Reversible Lectin Binding to Glycan-Functionalized Graphene
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-09055Y
Grantová Agentura České Republiky
LTC20072
Ministerstvo Školství, Mládeže a Tělovýchovy
LTAUSA19001
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_026/0008382
European Regional Development Fund
Start-up grant
Nadace Experientia
Dagmar Prochazkova Fund starting grant
Vysoká Škola Chemicko-technologická v Praze
PubMed
34206350
PubMed Central
PMC8267698
DOI
10.3390/ijms22136661
PII: ijms22136661
Knihovny.cz E-zdroje
- Klíčová slova
- 2D materials, carbohydrate, graphene, sensor, wheat germ agglutinin,
- MeSH
- grafit chemie MeSH
- křenová peroxidasa MeSH
- kvarterní struktura proteinů MeSH
- lektiny analýza metabolismus MeSH
- polysacharidy chemie metabolismus MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- grafit MeSH
- křenová peroxidasa MeSH
- lektiny MeSH
- polysacharidy MeSH
The monolayer character of two-dimensional materials predestines them for application as active layers of sensors. However, their inherent high sensitivity is always accompanied by a low selectivity. Chemical functionalization of two-dimensional materials has emerged as a promising way to overcome the selectivity issues. Here, we demonstrate efficient graphene functionalization with carbohydrate ligands-chitooligomers, which bind proteins of the lectin family with high selectivity. Successful grafting of a chitooligomer library was thoroughly characterized, and glycan binding to wheat germ agglutinin was studied by a series of methods. The results demonstrate that the protein quaternary structure remains intact after binding to the functionalized graphene, and that the lectin can be liberated from the surface by the addition of a binding competitor. The chemoenzymatic assay with a horseradish peroxidase conjugate also confirmed the intact catalytic properties of the enzyme. The present approach thus paves the way towards graphene-based sensors for carbohydrate-lectin binding.
Zobrazit více v PubMed
Zheng B., Gu G.X. Machine Learning-Based Detection of Graphene Defects with Atomic Precision. Nano-Micro Lett. 2020;12:181. doi: 10.1007/s40820-020-00519-w. PubMed DOI PMC
Estrela P., Belický Š., Katrlík J., Tkáč J. Glycan and Lectin Biosensors. Essays Biochem. 2016;60:37–47. doi: 10.1042/EBC20150005. PubMed DOI PMC
Kveton F., Blsakova A., Lorencova L., Jerigova M., Velic D., Blixt O., Jansson B., Kasak P., Tkac J. A Graphene-Based Glycan Biosensor for Electrochemical Label-Free Detection of a Tumor-Associated Antibody. Sensors. 2019;19:5409. doi: 10.3390/s19245409. PubMed DOI PMC
Damme E.J.M.V., Peumans W.J., Pusztai A., Bardocz S. Handbook of Plant. Lectins: Properties and Biomedical Applications. John Wiley & Sons; Hoboken, NJ, USA: 1998.
Bojarová P., Křen V. Sugared Biomaterial Binding Lectins: Achievements and Perspectives. Biomater. Sci. 2016;4:1142–1160. doi: 10.1039/C6BM00088F. PubMed DOI
Laaf D., Bojarová P., Elling L., Křen V. Galectin–Carbohydrate Interactions in Biomedicine and Biotechnology. Trends Biotechnol. 2019;37:402–415. doi: 10.1016/j.tibtech.2018.10.001. PubMed DOI
Cordain L., Toohey L., Smith M.J., Hickey M.S. Modulation of Immune Function by Dietary Lectins in Rheumatoid Arthritis. Br. J. Nutr. 2000;83:207–217. doi: 10.1017/S0007114500000271. PubMed DOI
