in metabolomics for studying heavy metal stress in plants. TracTrends Anal. Chem. 2021;143:116402. doi: 10.1016/j.trac.2021.116402. DOI
Tripathi S., Sharma P., Singh K., Purchase D., Chandra R. Translocation of heavy metals in medicinally important herbal plants growing on complex organometallic sludge of sugarcane molasses-based distillery waste. Environ. Tech. Inn. 2021;22:101434. doi: 10.1016/j.eti.2021.101434. DOI
Gonzaga M.I.S., Silva P.S.O., Santos J.C.J., Junior L.F.G.O. Biochar increases plant water use efficiency and biomass production while reducing Cu concentration in Brassica juncea L. in a Cu-contaminated soil. Ecotox. Env. Saf. 2020;183:109557. doi: 10.1016/j.ecoenv.2019.109557. PubMed DOI
Palva E.T., Thtiharju S., Tamminen I., Puhakainen T., Laitinen R., Svensson J., Flelenius E., Heino P. Biological Mechanisms of Low Temperature Stress Response: Cold Acclimation and Development of Freezing Tolerance in Plants. JIRCAS; Tsukuba, Japan: 2002. pp. 9–15. JIRCAS Working Report.
Fitzhugh R.D., Driscoll C.T., Groman P.M., Tierney G.L., Hardy F.J.P. Effects of soil freezing disturbance on soil solution nitrogen, phosphorus, and carbon chemistry in a northern hardwood ecosystem. Biogeochemistry. 2001;56:215–238. doi: 10.1023/A:1013076609950. DOI
Feng R.W., Wang Z., Yang J.G., Zhao P.P., Zhu Y.M., Li Y.P., Yu Y.S., Liu H., Rensing C., Wu Z.Y., et al. Underlying mechanisms responsible for restriction of uptake and translocation of heavy metals (metalloids) by selenium via root application in plants. J. Hazard. Mat. 2020;402:123570. doi: 10.1016/j.jhazmat.2020.123570. PubMed DOI
Moon D.H., Park J.W., Chang Y.Y., Ok Y.S., Lee S.S., Ahmad M., Koutsospyros A., Park J.H., Baek K. Immobilization of lead in contaminated firing range soil using biochar. Environ. Sci. Pollut. Res. 2013;20:8464. doi: 10.1007/s11356-013-1964-7. PubMed DOI
Ok Y.S., Kim S.C., Kim D.K., Skousen J.G., Lee J.S., Cheong Y.W., Kim S.J., Yang J.E. Ameliorants to immobilize Cd in rice paddy soils contaminated by abandoned metal mines in Korea. Environ. Geochem. Health. 2011;33:23. doi: 10.1007/s10653-010-9364-0. PubMed DOI
Bashir M.A., Naveed M., Ahmad Z., Gao B., Mustafa A., Núnez-Delgado A. Combined application of biochar and sulfur regulated growth, physiological, antioxidant responses and Cr removal capacity of maize (Zea mays L.) in tannery polluted soils. J. Environ. Manag. 2020;259:110051. doi: 10.1016/j.jenvman.2019.110051. PubMed DOI
Beesley L., Inneh O.S., Norton G.J., Jimenez E.M., Pardo T., Clemente R., Dawson J.J.C. Assessing the influence of com-post and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil. Environ. Pollut. 2014;186:195–202. doi: 10.1016/j.envpol.2013.11.026. PubMed DOI
Hart J.J., Welch R.M., Norvell W.A., Clarke J.M., Kochian L.V. Zinc effects on cadmium accumulation and partitioning in near-isogenic lines of durum wheat that differ in grain cadmium concentration. New Phytol. 2005;167:391–401. doi: 10.1111/j.1469-8137.2005.01416.x. PubMed DOI
