Reversible Lectin Binding to Glycan-Functionalized Graphene

. 2021 Jun 22 ; 22 (13) : . [epub] 20210622

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34206350

Grantová podpora
18-09055Y Grantová Agentura České Republiky
LTC20072 Ministerstvo Školství, Mládeže a Tělovýchovy
LTAUSA19001 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_026/0008382 European Regional Development Fund
Start-up grant Nadace Experientia
Dagmar Prochazkova Fund starting grant Vysoká Škola Chemicko-technologická v Praze

The monolayer character of two-dimensional materials predestines them for application as active layers of sensors. However, their inherent high sensitivity is always accompanied by a low selectivity. Chemical functionalization of two-dimensional materials has emerged as a promising way to overcome the selectivity issues. Here, we demonstrate efficient graphene functionalization with carbohydrate ligands-chitooligomers, which bind proteins of the lectin family with high selectivity. Successful grafting of a chitooligomer library was thoroughly characterized, and glycan binding to wheat germ agglutinin was studied by a series of methods. The results demonstrate that the protein quaternary structure remains intact after binding to the functionalized graphene, and that the lectin can be liberated from the surface by the addition of a binding competitor. The chemoenzymatic assay with a horseradish peroxidase conjugate also confirmed the intact catalytic properties of the enzyme. The present approach thus paves the way towards graphene-based sensors for carbohydrate-lectin binding.

Zobrazit více v PubMed

Zheng B., Gu G.X. Machine Learning-Based Detection of Graphene Defects with Atomic Precision. Nano-Micro Lett. 2020;12:181. doi: 10.1007/s40820-020-00519-w. PubMed DOI PMC

Estrela P., Belický Š., Katrlík J., Tkáč J. Glycan and Lectin Biosensors. Essays Biochem. 2016;60:37–47. doi: 10.1042/EBC20150005. PubMed DOI PMC

Kveton F., Blsakova A., Lorencova L., Jerigova M., Velic D., Blixt O., Jansson B., Kasak P., Tkac J. A Graphene-Based Glycan Biosensor for Electrochemical Label-Free Detection of a Tumor-Associated Antibody. Sensors. 2019;19:5409. doi: 10.3390/s19245409. PubMed DOI PMC

Damme E.J.M.V., Peumans W.J., Pusztai A., Bardocz S. Handbook of Plant. Lectins: Properties and Biomedical Applications. John Wiley & Sons; Hoboken, NJ, USA: 1998.

Bojarová P., Křen V. Sugared Biomaterial Binding Lectins: Achievements and Perspectives. Biomater. Sci. 2016;4:1142–1160. doi: 10.1039/C6BM00088F. PubMed DOI

Laaf D., Bojarová P., Elling L., Křen V. Galectin–Carbohydrate Interactions in Biomedicine and Biotechnology. Trends Biotechnol. 2019;37:402–415. doi: 10.1016/j.tibtech.2018.10.001. PubMed DOI

Cordain L., Toohey L., Smith M.J., Hickey M.S. Modulation of Immune Function by Dietary Lectins in Rheumatoid Arthritis. Br. J. Nutr. 2000;83:207–217. doi: 10.1017/S0007114500000271. PubMed DOI

Akkouh O., Ng T.B., Singh S.S., Yin C., Dan X., Chan Y.S., Pan W., Cheung R.C.F. Lectins with Anti-HIV Activity: A Review. Molecules. 2015;20:648–668. doi: 10.3390/molecules20010648. PubMed DOI PMC

Eisen S., Dzwonek A., Klein N.J. Mannose-Binding Lectin in HIV Infection. Future Virol. 2008;3:225–233. doi: 10.2217/17460794.3.3.225. PubMed DOI PMC

Liu C., He T., Rong Y., Du F., Ma D., Wei Y., Mei Z., Wang Y., Wang H., Zhu Y., et al. Association of Mannose-Binding Lectin Polymorphisms with Tuberculosis Susceptibility among Chinese. Sci. Rep. 2016;6:36488. doi: 10.1038/srep36488. PubMed DOI PMC

Clausen T.M., Sandoval D.R., Spliid C.B., Pihl J., Perrett H.R., Painter C.D., Narayanan A., Majowicz S.A., Kwong E.M., McVicar R.N., et al. SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2. Cell. 2020;183:1043–1057.e15. doi: 10.1016/j.cell.2020.09.033. PubMed DOI PMC

