Global Sensitivity Analysis Based on Entropy: From Differential Entropy to Alternative Measures

. 2021 Jun 19 ; 23 (6) : . [epub] 20210619

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34205304

Grantová podpora
20-01734S Grantová Agentura České Republiky

Differential entropy can be negative, while discrete entropy is always non-negative. This article shows that negative entropy is a significant flaw when entropy is used as a sensitivity measure in global sensitivity analysis. Global sensitivity analysis based on differential entropy cannot have negative entropy, just as Sobol sensitivity analysis does not have negative variance. Entropy is similar to variance but does not have the same properties. An alternative sensitivity measure based on the approximation of the differential entropy using dome-shaped functionals with non-negative values is proposed in the article. Case studies have shown that new sensitivity measures lead to a rational structure of sensitivity indices with a significantly lower proportion of higher-order sensitivity indices compared to other types of distributional sensitivity analysis. In terms of the concept of sensitivity analysis, a decrease in variance to zero means a transition from the differential to discrete entropy. The form of this transition is an open question, which can be studied using other scientific disciplines. The search for new functionals for distributional sensitivity analysis is not closed, and other suitable sensitivity measures may be found.

Zobrazit více v PubMed

Sobol I.M. Sensitivity estimates for non-linear mathematical models. Math. Model. Comput. Exp. 1993;1:407–414.

Sobol I.M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 2001;55:271–280. doi: 10.1016/S0378-4754(00)00270-6. DOI

Amigó J.M., Balogh S.G., Hernández S. A brief review of generalized entropies. Entropy. 2018;20:813. doi: 10.3390/e20110813. PubMed DOI PMC

Castaings W., Borgonovo E., Morris M.D., Tarantola S. Sampling strategies in density-based sensitivity analysis. Environ. Model Softw. 2012;38:13–26. doi: 10.1016/j.envsoft.2012.04.017. DOI

Pianosi F., Wagener T. A simple and efficient method for global sensitivity analysis based on cumulative distribution functions. Environ. Modell. Softw. 2015;67:1–11. doi: 10.1016/j.envsoft.2015.01.004. DOI

Borgonovo E., Plischke E. Sensitivity analysis: A review of recent advances. Eur. J. Oper. Res. 2016;248:869–887. doi: 10.1016/j.ejor.2015.06.032. DOI

Borgonovo E., Plischke E., Rakovec O., Hill M.C. Making the most out of a hydrological model data set: Sensitivity analyses to open the model black-box. Water Resour. Res. 2017;53:7933–7950. doi: 10.1002/2017WR020767. DOI

Pianosi F., Wagener T. Distribution-based sensitivity analysis from a generic input-output sample. Environ. Model Softw. 2018;108:197–207. doi: 10.1016/j.envsoft.2018.07.019. DOI

Baroni G., Francke T. An effective strategy for combining variance- and distribution-based global sensitivity analysis. Environ. Modell. Softw. 2020;134:104851. doi: 10.1016/j.envsoft.2020.104851. DOI

Krykacz-Hausmann B. Epistemic sensitivity analysis based on the concept of entropy; Proceedings of the International Symposium on Sensitivity Analysis of Model Output; Madrid, Spain. 18–20 June 2001; pp. 31–35.

Shannon C.E. A Mathematical theory of communication. Bell Syst. Tech. J. 1948;27:379–423. doi: 10.1002/j.1538-7305.1948.tb01338.x. DOI

Liu H., Sudjianto A., Chen W. Relative entropy based method for probabilistic sensitivity analysis in engineering design. J. Mech. Des. 2006;128:326–336. doi: 10.1115/1.2159025. DOI

Zhong R.X., Fu K.Y., Sumalee A., Ngoduy D., Lam W.H.K. A cross-entropy method and probabilistic sensitivity analysis framework for calibrating microscopic traffic models. Transp. Res. Part C Emerg. Technol. 2016;63:147–169. doi: 10.1016/j.trc.2015.12.006. DOI

Tang Z.C., Lu Z.Z., Pan W., Zhang F. An entropy-based global sensitivity analysis for the structures with both fuzzy variables and random variables. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 2013;227:195–212.

