Chicken Mesenchymal Stem Cells and Their Applications: A Mini Review
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
TJ04000511
Technologická Agentura České Republiky
PubMed
34202772
PubMed Central
PMC8300106
DOI
10.3390/ani11071883
PII: ani11071883
Knihovny.cz E-resources
- Keywords
- applications, chicken, culture, disease, mesenchymal stem cells, probiotics,
- Publication type
- Journal Article MeSH
- Review MeSH
Mesenchymal stem cells (MSCs) are multipotent progenitor cells that adhere to plastic; express the specific markers CD29, CD44, CD73, CD90, and CD105; and produce cytokines and growth factors supporting and regulating hematopoiesis. MSCs have capacity for differentiating into osteocytes, chondrocytes, adipocytes, and myocytes. They are useful for research toward better understanding the pathogenic potential of the infectious bursal disease virus, mineralization during osteogenesis, and interactions between MSCs as a feeder layer to other cells. MSCs are also important for immunomodulatory cell therapy, can provide a suitable strategy model for coculture with pathogens causing dermatitis disorders in chickens, can be cultured in vitro with probiotics and prebiotics with a view to eliminate the feeding of antibiotic growth promoters, and offer cell-based meat production. Moreover, bone marrow-derived MSCs (BM-MSCs) in coculture with hematopoietic progenitor/stem cells (HPCs/HSCs) can support expansion and regulation of the hematopoiesis process using the 3D-culture system in future research in chickens. MSCs' several advantages, including ready availability, strong proliferation, and immune modulatory properties make them a suitable model in the field of stem cell research. This review summarizes current knowledge about the general characterization of MSCs and their application in chicken as a model organism.
See more in PubMed
Mir N.A., Rafiq A., Kumar F., Singh V., Shukla V. Determinants of broiler chicken meat quality and factors affecting them: A review. J. Food Sci. Technol. 2017;54:2997–3009. doi: 10.1007/s13197-017-2789-z. PubMed DOI PMC
Fornari M.B., Zanella R., Ibelli A.M., Fernandes L.T., Cantão M.E., Thomaz-Soccol V., Ledur M.C., Peixoto J.O. Unraveling the associations of osteoprotegerin gene with production traits in a paternal broiler line. SpringerPlus. 2014;3:1–8. doi: 10.1186/2193-1801-3-682. PubMed DOI PMC
Prockop D.J. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997;276:71–74. doi: 10.1126/science.276.5309.71. PubMed DOI
Crigler L., Kazhanie A., Yoon T.J., Zakhari J., Anders J., Taylor B., Virador V.M. Isolation of a mesenchymal cell population from murine dermis that contains progenitors of multiple cell lineages. FASEB J. 2007;21:2050–2063. doi: 10.1096/fj.06-5880com. PubMed DOI PMC
Dumas A., Le Drévo M.A., Moreau M.F., Guillet C., Baslé M.F., Chappard D. Isolation of osteoprogenitors from murine bone marrow by selection of CD11b negative cells. Cytotechnology. 2008;58:163. doi: 10.1007/s10616-009-9184-1. PubMed DOI PMC
Kar S., Mitra S., Banerjee E.R. Isolation and culture of embryonic stem cells, mesenchymal stem cells, and dendritic cells from humans and mice. Methods. Mol. Biol. 2015;1516:145–152. doi: 10.1007/7651_2015_315. PubMed DOI
Kumar K., Agarwal P., Das K., Mili B., Madhusoodan A.P., Kumar A., Bag S. Isolation and characterization of mesenchymal stem cells from caprine umbilical cord tissue matrix. Tissue Cell. 2016;48:653–658. doi: 10.1016/j.tice.2016.06.004. PubMed DOI
Li H., Ghazanfari R., Zacharaki D., Lim H.C., Scheding S. Isolation and characterization of primary bone marrow mesenchymal stromal cells. Ann. N. Y. Acad. Sci. 2016;1370:109–118. doi: 10.1111/nyas.13102. PubMed DOI
Krešić N., Šimić I., Lojkić I., Bedeković T. Canine adipose derived mesenchymal stem cells transcriptome composition alterations: A step towards standardizing therapeutic. Stem Cells Int. 2017 doi: 10.1155/2017/4176292. PubMed DOI PMC
