Advanced Biofuels Based on Fischer-Tropsch Synthesis for Applications in Gasoline Engines
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
No 727476
Horizon 2020 Framework Programme
PubMed
34200359
PubMed Central
PMC8201014
DOI
10.3390/ma14113134
PII: ma14113134
Knihovny.cz E-zdroje
- Klíčová slova
- Fischer–Tropsch synthesis, alternative fuels, biocomponent, biofuel, biogasoline, bionaphtha, standardization, waste materials,
- Publikační typ
- časopisecké články MeSH
The aim of the article is to determine the properties of fuel mixtures of Fischer-Tropsch naphtha fraction with traditional gasoline (petrol) to be able to integrate the production of advanced alternative fuel based on Fischer-Tropsch synthesis into existing fuel markets. The density, octane number, vapor pressure, cloud point, water content, sulphur content, refractive index, ASTM color, heat of combustion, and fuel composition were measured using the gas chromatography method PIONA. It was found that fuel properties of Fischer-Tropsch naphtha fraction is not much comparable to conventional gasoline (petrol) due to the high n-alkane content. This research work recommends the creation of a low-percentage mixture of 3 vol.% of FT naphtha fraction with traditional gasoline to minimize negative effects-similar to the current legislative limit of 5 vol.% of bioethanol in E5 gasoline. FT naphtha fraction as a biocomponent does not contain sulphur or polyaromatic hydrocarbons nor benzene. Waste materials can be processed by FT synthesis. Fischer-Tropsch synthesis can be considered a universal fuel-the naphtha fraction cut can be declared as a biocomponent for gasoline fuel without any further necessary catalytic upgrading.
Zobrazit více v PubMed
Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources. [(accessed on 16 May 2021)]; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32018L2001.
European Commission . Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC. European Commission; Brussels, Belgium: 2009. [(accessed on 28 April 2021)]. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:140:0016:0062:en:PDF.
European Commission Sustainability Criteria. [(accessed on 28 April 2021)]; Available online: https://ec.europa.eu/energy/topics/renewable-energy/biofuels/sustainability-criteria_en.
Frilund C., Simell P., Kurkela E., Eskelinen P. Experimental bench-scale study of residual biomass syngas desulfurization using ZnO-based adsorbents. Energy Fuels. 2020;34:3326–3335. doi: 10.1021/acs.energyfuels.9b04277. PubMed DOI PMC
Pospíšil M., Šebor G., Šimáček P., Mužíková Z. Nové trendy výroby biopaliv a jejich využití v dopravě. Chemické Listy. 2012;106:953–960.
Zeman P., Hönig V., Kotek M., Táborský J., Obergruber M., Mařík J., Hartová V., Pechout M. Hydrotreated vegetable oil as a fuel from waste materials. Catalysts. 2019;9:337. doi: 10.3390/catal9040337. DOI
Kolesinska B., Fraczyk J., Binczarski M., Modelska M., Berlowska J., Dziugan P., Antolak H., Kaminski Z.J., Witonska I.A., Kregiel D. Butanol synthesis routes for biofuel production: Trends and perspectives. Materials. 2019;12:350. doi: 10.3390/ma12030350. PubMed DOI PMC
Meurer A., Kern J. Fischer–Tropsch synthesis as the key for decentralized sustainable kerosene production. Energies. 2021;14:1836. doi: 10.3390/en14071836. DOI
Dahmen N., Sauer J. Evaluation of techno-economic studies on the bioliq® process for synthetic fuels production from biomass. Processes. 2021;9:684. doi: 10.3390/pr9040684. DOI
Dębek C. Modification of pyrolytic oil from waste tyres as a promising method for light fuel production. Materials. 2019;12:880. doi: 10.3390/ma12060880. PubMed DOI PMC
Papari S., Bamdad H., Berruti F. Pyrolytic conversion of plastic waste to value-added products and fuels: A Review. Materials. 2021;14:2586. doi: 10.3390/ma14102586. PubMed DOI PMC
Świechowski K., Stępień P., Syguła E., Koziel J.A., Białowiec A. Lab-scale study of temperature and duration effects on carbonized solid fuels properties produced from municipal solid waste components. Materials. 2021;14:1191. doi: 10.3390/ma14051191. PubMed DOI PMC
Wang T., Liu H., Duan C., Xu R., Zhang Z., She D., Zheng J. The eco-friendly biochar and valuable bio-oil from Caragana korshinskii: Pyrolysis preparation, characterization, and adsorption applications. Materials. 2020;13:3391. doi: 10.3390/ma13153391. PubMed DOI PMC
Kosakowski W., Bryszewska M.A., Dziugan P. Biochars from post-production biomass and waste from wood management: Analysis of carbonization products. Materials. 2020;13:4971. doi: 10.3390/ma13214971. PubMed DOI PMC
Yue T., Jiang D., Zhang Z., Zhang Y., Li Y., Zhang T., Zhang Q. Recycling of shrub landscaping waste: Exploration of Bio-hydrogen production potential and optimization of photo-fermentation bio-hydrogen production process. Bioresour. Technol. 2021;331:125048. doi: 10.1016/j.biortech.2021.125048. PubMed DOI
Müller-Langer F., Majer S., O’Keeffe S. Benchmarking biofuels—A comparison of technical, economic and environmental indicators. Energy Sustain. Soc. 2014;4:20. doi: 10.1186/s13705-014-0020-x. DOI
Degnan T., Shinde S.L. Waste-plastic processing provides global challenges and opportunities. MRS Bull. 2019;44:436–437. doi: 10.1557/mrs.2019.133. DOI
van de Loosdrecht J., Botes F.G., Ciobica I.M., Ferreira A., Gibson P., Moodley D.J., Saib A.M., Visagie J.L., Weststrate C.J., Niemantsverdriet J.W. Catalysts and Chemistry. In: Reedijk J., Poeppelmeier K., editors. Comprehensive Inorganic Chemistry II. 2nd ed. Elsevier; Amsterdam, The Netherlands: 2013. pp. 525–557.