Shi Y., Lu Z., Zhou Y. Global sensitivity analysis for fuzzy inputs based on the decomposition of fuzzy output entropy. Eng. Optim. 2018;50:1078–1096. doi: 10.1080/0305215X.2017.1359585. DOI

Yazdani A., Nicknam A., Dadras E.Y., Eftekhari S.N. Entropy-based sensitivity analysis of global seismic demand of concrete structures. Eng. Struct. 2017;146:118–126. doi: 10.1016/j.engstruct.2017.05.023. DOI

Zeng X., Wang D., Wu J. Sensitivity analysis of the probability distribution of groundwater level series based on information entropy. Stoch. Environ. Res. Risk Assess. 2012;26:345–356. doi: 10.1007/s00477-012-0556-2. DOI

Zhu G.R., Wang X.H., Huang H.B., Chen H. Sensitivity analysis for shell-and-tube heat exchangers based on entropy production. Adv. Mat. Res. 2012;516–517:419–424. doi: 10.4028/www.scientific.net/AMR.516-517.419. DOI

Tanyimboh T.T., Setiadi Y. Sensitivity analysis of entropy-constrained designs of water distribution systems. Eng. Optim. 2008;40:439–457. doi: 10.1080/03052150701804571. DOI

Lashkar-Ara B., Kalantari N., Sheikh Khozani Z., Mosavi A. Assessing machine learning versus a mathematical model to estimate the transverse shear stress distribution in a rectangular channel. Mathematics. 2021;9:596. doi: 10.3390/math9060596. DOI

Zhou C., Cui G., Liang W., Liu Z., Zhang L. A coupled macroscopic and mesoscopic creep model of soft marine soil using a directional probability entropy approach. J. Mar. Sci. Eng. 2021;9:224. doi: 10.3390/jmse9020224. DOI

Pan P., Zhang M., Peng W., Chen H., Xu G., Liu T. Thermodynamic evaluation and sensitivity analysis of a novel compressed air energy storage system incorporated with a coal-fired power plant. Entropy. 2020;22:1316. doi: 10.3390/e22111316. PubMed DOI PMC

Lescauskiene I., Bausys R., Zavadskas E.K., Juodagalviene B. VASMA weighting: Survey-based criteria weighting methodology that combines ENTROPY and WASPAS-SVNS to reflect the psychometric features of the VAS scales. Symmetry. 2020;12:1641. doi: 10.3390/sym12101641. DOI

Hashemi H., Mousavi S.M., Zavadskas E.K., Chalekaee A., Turskis Z. A New group decision model based on grey-intuitionistic fuzzy-ELECTRE and VIKOR for contractor assessment problem. Sustainability. 2018;10:1635. doi: 10.3390/su10051635. DOI

Cavallaro F., Zavadskas E.K., Raslanas S. Evaluation of combined heat and power (CHP) systems using fuzzy shannon entropy and fuzzy TOPSIS. Sustainability. 2016;8:556. doi: 10.3390/su8060556. DOI

Ghorabaee M.K., Zavadskas E.K., Amiri M., Esmaeili A. Multi-criteria evaluation of green suppliers using an extended WASPAS method with interval type-2 fuzzy sets. J. Clean. Prod. 2016;137:213–229. doi: 10.1016/j.jclepro.2016.07.031. DOI

Liu D., Luo Y., Liu Z. The linguistic picture fuzzy set and its application in multi-criteria decision-making: An illustration to the TOPSIS and TODIM methods based on entropy weight. Symmetry. 2020;12:1170. doi: 10.3390/sym12071170. DOI