Nakamura M., Nishida H., Yoshizaki K., Akiyoshi H., Hatoya S., Sugiura K., Inaba T. Canine mesenchymal stromal cell-conditioned medium promotes survival and neurite outgrowth of neural stem cells. J. Vet. Med. Sci. 2020 doi: 10.1292/jvms.19-0141. PubMed DOI PMC
Munoz J.L., Greco S.J., Patel S.A., Sherman L.S., Bhatt S., Bhatt R.S., Shrensel J.A., Guan Y.Z., Xie G., Ye J.H., et al. Feline bone marrow-derived mesenchymal stromal cells (MSCs) show similar phenotype and functions with regards to neuronal differentiation as human MSCs. Differentiation. 2012;84:214–222. doi: 10.1016/j.diff.2012.07.002. PubMed DOI PMC
Dominici M.L.B.K., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F.C., Krause D.S., Horwitz E.M. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–317. doi: 10.1080/14653240600855905. PubMed DOI
Majumdar M.K., Thiede M.A., Mosca J.D., Moorman M., Gerson S.L. Phenotypic and functional comparison of cultures of marrow--derived mesenchymal stem cells (MSCs) and stromal cells. J. Cell. Physiol. 1998;176:57–66. doi: 10.1002/(SICI)1097-4652(199807)176:1<57::AID-JCP7>3.0.CO;2-7. PubMed DOI
Eleuteri S., Fierabracci A. Insights into the secretome of mesenchymal stem cells and its potential applications. Inter. J. Mol. Sci. 2020;20:4597. doi: 10.3390/ijms20184597. PubMed DOI PMC
Fu X., Liu G., Halim A., Ju Y., Luo Q., Song G. Mesenchymal stem cell migration and tissue repair. Cells. 2019;8:784. doi: 10.3390/cells8080784. PubMed DOI PMC
Zannetti A., Benga G., Brunetti A., Napolitano F., Avallone L., Pelagalli A. Role of Aquaporins in the Physiological Functions of Mesenchymal Stem Cells. Cells. 2020;9:2678. doi: 10.3390/cells9122678. PubMed DOI PMC
Khatri M., Sharma J.M. Susceptibility of chicken mesenchymal stem cells to infectious bursal disease virus. J. Virol. Methods. 2009;160:197–199. doi: 10.1016/j.jviromet.2009.05.008. PubMed DOI
Adhikari R., Chen C., Waters E., West F.D., Kim W.K. Isolation and differentiation of mesenchymal stem cells from broiler chicken compact bones. Front. Physiol. 2019;9:1892. doi: 10.3389/fphys.2018.01892. PubMed DOI PMC
Bai C., Hou L., Ma Y., Chen L., Zhang M., Guan W. Isolation and characterization of mesenchymal stem cells from chicken bone marrow. Cell Tissue Bank. 2013;14:437–451. doi: 10.1007/s10561-012-9347-8. PubMed DOI
Wang X., Wang J.J., Ji H., Guan W., Zhao Y. Isolation, culture, and characterization of chicken lung-derived mesenchymal stem cells. Can. J. Vet. Res. 2018;82:225–235. PubMed PMC
Teresa Conconi M., Di Liddo R., Tommasini M., Calore C., Paolo Parnigotto P. Phenotype and differentiation potential of stromal populations obtained from various zones of human umbilical cord: An overview. J. Tissue Eng. Regen. Med. 2011;4:6–20. doi: 10.2174/1875043501104010006. DOI
Lin C.S., Xin Z.C., Dai J., Lue T.F. Commonly used mesenchymal stem cell markers and tracking labels: Limitations and challenges. Histol. Histopathol. 2013;28:1109. doi: 10.14670/HH-28.1109. PubMed DOI PMC
Cruz F.F., Rocco P.R.M. The potential of mesenchymal stem cell therapy for chronic lung disease. Expert. Rev. Respir. Med. 2020;14:31–39. doi: 10.1080/17476348.2020.1679628. PubMed DOI
Nichols J., Zevnik B., Anastassiadis K., Niwa H., Klewe-Nebenius D., Chambers I., Schöler H., Smith A. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell. 1998;95:379–391. doi: 10.1016/S0092-8674(00)81769-9. PubMed DOI
Chambers I., Colby D., Robertson M., Nichols J., Lee S., Tweedie S., Smith A. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell. 2003;113:643–655. doi: 10.1016/S0092-8674(03)00392-1. PubMed DOI
Avilion A.A., Nicolis S.K., Pevny L.H., Perez L., Vivian N., Lovell-Badge R. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 2003;17:126–140. doi: 10.1101/gad.224503. PubMed DOI PMC
Lavial F., Acloque H., Bertocchini F., MacLeod D.J., Boast S., Bachelard E., Montillet G., Thenot S., Sang H.M., Stern C.D., et al. The Oct4 homologue PouV and Nanog regulate pluripotency in chicken embryonic stem cells. Development. 2007;134:3549–3563. doi: 10.1242/dev.006569. PubMed DOI