Namgay T., Singh B., Singh B.P. Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (Zea mays L.) Aust. J. Soil Res. 2010;48:638–647. doi: 10.1071/SR10049. DOI
Vapaavuori E.M., Rikala R., Ryyppo A. Effects of root temperature on growth and photosynthesis in conifer seedlings during shoot elongation. Tree Physiol. 1992;10:217–230. doi: 10.1093/treephys/10.3.217. PubMed DOI
Wang L., O’Connor D., Rinklebe J., Ok Y.S., Tsang D.C., Shen Z., Hou D. Biochar aging: Mechanisms, physicochemical changes, assessment, and implications for field applications. Environ. Sci. Tech. 2020;54:14797–14814. doi: 10.1021/acs.est.0c04033. PubMed DOI
Garbuz S., Mackay A., Camps-Arbestain M., DeVantier B., Minor M. Biochar amendment improves soil physico-chemical properties and alters root biomass and the soil food web in grazed pastures. Agric. Ecosyst. Environ. 2021;319:107517. doi: 10.1016/j.agee.2021.107517. DOI
Yang K., Wang X., Cheng H., Tao S. Effect of aging on stabilization of Cd and Ni by biochars and enzyme activities in a historically contaminated alkaline agricultural soil simulated with wet–dry and freeze–thaw cycling. Environ. Pollut. 2021;268:115846. doi: 10.1016/j.envpol.2020.115846. PubMed DOI
He L., Zhong H., Liu G., Dai Z., Brookes P.C., Xu J. Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks and applications in China. Environ. Pollut. 2019;252:846–855. doi: 10.1016/j.envpol.2019.05.151. PubMed DOI
Islam M.N., Taki G., Nguyen X.P., Jo Y.T., Kim J., Park J.H. Heavy metal stabilization in contaminated soil by treatment with calcined cockle shell. Environ. Sci. Pollut. Res. 2017;24:7177–7183. doi: 10.1007/s11356-016-8330-5. PubMed DOI
Li H., Ye X., Geng Z., Zhou H., Guo X., Zhang Y., Zhao H., Wang G. The influence of biochar type on long-term stabili-zation for Cd and Cu in contaminated paddy soils. J. Hazard. Mater. 2016;304:40–48. doi: 10.1016/j.jhazmat.2015.10.048. PubMed DOI
Wang Z., Li T., Liu D., Fu Q., Hou R., Li Q., Cui S., Li M. Research on the adsorption mechanism of Cu and Zn by bio-char under freeze-thaw conditions. Sci. Tot. Environ. 2021;774:145194. doi: 10.1016/j.scitotenv.2021.145194. PubMed DOI
Lucchini P., Quilliam R.S., DeLuca T.H., Vamerali T., Jones D.L. Does biochar application alter heavy metal dynamics in agricultural soil? Agric. Ecosys. Environ. 2014;184:149–157. doi: 10.1016/j.agee.2013.11.018. DOI
Chen D., Guo H., Li R., Li L., Pan G., Chang A., Joseph S. Low uptake affinity cultivars with biochar to tackle Cd-tainted rice—a field study over four rice seasons in Hunan, China. Sci. Tot. Environ. 2016;541:1489–1498. doi: 10.1016/j.scitotenv.2015.10.052. PubMed DOI
Shaheen S.M., El-Naggar A., Wang J., Hassan N.E., Niazi N.K., Wang H., Tsang D.C.W., Ok Y.S., Bolan N., Rinklebe J. Biochar from Biomass and Waste. Elsevier; Amsterdam, The Netherlands: 2019. Biochar as an (Im) mobilizing agent for the potentially toxic elements in contaminated soils; pp. 255–274.
