Unified pH Measurements of Ethanol, Methanol, and Acetonitrile, and Their Mixtures with Water
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17FUN09
European Metrology Programme for Innovation and Research
PRG690
Estonian Research Competency Council
2014-2020.4.01.01.15-0011
European Regional Development Fund
PubMed
34200436
PubMed Central
PMC8201227
DOI
10.3390/s21113935
PII: s21113935
Knihovny.cz E-zdroje
- Klíčová slova
- commercial glass electrodes, ionic liquid salt bridge, non-aqueous pH, pHabs, water–alcohol mixture,
- MeSH
- acetonitrily MeSH
- ethanol MeSH
- koncentrace vodíkových iontů MeSH
- methanol * MeSH
- rozpouštědla MeSH
- voda * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetonitrily MeSH
- ethanol MeSH
- methanol * MeSH
- rozpouštědla MeSH
- voda * MeSH
Measurement of pH in aqueous-organic mixtures with different compositions is of high importance in science and technology, but it is, at the same time, challenging both from a conceptual and practical standpoint. A big part of the difficulty comes from the fundamental incomparability of conventional pH values between solvents (spH, solvent-specific scales). The recent introduction of the unified pH (pHabs) concept opens up the possibility of measuring pH, expressed as pHabsH2O, in a way that is comparable between solvent, and, thereby, removing the conceptual problem. However, practical issues remain. This work presents the experience of the authors with measuring pHabsH2O values in mixtures of methanol, ethanol, and acetonitrile, with water, but without the presence of buffers or other additives. The aim was to assigned pHabsH2O values to solvent-water mixtures using differential potentiometry and the 'pHabs-ladder' method. Measurements were made of the potential difference between glass electrodes immersed in different solutions, separated by an ionic liquid salt bridge. Data were acquired for a series of solutions of varying solvent content. This work includes experiences related to: a selection of commercial electrodes, purity of starting material, and comparability between laboratories. Ranges of pHabsH2O values for selected compositions of solvent-water mixtures are presented.
Czech Metrology Institute Okružní 31 63800 Brno Czech Republic
DFM A S Kogle Allé 5 2970 Hørsholm Denmark
Government Office of the Capital City Budapest Németvölgyi út 37 39 1124 Budapest Hungary
Institute of Chemistry University of Tartu Ravila Street 14a 50411 Tartu Estonia
Instituto Português da Qualidade R António Gião 2 2828 513 Caparica Portugal
Laboratoire National de Metrologie et d'Essais 1 rue Gaston Boissier 75015 Paris France
Physikalisch Technische Bundesanstalt Bundesallee 100 38116 Braunschweig Germany
Zobrazit více v PubMed
Buck R.P., Rondinini S., Covington A.K., Baucke F.G.K., Brett C.M.A., Camoes M.F., Milton M.J.T., Mussini T., Naumann R., Pratt K.W., et al. Measurement of pH. Definition, standards, and procedures (IUPAC Recommendations 2002) Pure Appl. Chem. 2002;74:2169–2200. doi: 10.1351/pac200274112169. DOI
Radiometer Analytical, pH Theory and Practice. [(accessed on 11 March 2021)]; Available online: http://www.electro.fisica.unlp.edu.ar/temas/pnolo/p3_ph_theory.pdf.
Rondinini S. pH measurements in non-aqueous and aqueous-organic solvents-definition of standard procedures. Anal. Bioanal. Chem. 2002;374:813–816. doi: 10.1007/s00216-002-1455-z. PubMed DOI
Mussini T., Covington A.K., Longhi P., Rondinini S. Criteria for standardization of pH measurements in organic solvents and water + organic solvent mixtures of moderate to high permittivities. Pure Appl. Chem. 1985;57:865–876. doi: 10.1351/pac198557060865. DOI
Bates R.G., Vijh A.K. Determination of pH: Theory and Practice. J. Electrochem. Soc. 1973;120:263C. doi: 10.1149/1.2403829. DOI
Wang J. Potentiometry. In: Wang J., editor. Analytical Electrochemistry. 2nd ed. Wiley-VCH; New York, NY, USA: 2006. pp. 140–170.
ThermoFisher Scientific, pH Measurement Handbook. [(accessed on 11 March 2021)]; Available online: https://assets.thermofisher.com/TFS-Assets/LSG/brochures/pH-Measurement-Handbook-S-PHREFBK-E.pdf.