Khatri M., O’Brien T.D., Goyal S.M., Sharma J.M. Isolation and characterization of chicken lung mesenchymal stromal cells and their susceptibility to avian influenza virus. Dev. Comp. Immunol. 2010;34:474–479. doi: 10.1016/j.dci.2009.12.008. PubMed DOI PMC
Bai C., Li X., Hou L., Zhang M., Guan W., Ma Y. Biological characterization of chicken mesenchymal stem/progenitor cells from umbilical cord Wharton’s jelly. Mol. Cell. Biochem. 2013;376:95–102. doi: 10.1007/s11010-012-1553-y. PubMed DOI
Krampera M., Glennie S., Dyson J., Scott D., Laylor R., Simpson E., Dazzi F. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood. 2003;101:3722–3729. doi: 10.1182/blood-2002-07-2104. PubMed DOI
Maitra B., Szekely E., Gjini K., Laughlin M.J., Dennis J., Haynesworth S.E., Koç O.N. Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress T-cell activation. Bone Marrow Transplant. 2004;33:597–604. doi: 10.1038/sj.bmt.1704400. PubMed DOI
Beyth S., Borovsky Z., Mevorach D., Liebergall M., Gazit Z., Aslan G.E., Rachmilewitz J. Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood. 2005;105:2214–2219. doi: 10.1182/blood-2004-07-2921. PubMed DOI
Groh M.E., Maitra B., Szekely E., Koç O.N. Human mesenchymal stem cells require monocyte-mediated activation to suppress alloreactive T cells. Ex. Hematol. 2005;33:928–934. doi: 10.1016/j.exphem.2005.05.002. PubMed DOI
Meisel R., Zibert A., Laryea M., Göbel U., Däubener W., Dilloo D. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2, 3-dioxygenase–mediated tryptophan degradation. Blood. 2004;103:4619–4621. doi: 10.1182/blood-2003-11-3909. PubMed DOI
Parhami F., Morrow A.D., Balucan J., Leitinger N., Watson A.D., Tintut Y., Berliner J.A., Demer L.L. Lipid oxidation products have opposite effects on calcifying vascular cell and bone cell differentiation: A possible explanation for the paradox of arterial calcification in osteoporotic patients. Arterioscler. Tthromb. Vasc. Biol. 1997;17:680–687. doi: 10.1161/01.ATV.17.4.680. PubMed DOI
Kocamaz E., Gok D., Cetinkaya A., Tufan A.C. Implication of C-type natriuretic peptide-3 signaling in glycosaminoglycan synthesis and chondrocyte hypertrophy during TGF-β1 induced chondrogenic differentiation of chicken bone marrow-derived mesenchymal stem cells. J. Mol. His. 2012;43:497–508. doi: 10.1007/s10735-012-9430-2. PubMed DOI
Kyurkchiev D., Bochev I., Ivanova-Todorova E., Mourdjeva M., Oreshkova T., Belemezova K., Belemezova K., Kyurkchiev S. Secretion of immunoregulatory cytokines by mesenchymal stem cells. World J. Stem Cells. 2014;6:552–570. doi: 10.4252/wjsc.v6.i5.552. PubMed DOI PMC
Mazzoni A., Bronte V., Visintin A., Spitzer J.H., Apolloni E., Serafini P., Zanovello P., Segal D.M. Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J. Immunol. 2002;168:689–695. doi: 10.4049/jimmunol.168.2.689. PubMed DOI
Mais A., Klein T., Ullrich V., Schudt C., Lauer G. Prostanoid pattern and iNOS expression during chondrogenic differentiation of human mesenchymal stem cells. J. Cell. Biochem. 2006;98:798–809. doi: 10.1002/jcb.20786. PubMed DOI
Glennie S., Soeiro I., Dyson P.J., Lam E.W.F., Dazzi F. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood. 2005;105:2821–2827. doi: 10.1182/blood-2004-09-3696. PubMed DOI
Corcione A., Benvenuto F., Ferretti E., Giunti D., Cappiello V., Cazzanti F., Risso M., Gualandi F., Luigi G., Pistoia M.V., et al. Human mesenchymal stem cells modulate B-cell functions. Blood. 2006;107:367–372. doi: 10.1182/blood-2005-07-2657. PubMed DOI
Djouad F., Plence P., Bony C., Tropel P., Apparailly F., Sany J., Jorgensen C. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood. 2003;102:3837–3844. doi: 10.1182/blood-2003-04-1193. PubMed DOI
Adams G.B., Scadden D.T. The hematopoietic stem cell in its place. Nat. Immunol. 2006;7:333–337. doi: 10.1038/ni1331. PubMed DOI