Warheit D.B. Hazard and risk assessment strategies for nanoparticle exposures: How far have we come in the past 10 years? F1000Research. 2018;7:376. doi: 10.12688/f1000research.12691.1. PubMed DOI PMC
Morgeneyer M., Aguerre-Chariol O., Bressot C. STEM imaging to characterize nanoparticle emissions and help to design nanosafer paints. Chem. Eng. Res. Des. 2018;136:663–674. doi: 10.1016/j.cherd.2018.06.013. DOI
Bressot C., Aubry A., Pagnoux C., Aguerre-Chariol O., Morgeneyer M. Assessment of functional nanomaterials in medical applications: Can time mend public and occupational health risks related to the products’ fate? J. Toxicol. Environ. Health A. 2018;81:957–973. doi: 10.1080/15287394.2018.1477271. PubMed DOI
Bressot C., Shandilya N., Jayabalan T., Fayet G., Voetz M., Meunier L., Le Bihan O., Aguerre-Chariol O., Morgeneyer M. Exposure assessment of nanomaterials at production sites by a Short Time Sampling (STS) approach strategy and first results of measurement campaigns. Process Saf. Environ. Prot. 2018;116 doi: 10.1016/j.psep.2018.02.012. DOI
Morgeneyer M., Shandilya N., Chen Y.M., Le Bihan O. Use of a modified Taber abrasion apparatus for investigating the complete stress state during abrasion and in-process wear particle aerosol generation. Chem. Eng. Res. Des. 2015;93:251. doi: 10.1016/j.cherd.2014.04.029. DOI
Paulick M., Morgeneyer M., Kwade A. A new method for the determination of particle contact stiffness. Granul. Matter. 2015;17:83–93. doi: 10.1007/s10035-014-0537-x. DOI
Röck M., Morgeneyer M., Schwedes J., Kadau D., Brendel L., Wolf D.E. Steady state flow of cohesive and non-cohesive powders. Granul. Matter. 2008;10:285–293. doi: 10.1007/s10035-008-0088-0. DOI
Saleh K., Abou Jaoude M.T.M., Morgeneyer M., Lefrancois E., Le Bihan O., Bouillard J. Dust generation from powders: A characterization test based on stirred fluidization. Powder Technol. 2014;255:141–148. doi: 10.1016/j.powtec.2013.10.051. DOI
Rodríguez-Fernández J., Ramos Á., Barba J., Cárdenas D., Delgado J. Improving fuel economy and engine performance through gasoline fuel octane rating. Energies. 2020;13:3499. doi: 10.3390/en13133499. DOI
Li J., Zhu J., Wang S., Feng Y., Zhou W., Qian Y., Yu L., Lu X. An Experimental and modeling study of autoignition characteristics of two real low-octane gasoline fuels in a heated rapid compression machine at elevated pressures. Fuel. 2021;295:120645. doi: 10.1016/j.fuel.2021.120645. DOI
Stan C., Andreescu C., Dobre A., Iozsa D. Experimental study on the distillation capacity of alcohol-gasoline blends. IOP Conf. Ser. Mater. Sci. Eng. 2017;252:012069. doi: 10.1088/1757-899X/252/1/012069. DOI
Hönig V., Procházka P., Obergruber M., Kučerová V., Mejstřík P., Macků J., Bouček J. Determination of Tractor engine oil change interval based on material properties. Materials. 2020;13:5403. doi: 10.3390/ma13235403. PubMed DOI PMC
Amine M., Awad E.N., Ibrahim V., Barakat Y. Influence of ethyl acetate addition on phase stability and fuel characteristics of hydrous ethanol-gasoline blends. Egypt. J. Pet. 2018;27:1333–1336. doi: 10.1016/j.ejpe.2018.09.005. DOI
Shirazi S.A., Abdollahipoor B., Martinson J., Reardon K.F., Windom B.C. Physiochemical property characterization of hydrous and anhydrous ethanol blended gasoline. Ind. Eng. Chem. Res. 2018;57:11239–11245. doi: 10.1021/acs.iecr.8b01711. DOI
Zhang Q., Kang J., Wang Y. Development of novel catalysts for Fischer-Tropsch synthesis: Tuning the product selectivity. ChemCatChem. 2010;2:1030–1058. doi: 10.1002/cctc.201000071. DOI
Gruber H., Groß P., Rauch R., Reichhold A., Zweiler R., Aichernig C., Müller S., Ataimisch N., Hofbauer H. Fischer-Tropsch products from biomass-derived syngas and renewable hydrogen. Biomass Convers. Biorefinery. 2019 doi: 10.1007/s13399-019-00459-5. DOI
Komvokis V.G., Karakoulia S., Iliopoulou E.F., Papapetrou M.C., Vasalos I.A., Lappas A.A., Triantafyllidis K.S. Upgrading of Fischer–Tropsch synthesis bio-waxes via catalytic cracking: Effect of acidity, porosity and metal modification of zeolitic and mesoporous aluminosilicate catalysts. Catal. Today. 2012;196:42–55. doi: 10.1016/j.cattod.2012.06.029. DOI
Flach B., Lieberz S., Bolla S. EU-28 Biofuels Annual EU Biofuels Annual 2019. [(accessed on 28 April 2021)]; Available online: https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=Biofuels%20Annual_The%20Hague_EU-28_7-15-2019.pdf.