Metrohm, Tips for Handling the Solvotrode, Metrohm Information Issue 1/2007. [(accessed on 11 March 2021)]; Available online: https://partners.metrohm.com/GetDocumentPublic?action=get_dms_document&docid=1196146.
Horiba Laqua Electrodes pH, Determination of pH in Non-Aqueous Solutions, Application Note. [(accessed on 11 March 2021)]; Available online: https://www.horiba.com/fileadmin/uploads/Scientific/water_quality/Documents/Application_Notes/HIS/21_-_Determination_of_pH_in_Non-Aqueous_Solutions__Low-Res_.pdf.
Mettler-Toledo, pH of Non-Aqueous Samples–Measurement in Organic Solvents, White Paper. [(accessed on 11 March 2021)]; Available online: https://www.mt.com/dk/da/home/library/applications/lab-analytical-instruments/measurement-pH-organic-solvents.html.
Brown R.J.C., Keates A.C., Brewer P.J. Sensitivities of a Standard Test Method for the Determination of the pHe of Bioethanol and Suggestions for Improvement. Sensors. 2010;10:9982–9993. doi: 10.3390/s101109982. PubMed DOI PMC
ASTM D6423-14: Standard Test Method for Determination of pHe of Denatured Fuel Ethanol and Ethanol Fuel Blends, ASTM International. [(accessed on 1 June 2017)]; Available online: https://www.astm.org/DATABASE.CART/HISTORICAL/D6423-14.htm.
European Standard NF EN 15490:2007-10: Ethanol as a blending component for petrol–Determination of pHe, October 2007. [(accessed on 1 June 2017)]; Available online: https://standards.iteh.ai/catalog/standards/cen/c624ad1e-f052-45ba-94c4-c45ae67db58d/en-15490-2007.
Norma Brasileira NBR 10891: 2017–Hydrous Fuel Ethanol–Determination of pH–Potentiometric Method. [(accessed on 1 June 2017)]; Available online: https://www.abntcatalogo.com.br/norma.aspx?ID=382244.
Tripartite Task Force: Brazil, European Union & United States of America, White Paper on International Compatible Biofuel Standards. [(accessed on 1 May 2018)]; Available online: https://www.nist.gov/system/files/documents/2017/05/09/biofuels_report.pdf.
Ugo P., Daniele S., Mazzocchin G.-A., Bontempelli G. Acid-base equilibria in organic solvents: Part 3. An Absolute pH Scale from Proton Basicity Evaluated by Cyclic Voltammetry. Anal. Chim. Acta. 1988;208:207–217. doi: 10.1016/S0003-2670(00)80748-5. DOI
Katritzky A.R., Fara D.C., Yang A.H., Tämm K., Tamm T., Karelson M. Quantitative Measures of Solvent Polarity. Chem. Rev. 2004;104:175–198. doi: 10.1021/cr020750m. PubMed DOI
Himmel D., Goll S.K., Leito I., Krossing I. A Unified pH Scale for All Phases. Angew. Chem. 2010;49:6885–6888. doi: 10.1002/anie.201000252. PubMed DOI
Suu A., Jalukse L., Liigand J., Kruve-Viil A., Himmel D., Krossing I., Roses M., Leito I. Unified pH Values of Liquid Chromatography Mobile Phases. Anal. Chem. 2015;87:2623–2630. doi: 10.1021/ac504692m. PubMed DOI
Heering A., Bastkowski F., Seitz S. Glass electrode half-cells for measuring unified pH in ethanol–water mixtures. J. Sensors Sens. Syst. 2020;9:383–389. doi: 10.5194/jsss-9-383-2020. DOI
Radtke V., Ermantraut A., Himmel D., Koslowski T., Leito I., Krossing I. The Ideal Ionic Liquid Salt Bridge for the Direct Determination of Gibbs Energies of Transfer of Single Ions, Part I: The Concept. Angew. Chem. 2018;57:2344–2347. doi: 10.1002/anie.201707333. PubMed DOI
Ermantraut A., Radtke V., Gebel N., Himmel D., Koslowski T., Leito I., Krossing I. The Ideal Ionic Liquid Salt Bridge for Direct Determination of Gibbs Energies of Transfer of Single Ions, Part II: Evaluation of the Role of Ion Solvation and Ion Mobilities. Angew. Chem. 2018;57:2348–2352. doi: 10.1002/anie.201707334. PubMed DOI
Radtke V., Gebel N., Priester D., Ermantraut A., Bauerle M., Himmel D., Koslowski T., Leito I., Krossing I. The ideal ionic liquid salt bridge for the direct determination of Gibbs energies of transfer of single ions, Part III: Evidence and implications of the absence of solvent-solvent interactions. Chem. Eur. J. 2021;57:2344–2347.