Wagner W., Roderburg C., Wein F., Diehlmann A., Frankhauser M., Schubert R., Eckstein V., Ho A.D. Molecular and secretory profiles of human mesenchymal stromal cells and their abilities to maintain primitive hematopoietic progenitors. Stem Cells. 2007;25:2638–2647. doi: 10.1634/stemcells.2007-0280. PubMed DOI
Leisten I., Kramann R., Ferreira M.S.V., Bovi M., Neuss S., Ziegler P., Wagner W., Knüchel R., Schneider R.K. 3D co-culture of hematopoietic stem and progenitor cells and mesenchymal stem cells in collagen scaffolds as a model of the hematopoietic niche. Biomaterials. 2012;33:1736–1747. doi: 10.1016/j.biomaterials.2011.11.034. PubMed DOI
Walenda T., Bokermann G., Ferreira M.S.V., Piroth D.M., Hieronymus T., Neuss S., Zenke M., Ho A.D., Müller A.M., Wagner W. Synergistic effects of growth factors and mesenchymal stromal cells for expansion of hematopoietic stem and progenitor cells. Exp. Hematol. 2011;39:617–628. doi: 10.1016/j.exphem.2011.02.011. PubMed DOI
Walenda T., Bork S., Horn P., Wein F., Saffrich R., Diehlmann A., Eckstein V., Ho A.D., Wagner W. Co--culture with mesenchymal stromal cells increases proliferation and maintenance of haematopoietic progenitor cells. J. Cell Mol. Med. 2010;14:337–350. doi: 10.1111/j.1582-4934.2009.00776.x. PubMed DOI PMC
Rustad K.C., Wong V.W., Sorkin M., Glotzbach J.P., Major M.R., Rajadas J., Longaker M.T., Gurtner G.C. Enhancement of mesenchymal stem cell angiogenic capacity and stemness by a biomimetic hydrogel scaffold. Biomaterials. 2012;33:80–90. doi: 10.1016/j.biomaterials.2011.09.041. PubMed DOI PMC
Li Z., Tian X., Yuan Y., Song Z., Zhang L., Wang X., Li T. Effect of cell culture using chitosan membranes on stemness marker genes in mesenchymal stem cells. Mol. Med. Rep. 2013;7:1945–1949. doi: 10.3892/mmr.2013.1423. PubMed DOI
Su N., Gao P.L., Wang K., Wang J.Y., Zhong Y., Luo Y. Fibrous scaffolds potentiate the paracrine function of mesenchymal stem cells: A new dimension in cell-material interaction. Biomaterials. 2017;141:74–85. doi: 10.1016/j.biomaterials.2017.06.028. PubMed DOI
Qian C., Zhou Z., Han H., Zhao C., Jin X., Zhao H., Zhang Y., Chen W., Yang N., Li Z. Influence of microgravity on the concentration of circulating primordial germ cells in Silky chicken offspring. J. Poult. Sci. 2009;47:65–70. doi: 10.2141/jpsa.009036. DOI
Naeemipour M., Dehghani H., Bassami M., Bahrami A. Expression dynamics of pluripotency genes in chicken primordial germ cells before and after colonization of the genital ridges. Mol. Reprod. Dev. 2013;80:849–861. doi: 10.1002/mrd.22216. PubMed DOI
Tonus C., Cloquette K., Ectors F., Piret J., Gillet L., Antoine N., Grobet L. Long term-cultured and cryopreserved primordial germ cells from various chicken breeds retain high proliferative potential and gonadal colonisation competency. Reprod. Fertil. Dev. 2016;28:628–639. doi: 10.1071/RD14194. PubMed DOI
Li D., Chen Z., Chen S., Ji H., Zhan X., Luo D., Luo H., Wang B. Chicken Mesenchymal Stem Cells as Feeder Cells Facilitate the Cultivation of Primordial Germ Cells from Circulating Blood and Gonadal Ridge. Stem Cell Discov. 2019;9:1–14. doi: 10.4236/scd.2019.91001. DOI
Xie H., Sun L., Zhang L., Liu T., Chen L., Zhao A., Gao F., Zou P., Li Q., Guo A.J., et al. Mesenchymal stem cell-derived microvesicles support ex vivo expansion of cord blood-derived CD34+ cells. Stem Cells. 2016 doi: 10.1155/2016/6493241. PubMed DOI PMC
Iacono M.L., Anzalone R., La Rocca G., Baiamonte E., Maggio A., Acuto S. Wharton’s jelly mesenchymal stromal cells as a feeder layer for the ex vivo expansion of hematopoietic stem and progenitor cells: A review. Stem. Cell. Rev. Rep. 2017;13:35–49. doi: 10.1007/s12015-016-9702-4. PubMed DOI
Chang Y.H., Chu T.Y., Ding D.C. WNT/β-Catenin signaling pathway regulates non-tumorigenesis of human embryonic stem cells co-cultured with human umbilical cord mesenchymal stem cells. Sci. Rep. 2017;7:1–10. doi: 10.1038/srep41913. PubMed DOI PMC