Li L., Zhu C., Liu X., Li F., Li H., Ye J. Biochar amendment immobilizes arsenic in farmland and reduces its bioavailability. Environ. Sci. Poll. Res. 2018;25:34091–34102. doi: 10.1007/s11356-018-3021-z. PubMed DOI
Awad M., Liu Z., Skalicky M., Dessoky E.S., Brestic M., Mbarki S., Rastogi A., El Sabagh A. Fractionation of heavy met-als in multi-contaminated soil treated with biochar using the sequential extraction procedure. Biomolecules. 2021;11:448. doi: 10.3390/biom11030448. PubMed DOI PMC
Zhao B., O’Connor D., Shen Z., Tsang D.C., Rinklebe J., Hou D. Sulfur-modified biochar as a soil amendment to stabilize mercury pollution: An accelerated simulation of long-term aging effects. Environ. Poll. 2020;264:114687. doi: 10.1016/j.envpol.2020.114687. PubMed DOI
Chen X., Ji H., Yang W., Zhu B., Ding H. Speciation and distribution of mercury in soils around gold mines located up-stream of Miyun Reservoir, Beijing, China. J. Geochem. Explor. 2016;163:1–9. doi: 10.1016/j.gexplo.2016.01.015. DOI
Ferraro G., Pecori G., Rosi L., Bettucci L., Fratini E., Casini D., Rozzo A.M., Chiaramonti D. Biochar from lab-scale pyrolysis: Influence of feedstock and operational temperature. Biomass Conv. Bioref. 2021:1–11. doi: 10.1007/s13399-021-01303-5. DOI
Rui D., Wu Z., Ji M., Liu J., Wang S., Ito Y. Remediation of Cd-and Pb-contaminated clay soils through combined freeze-thaw and soil washing. J. Hazard. Mat. 2019;369:87–95. doi: 10.1016/j.jhazmat.2019.02.038. PubMed DOI
Yang J., Li X., Huang L., Jiang H. Actinobacterial diversity in the sediments of five cold springs on the Qinghai-Tibet Plateau. Front. Microbiol. 2015;6:1345. doi: 10.3389/fmicb.2015.01345. PubMed DOI PMC
Wang J., Fu R., Xu Z. Stabilization of heavy metals in municipal sewage sludge by freeze–thaw treatment with a blend of diatomite, FeSO4, and Ca(OH)2. J. Air Waste Manag. Assoc. 2017;67:847–853. doi: 10.1080/10962247.2017.1281175. PubMed DOI
Cui H., Li D., Liu X., Fan Y., Zhang X., Zhang S., Zhou J., Gang G., Zhoum J. Dry-wet and freeze-thaw aging activate endogenous copper and cadmium in biochar. J. Clean. Prod. 2021;288:125605. doi: 10.1016/j.jclepro.2020.125605. DOI
Klik B.K., Gusiatin Z.M., Kulikowska D. Suitability of environmental indices in assessment of soil remediation with con-ventional and next generation washing agents. Sci. Rep. 2020;10:1–14. doi: 10.1038/s41598-020-77312-7. PubMed DOI PMC
Fu Q., Yan J., Li H., Li T., Hou R., Liu D., Ji Y. Effects of biochar amendment on nitrogen mineralization in black soil with different moisture contents under freeze-thaw cycles. Geoderma. 2019;353:459–467. doi: 10.1016/j.geoderma.2019.07.027. DOI
Shen Y., Tang T., Zuo R., Tian Y., Zhang Z., Wang Y. The effect and parameter analysis of stress release holes on decreasing frost heaves in seasonal frost areas. Cold Reg. Sci. Tech. 2020;169:102898. doi: 10.1016/j.coldregions.2019.102898. DOI
Amin A.E.E.A.Z. Carbon sequestration, kinetics of ammonia volatilization and nutrient availability in alkaline sandy soil as a function on applying calotropis biochar produced at different pyrolysis temperatures. Sci. Tot. Environ. 2020;726:138489. doi: 10.1016/j.scitotenv.2020.138489. PubMed DOI
Lehmann J., Rillig M.C., Thies J., Masiello C.A., Hockaday W.C., Crowley D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011;43:1812–1836. doi: 10.1016/j.soilbio.2011.04.022. DOI
Li X., Wang T., Chang S.X., Jiang X., Song Y. Biochar increases soil microbial biomass but has variable effects on micro-bial diversity: A meta-analysis. Sci. Total Environ. 2020;749:141593. doi: 10.1016/j.scitotenv.2020.141593. PubMed DOI
Xie Y., Fan J., Zhu W., Amombo E., Lou Y., Chen L., Fu J. Effect of heavy metal pollution on soil microbial diversity and bermudagrass genetic variation. Front. Plant Sci. 2016;7:755. doi: 10.3389/fpls.2016.00755. PubMed DOI PMC
Ayangbenro A.S., Babalola O.O. A new strategy for heavy metal polluted environments: A review of microbial bio-sorbents. Int. J. Environ. Res. Public Health. 2017;14:94. doi: 10.3390/ijerph14010094. PubMed DOI PMC