Maume-Deschamps V., Niang I. Estimation of quantile oriented sensitivity indices. Stat. Probab. Lett. 2018;134:122–127. doi: 10.1016/j.spl.2017.10.019. DOI

Kucherenko S., Song S., Wang L. Quantile based global sensitivity measures. Reliab. Eng. Syst. Saf. 2019;185:35–48253. doi: 10.1016/j.ress.2018.12.001. DOI

Kala Z. Quantile-oriented global sensitivity analysis of design resistance. J. Civ. Eng. Manag. 2019;25:297–305. doi: 10.3846/jcem.2019.9627. DOI

Kala Z. Quantile-based versus Sobol sensitivity analysis in limit state design. Structures. 2020;28:2424–2430. doi: 10.1016/j.istruc.2020.10.037. DOI

Kala Z. From probabilistic to quantile-oriented sensitivity analysis: New indices of design quantiles. Symmetry. 2020;12:1720. doi: 10.3390/sym12101720. DOI

Kala Z. Global sensitivity analysis of quantiles: New importance measure based on superquantiles and subquantiles. Symmetry. 2021;13:263. doi: 10.3390/sym13020263. DOI

Wei P., Lu Z., Hao W., Feng J., Wang B. Efficient sampling methods for global reliability sensitivity analysis. Comput. Phys. Commun. 2012;183:1728–1743. doi: 10.1016/j.cpc.2012.03.014. DOI

Zhao J., Zeng S., Guo J., Du S. Global reliability sensitivity analysis based on maximum entropy and 2-Layer polynomial chaos expansion. Entropy. 2018;20:202. doi: 10.3390/e20030202. PubMed DOI PMC

Zhang X., Liu J., Yan Y., Pandey M. An effective approach for reliability-based sensitivity analysis with the principle of Maximum entropy and fractional moments. Entropy. 2019;21:649. doi: 10.3390/e21070649. PubMed DOI PMC

Kala Z. Global sensitivity analysis of reliability of structural bridge system. Eng. Struct. 2019;194:36–45. doi: 10.1016/j.engstruct.2019.05.045. DOI

Kala Z. Estimating probability of fatigue failure of steel structures. Acta Comment. Univ. Tartu. Math. 2019;23:245–254. doi: 10.12697/ACUTM.2019.23.21. DOI

Kala Z. Sensitivity analysis in probabilistic structural design: A comparison of selected techniques. Sustainability. 2020;12:4788. doi: 10.3390/su12114788. DOI

Lei J., Lu Z., He L. The single-loop Kriging model combined with Bayes’ formula for time-dependent failure probability based global sensitivity. Structures. 2021;32:987–996. doi: 10.1016/j.istruc.2021.03.019. DOI

Wang P., Li H., Huang X., Zhang Z., Xiao S. Numerical decomposition for the reliability-oriented sensitivity with dependent variables using vine copulas. J. Mech. Des. 2021;143:081701. doi: 10.1115/1.4048961. DOI

Rani P., Mishra A.R., Mardani A., Cavallaro F., Štreimikienė D., Khan S.A.R. Pythagorean Fuzzy SWARA–VIKOR Framework for Performance Evaluation of Solar Panel Selection. Sustainability. 2020;12:4278. doi: 10.3390/su12104278. DOI

Mitrović Simić J., Stević Ž., Zavadskas E.K., Bogdanović V., Subotić M., Mardani A. A Novel CRITIC-Fuzzy FUCOM-DEA-Fuzzy MARCOS model for safety evaluation of road sections based on geometric parameters of road. Symmetry. 2020;12:2006. doi: 10.3390/sym12122006. DOI

Rani P., Mishra A.R., Krishankumar R., Mardani A., Cavallaro F., Soundarapandian Ravichandran K., Balasubramanian K. Hesitant fuzzy SWARA-complex proportional assessment approach for sustainable supplier selection (HF-SWARA-COPRAS) Symmetry. 2020;12:1152. doi: 10.3390/sym12071152. DOI