Zmrhal V., Slama P. Current knowledge about interactions between avian dendritic cells and poultry pathogens. Dev. Comp. Immunol. 2020;104:103565. doi: 10.1016/j.dci.2019.103565. PubMed DOI
Tippenhauer M., Heller D.E., Weigend S., Rautenschlein S. The host genotype influences infectious bursal disease virus pathogenesis in chickens by modulation of T cells responses and cytokine gene expression. Dev. Comp. Immunol. 2013;40:1–10. doi: 10.1016/j.dci.2012.10.013. PubMed DOI
Dey S., Pathak D.C., Ramamurthy N., Maity H.K., Chellappa M.M. Infectious bursal disease virus in chickens: Prevalence, impact, and management strategies. Vet. Med. Res. Rep. 2019;10:85. doi: 10.2147/VMRR.S185159. PubMed DOI PMC
Elankumaran S., Heckert R.A., Moura L. Pathogenesis and tissue distribution of a variant strain of infectious bursal disease virus in commercial broiler chickens. Avian Dis. 2002;46:169–176. doi: 10.1637/0005-2086(2002)046[0169:PATDOA]2.0.CO;2. PubMed DOI
Kabell S., Handberg K.J., Kusk M., Bisgaard M. Detection of infectious bursal disease virus in various lymphoid tissues of experimentally infected specific pathogen free chickens by different reverse transcription polymerase chain reaction assays. Avian Dis. 2005;49:534–539. doi: 10.1637/7370-042905R.1. PubMed DOI
Kim I.J., You S.K., Kim H., Yeh H.Y., Sharma J.M. Characteristics of bursal T lymphocytes induced by infectious bursal disease virus. J. Virol. 2000;74:8884–8892. doi: 10.1128/JVI.74.19.8884-8892.2000. PubMed DOI PMC
Rautenschlein S., Yeh H.Y., Njenga M.K., Sharma J.M. Role of intrabursal T cells in infectious bursal disease virus (IBDV) infection: T cells promote viral clearance but delay follicular recovery. Arch. Virol. 2002;147:285–304. doi: 10.1007/s705-002-8320-2. PubMed DOI
Ruby T., Whittaker C., Withers D.R., Chelbi-Alix M.K., Morin V., Oudin A., Young J.R., Zoorob R. Transcriptional profiling reveals a possible role for the timing of the inflammatory response in determining susceptibility to a viral infection. J. Virol. 2006;80:9207–9216. doi: 10.1128/JVI.00929-06. PubMed DOI PMC
Eldaghayes I., Rothwell L., Williams A., Withers D., Balu S., Davison F., Kaiser P. Infectious bursal disease virus: Strains that differ in virulence differentially modulate the innate immune response to infection in the chicken bursa. Viral Immunol. 2006;19:83–91. doi: 10.1089/vim.2006.19.83. PubMed DOI
Liu H., Zhang M., Han H., Yuan J., Li Z. Comparison of the expression of cytokine genes in the bursal tissues of the chickens following challenge with infectious bursal disease viruses of varying virulence. Virol. J. 2010;7:1–9. doi: 10.1186/1743-422X-7-364. PubMed DOI PMC
Heo Y.T., Lee S.H., Yang J.H., Kim T., Lee H.T. Bone marrow cell-mediated production of transgenic chickens. Lab. Investig. 2011:1229–1240. doi: 10.1038/labinvest.2011.53. PubMed DOI PMC
Rath N.C., Huff G.R., Huff W.E., Balog J.M. Factors regulating bone maturity and strength in poultry. Poult. Sci. 2000;79:1024–1032. doi: 10.1093/ps/79.7.1024. PubMed DOI
Yahyaei B., Gilanpour H., Veshkini A. Study of the ossification centers and skeletal development of pelvic limb in quail after hatching. Adv. Environ. Biol. 2013:2074–2081.
Iqbal M., Zhang H., Mehmood K., Li A., Jiang X., Wang Y., Zhang J., Iqbal M.K., Rehman M.U., Yao W., et al. Icariin: A potential compound for the recovery of Tibial Dyschondroplasia affected chicken via up-regulating BMP-2 expression. Biol. Proced. 2018;20:1–7. doi: 10.1186/s12575-018-0080-y. PubMed DOI PMC
Fleming R.H., McCormack H.A., McTeir L., Whitehead C.C. Incidence, pathology and prevention of keel bone deformities in the laying hen. Brit. Poult. Sci. 2004;45:320–330. doi: 10.1080/00071660410001730815. PubMed DOI
Rodenburg T.B., Tuyttens F.A.M., De Reu K., Herman L., Zoons J., Sonck B. Welfare assessment of laying hens in furnished cages and non-cage systems: An on-farm comparison. Anim. Welf. 2008;17:363–373.