Akkouh O., Ng T.B., Singh S.S., Yin C., Dan X., Chan Y.S., Pan W., Cheung R.C.F. Lectins with Anti-HIV Activity: A Review. Molecules. 2015;20:648–668. doi: 10.3390/molecules20010648. PubMed DOI PMC
Eisen S., Dzwonek A., Klein N.J. Mannose-Binding Lectin in HIV Infection. Future Virol. 2008;3:225–233. doi: 10.2217/17460794.3.3.225. PubMed DOI PMC
Liu C., He T., Rong Y., Du F., Ma D., Wei Y., Mei Z., Wang Y., Wang H., Zhu Y., et al. Association of Mannose-Binding Lectin Polymorphisms with Tuberculosis Susceptibility among Chinese. Sci. Rep. 2016;6:36488. doi: 10.1038/srep36488. PubMed DOI PMC
Clausen T.M., Sandoval D.R., Spliid C.B., Pihl J., Perrett H.R., Painter C.D., Narayanan A., Majowicz S.A., Kwong E.M., McVicar R.N., et al. SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2. Cell. 2020;183:1043–1057.e15. doi: 10.1016/j.cell.2020.09.033. PubMed DOI PMC
Chang W.-C., Hartshorn K.L., White M.R., Moyo P., Michelow I.C., Koziel H., Kinane B.T., Schmidt E.V., Fujita T., Takahashi K. Recombinant Chimeric Lectins Consisting of Mannose-Binding Lectin and l-Ficolin Are Potent Inhibitors of Influenza A Virus Compared with Mannose-Binding Lectin. Biochem. Pharmacol. 2011;81:388–395. doi: 10.1016/j.bcp.2010.10.012. PubMed DOI PMC
Barondes S.H., Cooper D.N., Gitt M.A., Leffler H. Galectins. Structure and Function of a Large Family of Animal Lectins. J. Biol. Chem. 1994;269:20807–20810. doi: 10.1016/S0021-9258(17)31891-4. PubMed DOI
Merino J.P., Serna S., Criado A., Centeno A., Napal I., Calvo J., Zurutuza A., Reichardt N., Prato M. Mass Spectrometry of Carbohydrate-Protein Interactions on a Glycan Array Conjugated to CVD Graphene Surfaces. 2D Mater. 2020;7:024003. doi: 10.1088/2053-1583/ab6030. DOI
Ohno Y., Maehashi K., Yamashiro Y., Matsumoto K. Electrolyte-Gated Graphene Field-Effect Transistors for Detecting PH and Protein Adsorption. Nano Lett. 2009;9:3318–3322. doi: 10.1021/nl901596m. PubMed DOI
Gan T., Hu S. Electrochemical Sensors Based on Graphene Materials. Microchim. Acta. 2011;175:1. doi: 10.1007/s00604-011-0639-7. DOI
Viswanathan S., Narayanan T.N., Aran K., Fink K.D., Paredes J., Ajayan P.M., Filipek S., Miszta P., Tekin H.C., Inci F., et al. Graphene–Protein Field Effect Biosensors: Glucose Sensing. Mater. Today. 2015;18:513–522. doi: 10.1016/j.mattod.2015.04.003. DOI
He Q., Wu S., Yin Z., Zhang H. Graphene-Based Electronic Sensors. Chem. Sci. 2012;3:1764–1772. doi: 10.1039/c2sc20205k. DOI
Justino C.I.L., Gomes A.R., Freitas A.C., Duarte A.C., Rocha-Santos T.A.P. Graphene Based Sensors and Biosensors. TrAC Trends Anal. Chem. 2017;91:53–66. doi: 10.1016/j.trac.2017.04.003. DOI
Nag A., Mitra A., Mukhopadhyay S.C. Graphene and Its Sensor-Based Applications: A Review. Sens. Actuators Phys. 2018;270:177–194. doi: 10.1016/j.sna.2017.12.028. DOI
Huang H., Su S., Wu N., Wan H., Wan S., Bi H., Sun L. Graphene-Based Sensors for Human Health Monitoring. Front. Chem. 2019;7 doi: 10.3389/fchem.2019.00399. PubMed DOI PMC
Schwefel D., Maierhofer C., Beck J.G., Seeberger S., Diederichs K., Möller H.M., Welte W., Wittmann V. Structural Basis of Multivalent Binding to Wheat Germ Agglutinin. J. Am. Chem. Soc. 2010;132:8704–8719. doi: 10.1021/ja101646k. PubMed DOI