Jacquiod S., Cyriaque V., Riber L., Abu Al-Soud W., Gillan D.C., Ruddy W., Sørensen S.J. Long-term industrial metal contamination unexpectedly shaped diversity and activity response of sediment microbiome. J. Hazard. Mater. 2018;344:299–307. doi: 10.1016/j.jhazmat.2017.09.046. PubMed DOI
Moriwaki H., Koide R., Yoshikawa R., Warabino Y., Yamamoto H. Adsorption of rare earth ions onto the cell walls of wild-type and lipoteichoic acid-defective strains of Bacillus subtilis. Appl. Microbiol. Biotechnol. 2013;97:3721–3728. doi: 10.1007/s00253-012-4200-3. PubMed DOI
Azarbad H., van Gestel C.A.M., Niklinska M., Laskowski R., Reoling W.F.M., van Straalen N.M. Resilience of soil mi-crobial communities to metals and additional stressors: DNA-based approaches for assessing “stress-on-stress” responses. Int. J. Mol. Sci. 2016;17:933. doi: 10.3390/ijms17060933. PubMed DOI PMC
González Henao S., Ghneim-Herrera T. Heavy metals in soils and the remediation potential of bacteria associated with the plant microbiome. Front. Environ. Sci. 2021;9:15. doi: 10.3389/fenvs.2021.604216. DOI
Sorensen P.O., Templer P.H., Finzi A.C. Contrasting effects of winter snowpack and soil frost on growing season microbial biomass and enzyme activity in two mixed-hardwood forests. Biogeochem. 2016;128:141–154. doi: 10.1007/s10533-016-0199-3. DOI
Stres B., Philippot L., Faganeli J., Tiedje J.M. Frequent freeze-thaw cycles yield diminished yet resistant and responsive microbial communities in two temperate soils: A laboratory experiment. FEMS Microbiol. Ecol. 2010;74:323–335. doi: 10.1111/j.1574-6941.2010.00951.x. PubMed DOI
Luo G., Li L., Friman V.-P., Guo J., Guo S., Shen Q., Ling N. Organic amendments increase crop yields by improving microbe-mediated soil functioning of agroecosystems: A meta-analysis. Soil Biol. Biochem. 2018;124:105–115. doi: 10.1016/j.soilbio.2018.06.002. DOI
Boros-Lajszner E., Wyszkowska J., Borowik A., Kucharski J. Energetic value of Elymus elongatus L. and Zea mays L. grown on soil polluted with Ni2+, Co2+, Cd2+, and sensitivity of rhizospheric bacteria to heavy metals. Energies. 2021;14:4903. doi: 10.3390/en14164903. DOI
Mhete M., Eze P.N., Rahube T.O., Akinyemi F.O. Soil properties influence bacterial abundance and diversity under different land-use regimes in semi-arid environments. Sci. Afr. 2020;7:e00246. doi: 10.1016/j.sciaf.2019.e00246. DOI
Navas M., Pérez-Esteban J., Torres M.A., Hontoria C., Moliner A. Taxonomic and functional analysis of soil microbial communities in a mining site across a metal(loid) contamination gradient. Eur. J. Soil. Sci. 2021;72:1190–1205. doi: 10.1111/ejss.12979. DOI
Pereira S.I.A., Lima A.I.G., Figueira E.M.D.A.P. Screening possible mechanisms mediating cadmium resistance in Rhizobium leguminosarum bv viciae isolated from contaminated Portuguese soils. Microb. Ecol. 2006;52:176–186. doi: 10.1007/s00248-006-9057-5. PubMed DOI
Shivlata L., Satyanarayana T. Thermophilic and alkaliphilic Actinobacteria: Biology and potential applications. Front. Microbiol. 2015;6:1–29. doi: 10.3389/fmicb.2015.01014. PubMed DOI PMC
Makhalanyane T.P., Van Goethem M.W., Cowan D.A. Microbial diversity and functional capacity in polar soils. Curr. Opin. Biotechnol. 2016;38:159–166. doi: 10.1016/j.copbio.2016.01.011. PubMed DOI
Rippin M., Lange S., Sausen N., Becker B. Biodiversity of biological soil crusts from the Polar Regions revealed by metabarcoding. FEMS Microbiol. Ecol. 2018;94:fiy036. doi: 10.1093/femsec/fiy036. PubMed DOI
Juan Y., Jiang N., Tian L., Chen X., Sun W., Chen L. Effect of freeze-thaw on a midtemperate soil bacterial community and the correlation network of its members. BioMed Res. Int. 2018;2018:8412429. doi: 10.1155/2018/8412429. PubMed DOI PMC
Bhardwaj P., Singh K.R., Jadeja N.B., Phale P.S., Kapley A. Atrazine bioremediation and its influence on soil microbial diversity by metagenomics analysis. Indian J. Microbiol. 2020;60:388–391. doi: 10.1007/s12088-020-00877-4. PubMed DOI PMC