Käppeli S., Gebhardt-Henrich S.G., Fröhlich E., Pfulg A., Stoffel M.H. Prevalence of keel bone deformities in Swiss laying hens. Br. Poult. Sci. 2011;52:531–536. doi: 10.1080/00071668.2011.615059. PubMed DOI
Wilkins L.J., McKinstry J.L., Avery N.C., Knowles T.G., Brown S.N., Tarlton J., Nicol C.J. Influence of housing system and design on bone strength and keel bone fractures in laying hens. Vet. Rec. 2011;169:414. doi: 10.1136/vr.d4831. PubMed DOI
Petrik M.T., Guerin M.T., Widowski T.M. On-farm comparison of keel fracture prevalence and other welfare indicators in conventional cage and floor-housed laying hens in Ontario, Canada. Poult. Sci. 2015;94:579–585. doi: 10.3382/ps/pev039. PubMed DOI
Toscano M.J., Dunn I.C., Christensen J.P., Petow S., Kittelsen K., Ulrich R. Explanations for keel bone fractures in laying hens: Are there explanations in addition to elevated egg production? Poult. Sci. 2020;99:4183–4194. doi: 10.1016/j.psj.2020.05.035. PubMed DOI PMC
Chen F.P., Lee N., Wang K.C., Soong Y.K., Huang K.E. Effect of estrogen and 1α, 25 (OH) 2-vitamin D3 on the activity and growth of human primary osteoblast-like cells in vitro. Fertil. Steril. 2002;77:1038–1043. doi: 10.1016/S0015-0282(02)03065-0. PubMed DOI
Jørgensen N.R., Henriksen Z., Sørensen O.H., Civitelli R. Dexamethasone, BMP-2, and 1, 25-dihydroxyvitamin D enhance a more differentiated osteoblast phenotype: Validation of an in vitro model for human bone marrow-derived primary osteoblasts. Steroids. 2004;69:219–226. doi: 10.1016/j.steroids.2003.12.005. PubMed DOI
Li X., Liu H., Niu X., Yu B., Fan Y., Feng Q., Cui F., Watari F. The use of carbon nanotubes to induce osteogenic differentiation of human adipose-derived MSCs in vitro and ectopic bone formation in vivo. Biomaterials. 2012;33:4818–4827. doi: 10.1016/j.biomaterials.2012.03.045. PubMed DOI
Tourkova I.L., Liu L., Sutjarit N., Larrouture Q.C., Luo J., Robinson L.J., Blair H.C. Adrenocorticotropic hormone and 1, 25-dihydroxyvitamin D 3 enhance human osteogenesis in vitro by synergistically accelerating the expression of bone-specific genes. Lab. Investig. 2017;97:1072–1083. doi: 10.1038/labinvest.2017.62. PubMed DOI PMC
Harrison J.R., Petersen D.N., Lichtler A.C., Mador A.T., Rowe D.W., Kream B.E. 1, 25-Dihydroxyvitamin D3 inhibits transcription of type I collagen genes in the rat osteosarcoma cell line ROS 17/2.8. Endocrinology. 1989;125:327–333. doi: 10.1210/endo-125-1-327. PubMed DOI
Kim H.T., Chen T.L. 1, 25-Dihydroxyvitamin D3 interaction with dexamethasone and retinoic acid: Effects on procollagen messenger ribonucleic acid levels in rat osteoblast-like cells. Mol. Endocrinol. 1989;3:97–104. doi: 10.1210/mend-3-1-97. PubMed DOI
Van Driel M., Van Leeuwen J.P. Vitamin D endocrine system and osteoblasts. Bonekey Rep. 2014;3:493. doi: 10.1038/bonekey.2013.227. PubMed DOI PMC
Chen J., Dosier C.R., Park J.H., De S., Guldberg R.E., Boyan B.D., Schwartz Z. Mineralization of three--dimensional osteoblast cultures is enhanced by the interaction of 1α, 25--dihydroxyvitamin D3 and BMP2 via two specific vitamin D receptors. J. Tissue. Eng. Regen. Med. 2016;10:40–51. doi: 10.1002/term.1770. PubMed DOI
Kim J.H., Seong S., Kim K., Kim I., Jeong B.C., Kim N. Downregulation of Runx2 by 1, 25-dihydroxyvitamin D3 induces the transdifferentiation of osteoblasts to adipocytes. Int. J. Mol. Sci. 2016;17:770. doi: 10.3390/ijms17050770. PubMed DOI PMC
Xiong Y., Zhang Y., Xin N., Yuan Y., Zhang Q., Gong P., Wu Y. 1α, 25-Dihydroxyvitamin D3 promotes osteogenesis by promoting Wnt signaling pathway. J. Steroid. Biochem. Mol. Biol. 2017;174:153–160. doi: 10.1016/j.jsbmb.2017.08.014. PubMed DOI
Broess M., Riva A., Gerstenfeld L.C. Inhibitory effects of 1, 25 (OH) 2 vitamin D3 on collagen type I, osteopontin, and osteocalcin gene expression in chicken osteoblasts. J. Cell. Bibiochem. 1995;57:440–451. doi: 10.1002/jcb.240570310. PubMed DOI