Puška A., Nedeljković M., Hashemkhani Zolfani S., Pamučar D. Application of interval fuzzy logic in selecting a sustainable supplier on the example of agricultural production. Symmetry. 2021;13:774. doi: 10.3390/sym13050774. DOI

Wang A., Solomatine D.P. Practical experience of sensitivity analysis: Comparing six methods, on three hydrological models, with three performance criteria. Water. 2019;11:1062. doi: 10.3390/w11051062. DOI

Štefaňák J., Kala Z., Miča L., Norkus A. Global sensitivity analysis for transformation of Hoek-Brown failure criterion for rock mass. J. Civ. Eng. Manag. 2018;24:390–398. doi: 10.3846/jcem.2018.5194. DOI

Ching D.S., Safta C., Reichardt T.A. Sensitivity-informed bayesian inference for home PLC network models with unknown parameters. Energies. 2021;14:2402. doi: 10.3390/en14092402. DOI

Rahn S., Gödel M., Fischer R., Köster G. Dynamics of a simulated demonstration march: An efficient sensitivity analysis. Sustainability. 2021;13:3455. doi: 10.3390/su13063455. DOI

Martínez-Ruiz A., Ruiz-García A., Prado-Hernández J.V., López-Cruz I.L., Valencia-Islas J.O., Pineda-Pineda J. Global sensitivity analysis and calibration by differential evolution algorithm of HORTSYST crop model for fertigation management. Water. 2021;13:610. doi: 10.3390/w13050610. DOI

Xu N., Luo J., Zuo J., Hu X., Dong J., Wu T., Wu S., Liu H. Accurate suitability evaluation of large-scale roof greening based on RS and GIS methods. Sustainability. 2020;12:4375. doi: 10.3390/su12114375. DOI

Islam A.B.M., Karadoğan E. Analysis of one-dimensional ivshin–pence shape memory alloy constitutive model for sensitivity and uncertainty. Materials. 2020;13:1482. doi: 10.3390/ma13061482. PubMed DOI PMC

Gamannossi A., Amerini A., Mazzei L., Bacci T., Poggiali M., Andreini A. Uncertainty quantification of film cooling performance of an industrial gas turbine vane. Entropy. 2020;22:16. doi: 10.3390/e22010016. PubMed DOI PMC

De Falco A., Resta C., Sevieri G. Sensitivity analysis of frequency-based tie-rod axial load evaluation methods. Eng. Struct. 2021;229:111568. doi: 10.1016/j.engstruct.2020.111568. DOI

Antucheviciene J., Kala Z., Marzouk M., Vaidogas E.R. Solving civil engineering problems by means of fuzzy and stochastic MCDM methods: Current state and future research. Math. Probl. Eng. 2015;2015:362579. doi: 10.1155/2015/362579. DOI

Kala Z., Valeš J. Sensitivity assessment and lateral-torsional buckling design of I-beams using solid finite elements. J. Constr. Steel Res. 2017;139:110–122. doi: 10.1016/j.jcsr.2017.09.014. DOI

Wen Z., Xia Y., Ji Y., Liu Y., Xiong Z., Lu H. Study on risk control of water inrush in tunnel construction period considering uncertainty. J. Civ. Eng. Manag. 2019;25:757–772. doi: 10.3846/jcem.2019.10394. DOI

Strieška M., Koteš P. Sensitivity of dose-response function for carbon steel under various conditions in Slovakia. Transp. Res. Procedia. 2019;40:912–919. doi: 10.1016/j.trpro.2019.07.128. DOI

Su L., Wang T., Li H., Chao Y., Wang L. Multi-criteria decision making for identification of unbalanced bidding. J. Civ. Eng. Manag. 2020;26:43–52. doi: 10.3846/jcem.2019.11568. DOI