Zhou Y., Berruti F., Greenhalf C., Tian X., Henry H.A.L. Increased retention of soil nitrogen over winter by biochar ap-plication: Implications of biochar pyrolysis temperature for plant nitrogen availability. Agric. Ecosyst. Environ. 2017;236:61–68. doi: 10.1016/j.agee.2016.11.011. DOI
Shen C., Ge Y., Yang T., Chu H. Verrucomicrobial elevational distribution was strongly influenced by soil pH and car-bon/nitrogen ratio. J. Soils Sediments. 2017;17:2449–2456. doi: 10.1007/s11368-017-1680-x. DOI
Khadem A.F., Pol A., Jetten M.S.M., den Camp H.J.M.O. Nitrogen fixation by the verrucomicrobial methanotroph ‘Methylacidiphilum fumariolicum’ SolV. Microbiology. 2010;156:1052–1059. doi: 10.1099/mic.0.036061-0. PubMed DOI
Martinez-Garcia M., Brazel D.M., Swan B.K., Arnosti C., Chain P.S.G., Reitenga K.G., Xie G., Poulton N.J., Gomez M.L., Masland D.E.D., et al. Capturing single cell genomes of active polysaccharide degraders: An unexpected contribution of Verrucomicrobia. PLoS ONE. 2012;7:e35314. doi: 10.1371/journal.pone.0035314. PubMed DOI PMC
Park D., Kim H., Yoon S. Nitrous oxide reduction by an obligate aerobic bacterium, Gemmatimonas aurantiaca strain T-27. Appl. Environ. Microbiol. 2017;83:e00502–e00517. doi: 10.1128/AEM.00502-17. PubMed DOI PMC
Rezgui C., Trinsoutrot-Gattin I., Benoit M., Laval K., Riah-Anglet W. Linking changes in the soil microbial community to C and N dynamics during crop residue decomposition. J. Integr. Agric. 2021;20:3039–3059. doi: 10.1016/S2095-3119(20)63567-5. DOI
Castro-Silva C., Ruíz-Valdiviezo V.M., Valenzuela-Encinas C., Alcántara-Hernández R.J., Navarro-Noya Y.E., Vázquez-Núñez E., Luna-Guido M., Marsch R., Dendooven L. The bacterial community structure in an alkaline saline soil spiked with anthracene. Electron. J. Biotechnol. 2013;16:5.
Vertès A.A., Inui M., Yukawa H. The biotechnological potential of Corynebacterium glutamicum, from umami to chemurgy. In: Yukawa H., Inui M., editors. Corynebacterium glutamicum: Biology and Biotechnology Microbiology. Springer; Berlin/Heidelberg, Germany: 2013. pp. 1–49. Monographs, 23.
Thomas J.C., IV, Oladeinde A., Kieran T.J., Finger J.W., Bayona-Vásquez N.J., Cartee J.C., Beasley J.C., Seaman J.C., McArthur J.V., Rhodes O.E., et al. Co-occurrence of antibiotic, biocide, and heavy metal resistance genes in bacteria from metal and radionuclide contaminated soils at the Savannah River Site. Microb. Biotechnol. 2020;13:1179–1200. doi: 10.1111/1751-7915.13578. PubMed DOI PMC
Chellaiah E.R. Cadmium (heavy metals) bioremediation by Pseudomonas aeruginosa: A mini review. Appl. Water Sci. 2018;8:154. doi: 10.1007/s13201-018-0796-5. DOI
Zivkovic L.I., Rikalović M., Gojgić-Cvijović G., Kazazić S., Vrvić M., Brčeski I., Beškoski V., Lončarević B., Gopčevića K., Karadžić I. Cadmium specific proteomic responses of a highly resistant Pseudomonas aeruginosa san 814 ai. RSC Adv. 2018;8:10549–10560. doi: 10.1039/C8RA00371H. PubMed DOI PMC
Zhang X., Yang H., Cui Z. Assessment on cadmium and lead in soil based on a rhizosphere microbial community. Toxicol. Res. 2017;6:671–677. doi: 10.1039/C7TX00048K. PubMed DOI PMC
Shi L.-D., Chen Y.-S., Du J.-J., Hu Y.-Q., Shapleigh J.P., Zhao H.-P. Metagenomic evidence for a Methylocystis species capable of bioremediation of diverse heavy metals. Front. Microbiol. 2019;9:3297. doi: 10.3389/fmicb.2018.03297. PubMed DOI PMC
Delmotte N., Knief C., Chaffron S., Innerebner G., Roschitzki B., Schlapbach R., Mering C., Vorholt J.A. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc. Natl. Acad. Sci. USA. 2009;106:16428–16433. doi: 10.1073/pnas.0905240106. PubMed DOI PMC
Armin E., Cernava T., Cardinale M., Soh J., Sensen C.W., Grube M., Berg G. Rhizobiales as functional and endosymbiontic members in the lichen symbiosis of Lobaria pulmonaria L. Front. Microbiol. 2015;6:53. PubMed PMC
Whalen J.K., Sampedro L. Soil microorganisms. In: Whalen J.K., Sampedro L., editors. Soil Ecology and Management. CABI; Wallingford, UK: 2009.