Pande V.V., Chousalkar K.C., Bhanugopan M.S., Quinn J.C. Super pharmacological levels of calcitriol (1, 25-(OH) 2 D3) inhibits mineral deposition and decreases cell proliferation in a strain dependent manner in chicken mesenchymal stem cells undergoing osteogenic differentiation in vitro. Poult. Sci. 2015;94:2784–2796. doi: 10.3382/ps/pev284. PubMed DOI PMC
Gil A., Plaza-Diaz J., Mesa M.D. Vitamin D: Classic and novel actions. Ann. Nutr. Metab. 2018;72:87–95. doi: 10.1159/000486536. PubMed DOI
Milford A.B., Le Mouël C., Bodirsky B.L., Rolinski S. Drivers of meat consumption. Appetite. 2019;141:104313. doi: 10.1016/j.appet.2019.06.005. PubMed DOI
Basu S. The transitional dynamics of caloric ecosystems: Changes in the food supply around the world. Crit. Public Health. 2015;25:248–264. doi: 10.1080/09581596.2014.931568. PubMed DOI PMC
Al-Khalaifa H., Al-Nasser A., Al-Surayee T., Al-Kandari S., Al-Enzi N., Al-Sharrah T., Ragheb G., Al-Qalaf S., Mohammed A. Effect of dietary probiotics and prebiotics on the performance of broiler chickens. Poult. Sci. 2019;98:4465–4479. doi: 10.3382/ps/pez282. PubMed DOI
Sohail M.U., Hume M.E., Byrd J.A., Nisbet D.J., Ijaz A., Sohail A., Shabbir M.Z., Rehman H. Effect of supplementation of prebiotic mannan-oligosaccharides and probiotic mixture on growth performance of broilers subjected to chronic heat stress. Poult. Sci. 2012;91:2235–2240. doi: 10.3382/ps.2012-02182. PubMed DOI
Alavi S.A.N., Zakeri A., Kamrani B., Pourakbari Y. Effect of prebiotics, probiotics, acidfire, growth promoter antibiotics and synbiotic on humural immunity of broiler chickens. Global Vet. 2012;8:612–617.
Maiorano G., Stadnicka K., Tavaniello S., Abiuso C., Bogucka J., Bednarczyk M. In ovo validation model to assess the efficacy of commercial prebiotics on broiler performance and oxidative stability of meat. Poult. Sci. 2017;96:511–518. doi: 10.3382/ps/pew311. PubMed DOI
Carrade D.D., Borjesson D.L. Immunomodulation by mesenchymal stem cells in veterinary species. Com. Med. 2013;63:207–217. PubMed PMC
Lotfinegad P. Immunomodulatory nature and site specific affinity of mesenchymal stem cells: A hope in cell therapy. Adv. Pharm. Bull. 2014;4:5. doi: 10.5681/apb.2014.002. PubMed DOI PMC
Zimmermann K., Haas A., Oxenius A. Systemic antibody responses to gut microbes in health and disease. Gut Microbes. 2012;3:42–47. doi: 10.4161/gmic.19344. PubMed DOI
Li G., Lillehoj H.S., Lee K.W., Jang S.I., Marc P., Gay C.G., Ritter G.D., Bautista D.A., Phillips K., Neumann A.P., et al. An outbreak of gangrenous dermatitis in commercial broiler chickens. Avian Path. 2010;39:247–253. doi: 10.1080/03079457.2010.487517. PubMed DOI
McDevitt R.M., Brooker J.D., Acamovic T., Sparks N.H.C. Necrotic enteritis; a continuing challenge for the poultry industry. World’s Poul. Sci. J. 2006;62:221–247. doi: 10.1079/WPS200593. DOI
Mataragas M., Skandamis P.N., Drosinos E.H. Risk profiles of pork and poultry meat and risk ratings of various pathogen/product combinations. Int. J. Food Microbiol. 2008;126:1–12. doi: 10.1016/j.ijfoodmicro.2008.05.014. PubMed DOI
Cooper K.K., Songer J.G. Necrotic enteritis in chickens: A paradigm of enteric infection by Clostridium perfringens type A. Anaerobe. 2009;15:55–60. doi: 10.1016/j.anaerobe.2009.01.006. PubMed DOI
Van Immerseel F., Rood J.I., Moore R.J., Titball R.W. Rethinking our understanding of the pathogenesis of necrotic enteritis in chickens. Trends Microbiol. 2009;17:32–36. doi: 10.1016/j.tim.2008.09.005. PubMed DOI
Gornatti-Churria C.D., Crispo M., Shivaprasad H.L., Uzal F.A. Gangrenous dermatitis in chickens and turkeys. J. Vet. Diag. Investig. 2018;30:188–196. doi: 10.1177/1040638717742435. PubMed DOI PMC
Shivaprasad H.L. Clostridial Diseases of Animals. Wiley-Blackwell; Ames, IA, USA: 2016. Gangrenous dermatitis in poultry; pp. 255–264.