Kovaříček P., Vrkoslav V., Plšek J., Bastl Z., Fridrichová M., Drogowska K., Kalbáč M. Extended Characterization Methods for Covalent Functionalization of Graphene on Copper. Carbon. 2017;118:200–207. doi: 10.1016/j.carbon.2017.03.020. DOI
Bojarová P., Chytil P., Mikulová B., Bumba L., Konefał R., Pelantová H., Krejzová J., Slámová K., Petrásková L., Kotrchová L., et al. Glycan-Decorated HPMA Copolymers as High-Affinity Lectin Ligands. Polym. Chem. 2017;8:2647–2658. doi: 10.1039/C7PY00271H. DOI
Bojarová P., Kulik N., Hovorková M., Slámová K., Pelantová H., Křen V. The β-N-Acetylhexosaminidase in the Synthesis of Bioactive Glycans: Protein and Reaction Engineering. Molecules. 2019;24:599. doi: 10.3390/molecules24030599. PubMed DOI PMC
Hallam T., Berner N.C., Yim C., Duesberg G.S. Strain, Bubbles, Dirt, and Folds: A Study of Graphene Polymer-Assisted Transfer. Adv. Mater. Interfaces. 2014;1:1400115. doi: 10.1002/admi.201400115. DOI
Kalbac M., Frank O., Kavan L. The Control of Graphene Double-Layer Formation in Copper-Catalyzed Chemical Vapor Deposition. Carbon. 2012;50:3682–3687. doi: 10.1016/j.carbon.2012.03.041. DOI
Kovaříček P., Bastl Z., Valeš V., Kalbáč M. Covalent Reactions on Chemical Vapor Deposition Grown Graphene Studied by Surface-Enhanced Raman Spectroscopy. Chem. Eur. J. 2016;22:5404–5408. doi: 10.1002/chem.201504689. PubMed DOI
Plšek J., Kovaříček P., Valeš V., Kalbáč M. Tuning the Reactivity of Graphene by Surface Phase Orientation. Chem. Eur. J. 2017;23:1839–1845. doi: 10.1002/chem.201604311. PubMed DOI
Langer R., Zaoralová D., Medved’ M., Banáš P., Błoński P., Otyepka M. Variability of C–F Bonds Governs the Formation of Specific Structural Motifs in Fluorinated Graphenes. J. Phys. Chem. C. 2019;123:27896–27903. doi: 10.1021/acs.jpcc.9b07552. DOI
Hong V., Presolski S.I., Ma C., Finn M.G. Analysis and Optimization of Copper-Catalyzed Azide–Alkyne Cycloaddition for Bioconjugation. Angew. Chem. Int. Ed. 2009;48:9879–9883. doi: 10.1002/anie.200905087. PubMed DOI PMC
Rafiee J., Mi X., Gullapalli H., Thomas A.V., Yavari F., Shi Y., Ajayan P.M., Koratkar N.A. Wetting Transparency of Graphene. Nat. Mater. 2012;11:217–222. doi: 10.1038/nmat3228. PubMed DOI
Kozbial A., Zhou F., Li Z., Liu H., Li L. Are Graphitic Surfaces Hydrophobic? Acc. Chem. Res. 2016;49:2765–2773. doi: 10.1021/acs.accounts.6b00447. PubMed DOI
She C.Y., Dinh N.D., Tu A.T. Laser Raman Scattering of Glucosamine, N-Acetylglucosamine, and Glucuronic Acid. Biochim. Biophys. Acta Gen. Subj. 1974;372:345–357. doi: 10.1016/0304-4165(74)90196-2. DOI
Bansil R., Yannas I.V., Stanley H.E. Raman Spectroscopy: A Structural Probe of Glycosaminoglycans. Biochim. Biophys. Acta Gen. Subj. 1978;541:535–542. doi: 10.1016/0304-4165(78)90163-0. PubMed DOI
Carron K.T., Hurley L.G. Axial and Azimuthal Angle Determination with Surface-Enhanced Raman Spectroscopy: Thiophenol on Copper, Silver, and Gold Metal Surfaces. J. Phys. Chem. 1991;95:9979–9984. doi: 10.1021/j100177a068. DOI
Moullier P., Daveloose D., Leterrier F., Hoebeke J. Comparative Binding of Wheat Germ Agglutinin and Its Succinylated Form on Lymphocytes. Eur. J. Biochem. 1986;161:197–204. doi: 10.1111/j.1432-1033.1986.tb10142.x. PubMed DOI