Mo S., Li J., Li B., Yu R., Nie S., Zhang Z., Liao J., Jiang Q., Yan B., Jiang C. Impacts of Desulfobacterales and Chromatiales on sulfate reduction in the subtropical mangrove ecosystem as revealed by SMDB analysis. BioRxiv. 2020 doi: 10.1101/2020.08.16.252635. DOI
Ming L., Wenxin Z., Xiuxiu C., Chunqin Z., Wei Z., Yan D., Feng Z., Peng Y., Xinping C. Soil microbial composition and phod gene abundance are sensitive to phosphorus level in a long-term wheat-maize crop system. Front. Microbiol. 2021;11:3547. PubMed PMC
Altimira F., Yáñez C., Bravo G., González M., Rojas L., Seeger M. Characterization of copper-resistant bacteria and bacterial communities from copper-polluted agricultural soils of central Chile. BMC Microbiol. 2012;12:e193. doi: 10.1186/1471-2180-12-193. PubMed DOI PMC
Thierry S., Macarie H., Iizuka T., Geißdörfer W., Assih E.A., Spanevello M., Verhe F., Thomas P., Fudou R., Monroy O., et al. Pseudoxanthomonas mexicana sp. nov. and Pseudoxanthomonas japonensis sp. nov., isolated from diverse environments, and emended descriptions of the genus Pseudoxanthomonas and of its type species. Int. J. Syst. Evol. Microbiol. 2004;54:2245–2255. doi: 10.1099/ijs.0.02810-0. PubMed DOI
Mahbub K.R., Krishnan K., Naidu R., Megharaj M. Mercury resistance and volatilization by Pseudoxanthomonas sp. SE1 isolated from soil. Environ. Technol. Innov. 2016;6:94–104. doi: 10.1016/j.eti.2016.08.001. DOI
Nayak A.S., Vijaykumar M.H., Karegoudar T.B. Characterization of biosurfactant produced by Pseudoxanthomonas sp. PNK-04 and its application in bioremediation. Int. Biodeterior. Biodegradat. 2009;63:73–79. doi: 10.1016/j.ibiod.2008.07.003. DOI
Guerrero L.D., Makhalanyane T.P., Aislabie J.M., Cowan D.A. Draft genome sequence of Williamsia sp. strain D3, isolated from the Darwin Mountains, Antarctica. Genome Announc. 2014;2:e01230-13. doi: 10.1128/genomeA.01230-13. PubMed DOI PMC
Kai E.X., Johari W.L.W., Habib S., Yasid N.A., Ahmad S.A., Shukor M.H. The growth of the Rhodococcus sp. on diesel fuel under the effect of heavy metals and different concentrations of zinc. Adv. Polar Sci. 2020;31:132–136.
Horn H., Keller A., Hildebrandt U., Kämpfer P., Riederer M., Hentschel U. Draft genome of the Arabidopsis thaliana phyllosphere bacterium, Williamsia sp. ARP1. Stand. Genomic Sci. 2016;11:8. doi: 10.1186/s40793-015-0122-x. PubMed DOI PMC