Beliustin A.A., Pisarevsky A.M., Lepnev G.P., Sergeyev A.S., Shultz M.M. Glass electrodes: A new generation. Sens. Actuat. B. 1992;10:61–66. doi: 10.1016/0925-4005(92)80012-M. DOI
Heering A., Stoica D., Camões F., Anes B., Nagy D., Szilágyi Z.N., Quendera R., Ribeiro L., Bastkowski F., Born R., et al. Symmetric Potentiometric Cells for the Measurement of Unified pH Values. Symmetry. 2020;12:1150. doi: 10.3390/sym12071150. DOI
Borges P.P., Fraga I.C.S., Marques B.S.R., Dias J.C., Cunha V.S., Canale L., Narazaki M., Dean S.W. pH Measurement in Bioethanol by Using Different Electrodes and according to International Standards. J. ASTM Int. 2010;7:1–6. doi: 10.1520/JAI102588. DOI
Dean S.W., Da Silva R.M., Borges P.P., Fraga I.C.S., Stradiotto N.R. New Methodology for pH Measurements in Fuel Ethanol Using Glass Electrode. J. ASTM Int. 2011;8 doi: 10.1520/JAI103192. DOI
Gelsema W.J., De Ligny C.L., Remijnse A.G., Blijleven H.A. pH-Measurements in alcohol-water mixtures, using aqueous standard buffer solutions for calibration. Recl. Trav. Chim. Pays-Bas. 2010;85:647–660. doi: 10.1002/recl.19660850702. DOI
Moldoveanu S.C., David V. Selection of the HPLC Method in Chemical Analysis. Elsevier BV; Amsterdam, The Netherlands: 2017. Solvents, Buffers, and Additives Used in the Mobile Phase; pp. 393–450.
Van Der Veen A.M.H., Ent H., Baldan A., Da Cunha V.S., Daroda R.J., Lang B., Schantz M., Ulberth-Buchgraber M., Held A., Hearn R., et al. The BIOREMA project—Part 3: International interlaboratory comparison for bio-ethanol test methods. Accred. Qual. Assur. 2013;18:41–50. doi: 10.1007/s00769-012-0945-8. DOI
Sanz-Nebot V. Assignment of reference pH-values to primary standard buffer solutions for standardization of potentiometric sensors in acetonitrile-water mixtures. Anal. Bioanal. Chem. 1995;353:148–155. doi: 10.1007/s0021653530148. PubMed DOI
Mussini P.R. Reference value standards and primary standards for pH measurements in D2O and aqueous-organic solvent mix-tures: New accessions and assessments. Pure Appl. Chem. 1997;69:1007–1014. doi: 10.1351/pac199769051007. DOI
Luecke J., McCormick R.L. Electrical Conductivity and pHe Response of Fuel Ethanol Contaminants. Energy Fuels. 2014;28:5222–5228. doi: 10.1021/ef5013038. DOI
Camões M.F. Realisation of a unified pH scale. Chem. Int. 2018;40:29–30. doi: 10.1515/ci-2018-0416. DOI
Pungor E., Toth K., Klatsmanyi P.G., Izutsu K. Applications of ion-selective electrodes in nonaqueous and mixed solvents. Pure Appl. Chem. 1983;55:2029–2065. doi: 10.1351/pac198355122029. DOI
Bastkowski F., Heering A. EMPIR JRP FUN-09 Realisation of a unified pH scale–Deliverable 2–Report on interlaboratory comparison to evaluate the performance
Roses M., Rafols C., Bosch E. Autoprotolysis in aqueous organic solvent mixtures. Anal. Chem. 1993;65:2294–2299. doi: 10.1021/ac00065a021. DOI
Rondinini S., Longhi P., Mussini P.R., Mussini T. Autoprotolysis constants in nonaqueous solvents and aqueous organic solvent mixtures. Pure Appl. Chem. 1987;59:1693–1702. doi: 10.1351/pac198759121693. DOI
Farajtabar A., Gharib F. Autoprotolysis constants determination of water-methanol mixtures and solvent effect. J. Taibah Univ. Sci. 2009;2:7–13. doi: 10.1016/S1658-3655(12)60002-8. DOI
Canals I., Oumada F.Z., Rosés M., Bosch E. Retention of ionizable compounds on HPLC. 6. pH measurements with the glass electrode in methanol-water mixtures. J. Chromatogr. A. 2001;911:191–202. doi: 10.1016/S0021-9673(00)01271-1. PubMed DOI
Kotrba M., Schilling L.-H. Measurement of pH in ethanol, distilled water, and their mixtures: On the assessment of pH in etha-nol-based natural history wet collections and the detrimental aspects of dilution with distilled water. Collect. Forum. 2018;31:84–101. doi: 10.14351/0831-4985-31.1.84. DOI
Faraji M., Farajtabar A., Gharib F. Determination of water-ethanol autoprotolysis constants and solvent effect. J. Appl. Chem. Res. 2009;9:7–12.