Dinev I., Denev S., Vashin I., Kanakov D., Rusenova N. Pathomorphological investigations on the prevalence of contact dermatitis lesions in broiler chickens. J. Appl. Anim. Res. 2019;47:129–134. doi: 10.1080/09712119.2019.1584105. DOI
Li G., Lillehoj H.S., Lee K.W., Lee S.H., Park M.S., Jang S.I., Bauchan G.R., Gay C.G., Ritter G.D., Bautista D.A., et al. Immunopathology and cytokine responses in commercial broiler chickens with gangrenous dermatitis. Avian Pathol. 2010;39:255–264. doi: 10.1080/03079457.2010.495382. PubMed DOI
Golchin A., Farahany T.Z., Khojasteh A., Soleimanifar F., Ardeshirylajimi A. The clinical trials of mesenchymal stem cell therapy in skin diseases: An update and concise review. Curr. Stem Cell Res. Ther. 2019;14:22–33. doi: 10.2174/1574888X13666180913123424. PubMed DOI
Steinfeld H., Gerber P., Wassenaar T.D., Castel V., Rosales M., Rosales M., de Haan C. Livestock’s Long Shadow: Environmental Issues and Options. Food Agriculture Organization; Rome, Italy: 2006.
Hoekstra A.Y., Chapagain A.K. Integrated Assessment of Water Resources and Global Change. Springer; Dordrecht, The Netherlands: 2006. Water footprints of nations: Water use by people as a function of their consumption pattern; pp. 35–48.
Fiala N. Meeting the demand: An estimation of potential future greenhouse gas emissions from meat production. Ecol. Econom. 2008;67:412–419. doi: 10.1016/j.ecolecon.2007.12.021. DOI
Sutton T.C. The pandemic threat of emerging H5 and H7 avian influenza viruses. Viruses. 2018;10:461. doi: 10.3390/v10090461. PubMed DOI PMC
Park S.E. Epidemiology, virology, and clinical features of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2; Coronavirus Disease-19) Clin. Exp. Pediatr. 2020;63:119. doi: 10.3345/cep.2020.00493. PubMed DOI PMC
Stanton M.M., Tzatzalos E., Donne M., Kolundzic N., Helgason I., Ilic D. Prospects for the use of induced pluripotent stem cells in animal conservation and environmental protection. Stem Cells Transl. Med. 2019;8:7–13. doi: 10.1002/sctm.18-0047. PubMed DOI PMC
Datar I., Betti M. Possibilities for an in vitro meat production system. Innov. Food. Sci. Emerg. Technol. 2010;11:13–22. doi: 10.1016/j.ifset.2009.10.007. DOI
Arshad M.S., Javed M., Sohaib M., Saeed F., Imran A., Amjad Z. Tissue engineering approaches to develop cultured meat from cells: A mini review. Cogent Food Agric. 2017;3:1320814. doi: 10.1080/23311932.2017.1320814. DOI
Bhat Z.F., Kumar S., Fayaz H. In Vitro meat production: Challenges and benefits over conventional meat production. J. Integr. Agric. 2015;14:241–248. doi: 10.1016/S2095-3119(14)60887-X. DOI
Will K., Schering L., Albrecht E., Kalbe C., Maak S. Differentiation of bovine satellite cell-derived myoblasts under different culture conditions. In Vitro. Cell. Dev. Biol. Animal. 2015;51:885–889. doi: 10.1007/s11626-015-9916-9. PubMed DOI
Ostrovidov S., Ahadian S., Ramon--Azcon J., Hosseini V., Fujie T., Parthiban S.P., Khademhosseini A. Three–dimensional co--culture of C2C12/PC12 cells improves skeletal muscle tissue formation and function. J. Tissue Eng. Regen. Med. 2017;11:582–595. doi: 10.1002/term.1956. PubMed DOI
Mehta F., Theunissen R., Post M.J. Myogenesis. Humana Press; New York, NY, USA: 2019. Adipogenesis from bovine precursors; pp. 111–125. PubMed DOI
Cremonesi F., Corradetti B., Consiglio A.L. Fetal adnexa derived stem cells from domestic animal: Progress and perspectives. Theriogenology. 2001;75:1400–1415. doi: 10.1016/j.theriogenology.2010.12.032. PubMed DOI
Wang Y., Han Z.B., Song Y.P., Han Z.C. Safety of mesenchymal stem cells for clinical application. Stem Cells Int. 2012:652034. doi: 10.1155/2012/652034. PubMed DOI PMC
Bai C., Li C., Jin D., Guo Y., Guan W., Ma Y., Zhao Q. Establishment and characterization of a fibroblast line from landrace. Artif. Cell Blood Sub. 2010;38:129–135. doi: 10.3109/10731191003670525. PubMed DOI
Na R.S., Zhao Q.J., Su X.H., Chen X.W., Guan W.J., Ma Y.H. Establishment and biological characteristics of Ujumqin sheep fibroblast line. Cytotechnology. 2010;62:43–52. doi: 10.1007/s10616-010-9260-6. PubMed DOI PMC