Rykov V., Kozyrev D. On the reliability function of a double redundant system with general repair time distribution. Appl. Stoch. Models Bus Ind. 2019;35:191–197. doi: 10.1002/asmb.2368. DOI

Luo L., Zhang L., Wu G. Bayesian belief network-based project complexity measurement considering causal relationships. J. Civ. Eng. Manag. 2020;26:200–2015. doi: 10.3846/jcem.2020.11930. DOI

Strauss A., Moser T., Honeger C., Spyridis P., Frangopol D.M. Likelihood of impact events in transport networks considering road conditions, traffic and routing elements properties. J. Civ. Eng. Manag. 2020;26:95–112. doi: 10.3846/jcem.2020.11826. DOI

Rykov V.V., Sukharev M.G., Itkin V.Y. Investigations of the potential application of k-out-of-n systems in oil and gas industry objects. J. Mar. Sci. Eng. 2020;8:928. doi: 10.3390/jmse8110928. DOI

Pan L., Novák L., Lehký D., Novák D., Cao M. Neural network ensemble-based sensitivity analysis in structural engineering: Comparison of selected methods and the influence of statistical correlation. Comput. Struct. 2021;242:106376. doi: 10.1016/j.compstruc.2020.106376. DOI

Schroeder M.J. An Alternative to entropy in the measurement of information. Entropy. 2004;6:388–412. doi: 10.3390/e6050388. DOI

Kullback S., Leibler R. On information and sufficiency. Ann. Math. Stat. 1951;22:79–86. doi: 10.1214/aoms/1177729694. DOI

Kullback S. Information Theory and Statistics. John Wiley and Sons; Hoboken, NJ, USA: 1959.

Gamboa F., Klein T., Lagnoux A. Sensitivity analysis based on Cramér-von Mises distance. SIAM/ASA J. Uncertain. Quantif. 2018;6:522–548. doi: 10.1137/15M1025621. DOI

Kala Z. Limit states of structures and global sensitivity analysis based on Cramér-von Mises distance. Int. J. Mech. 2020;14:107–118.

Borgonovo E. A new uncertainty importance measure. Reliab. Eng. Syst. Saf. 2007;92:771–784. doi: 10.1016/j.ress.2006.04.015. DOI

Kala Z. Sensitivity assessment of steel members under compression. Eng. Struct. 2009;31:1344–1348. doi: 10.1016/j.engstruct.2008.04.001. DOI

Kala Z. Global sensitivity analysis in stability problems of steel frame structures. J. Civ. Eng. Manag. 2016;22:417–424. doi: 10.3846/13923730.2015.1073618. DOI

Kala Z., Valeš J. Imperfection sensitivity analysis of steel columns at ultimate limit state. Arch. Civ. Mech. Eng. 2018;18:1207–1218. doi: 10.1016/j.acme.2018.01.009. DOI

Saltelli A., Ratto M., Andres T., Campolongo F., Cariboni J., Gatelli D., Saisana M., Tarantola S. Global Sensitivity Analysis: The Primer. John Wiley & Sons; West Sussex, UK: 2008.

Melcher J., Kala Z., Holický M., Fajkus M., Rozlívka L. Design characteristics of structural steels based on statistical analysis of metallurgical products. J. Constr. Steel Res. 2004;60:795–808. doi: 10.1016/S0143-974X(03)00144-5. DOI

Kala Z., Melcher J., Puklický L. Material and geometrical characteristics of structural steels based on statistical analysis of metallurgical products. J. Civ. Eng. Manag. 2009;15:299–307. doi: 10.3846/1392-3730.2009.15.299-307. DOI

McKey M.D., Beckman R.J., Conover W.J. A comparison of the three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics. 1979;21:239–245.

Iman R.C., Conover W.J. Small sample sensitivity analysis techniques for computer models with an application to risk assessment. Commun. Stat. Theory Methods. 1980;9:1749–1842. doi: 10.1080/03610928008827996. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...