Espinosa S., Bosch E., Rosés M. Retention of ionizable compounds on HPLC. 5. pH scales and the retention of acids and bases with acetonitrile-water mobile phases. Anal. Chem. 2000;72:5193–5200. doi: 10.1021/ac000591b. PubMed DOI
Barbosa J., Nebot V.S. Autoprotolysis constants and standardization of the glass electrode in acetonitrile-water mixtures. Effect of solvent composition. Anal. Chim. Acta. 1991;244:183–191. doi: 10.1016/S0003-2670(00)82496-4. DOI
Bax D., De Ligny C.L., Remijnse A.G. Activity coefficients of single ions IV.: The difference between the standard chemical potentials of single ions in ethanol and ethanol-water mixtures and in water at 25°, and some related quantities. Recl. Trav. Chim. Pays-Bas. 2010;91:965–988. doi: 10.1002/recl.19720910812. DOI
Davison W., Woof C. Performance tests for the measurement of pH with glass electrodes in low ionic strength solutions including natural waters. Anal. Chem. 1985;57:2567–2570. doi: 10.1021/ac00290a031. DOI
Himmel D., Radtke V., Butschke B., Krossing I. Basic Remarks on Acidity. Angew. Chem. 2018;57:4386–4411. doi: 10.1002/anie.201709057. PubMed DOI
Midgley D., Torrance K. Assessment of glass electrodes for determining pH in boiler feed water. Analyst. 1979;104:63–72. doi: 10.1039/an9790400063. DOI
Liigand P., Heering A., Kaupmees K., Leito I., Girod M., Antoine R., Kruve-Viil A. The Evolution of Electrospray Generated Droplets is Not Affected by Ionization Mode. J. Am. Soc. Mass Spectrom. 2017;28:2124–2131. doi: 10.1007/s13361-017-1737-5. PubMed DOI
Veigure R., Lossmann K., Hecht M., Parman E., Born R., Leito I., Herodes K., Kipper K. Retention of acidic and basic analytes in reversed phase column using fluorinated and novel eluent additives for liquid chromatography-tandem mass spectrometry. J. Chromatogr. A. 2020;1613:460667. doi: 10.1016/j.chroma.2019.460667. PubMed DOI
Lõkov M., Tshepelevitsh S., Heering A., Plieger P.G., Vianello R., Leito I. On the Basicity of Conjugated Nitrogen Heterocycles in Different Media. Eur. J. Org. Chem. 2017;2017:4475–4489. doi: 10.1002/ejoc.201700749. DOI
Fondriest Environmental, Inc. pH of Water. Fundamentals of Environmental Measurements. [(accessed on 1 February 2021)];2013 Nov 19; Available online: https://www.fondriest.com/environmental-measurements/parameters/water-quality/ph/
Institute for Reference Materials and Measurements (IRMM) Certification Report: Certification of the Mass Concentrations of Calcium, Chloride, Magnesium, Ortho-Phosphate, Potassium, Sodium, and of pH and Conductivity in Groundwater–Certified Reference Material ERM-CA616, EUR 24424 EN–2010, JRC European Commission. [(accessed on 19 February 2021)]; Available online: https://op.europa.eu/da/publication-detail/-/publication/70189188-ea83-4b65-beff-c6bc03c0154e.
Elhajj J., Al-Hindi M., Azizi F. A Review of the Absorption and Desorption Processes of Carbon Dioxide in Water Systems. Ind. Eng. Chem. Res. 2013;53:2–22. doi: 10.1021/ie403245p. DOI
ISO 10523: 2008, Water Quality–Determination of pH, Annex D. [(accessed on 1 June 2017)]; Available online: https://www.iso.org/standard/51994.html.