Chang W.-C., Hartshorn K.L., White M.R., Moyo P., Michelow I.C., Koziel H., Kinane B.T., Schmidt E.V., Fujita T., Takahashi K. Recombinant Chimeric Lectins Consisting of Mannose-Binding Lectin and l-Ficolin Are Potent Inhibitors of Influenza A Virus Compared with Mannose-Binding Lectin. Biochem. Pharmacol. 2011;81:388–395. doi: 10.1016/j.bcp.2010.10.012. PubMed DOI PMC

Barondes S.H., Cooper D.N., Gitt M.A., Leffler H. Galectins. Structure and Function of a Large Family of Animal Lectins. J. Biol. Chem. 1994;269:20807–20810. doi: 10.1016/S0021-9258(17)31891-4. PubMed DOI

Merino J.P., Serna S., Criado A., Centeno A., Napal I., Calvo J., Zurutuza A., Reichardt N., Prato M. Mass Spectrometry of Carbohydrate-Protein Interactions on a Glycan Array Conjugated to CVD Graphene Surfaces. 2D Mater. 2020;7:024003. doi: 10.1088/2053-1583/ab6030. DOI

Ohno Y., Maehashi K., Yamashiro Y., Matsumoto K. Electrolyte-Gated Graphene Field-Effect Transistors for Detecting PH and Protein Adsorption. Nano Lett. 2009;9:3318–3322. doi: 10.1021/nl901596m. PubMed DOI

Gan T., Hu S. Electrochemical Sensors Based on Graphene Materials. Microchim. Acta. 2011;175:1. doi: 10.1007/s00604-011-0639-7. DOI

Viswanathan S., Narayanan T.N., Aran K., Fink K.D., Paredes J., Ajayan P.M., Filipek S., Miszta P., Tekin H.C., Inci F., et al. Graphene–Protein Field Effect Biosensors: Glucose Sensing. Mater. Today. 2015;18:513–522. doi: 10.1016/j.mattod.2015.04.003. DOI

He Q., Wu S., Yin Z., Zhang H. Graphene-Based Electronic Sensors. Chem. Sci. 2012;3:1764–1772. doi: 10.1039/c2sc20205k. DOI

Justino C.I.L., Gomes A.R., Freitas A.C., Duarte A.C., Rocha-Santos T.A.P. Graphene Based Sensors and Biosensors. TrAC Trends Anal. Chem. 2017;91:53–66. doi: 10.1016/j.trac.2017.04.003. DOI

Nag A., Mitra A., Mukhopadhyay S.C. Graphene and Its Sensor-Based Applications: A Review. Sens. Actuators Phys. 2018;270:177–194. doi: 10.1016/j.sna.2017.12.028. DOI

Huang H., Su S., Wu N., Wan H., Wan S., Bi H., Sun L. Graphene-Based Sensors for Human Health Monitoring. Front. Chem. 2019;7 doi: 10.3389/fchem.2019.00399. PubMed DOI PMC

Schwefel D., Maierhofer C., Beck J.G., Seeberger S., Diederichs K., Möller H.M., Welte W., Wittmann V. Structural Basis of Multivalent Binding to Wheat Germ Agglutinin. J. Am. Chem. Soc. 2010;132:8704–8719. doi: 10.1021/ja101646k. PubMed DOI

Kovaříček P., Vrkoslav V., Plšek J., Bastl Z., Fridrichová M., Drogowska K., Kalbáč M. Extended Characterization Methods for Covalent Functionalization of Graphene on Copper. Carbon. 2017;118:200–207. doi: 10.1016/j.carbon.2017.03.020. DOI

Bojarová P., Chytil P., Mikulová B., Bumba L., Konefał R., Pelantová H., Krejzová J., Slámová K., Petrásková L., Kotrchová L., et al. Glycan-Decorated HPMA Copolymers as High-Affinity Lectin Ligands. Polym. Chem. 2017;8:2647–2658. doi: 10.1039/C7PY00271H. DOI

Bojarová P., Kulik N., Hovorková M., Slámová K., Pelantová H., Křen V. The β-N-Acetylhexosaminidase in the Synthesis of Bioactive Glycans: Protein and Reaction Engineering. Molecules. 2019;24:599. doi: 10.3390/molecules24030599. PubMed DOI PMC

Hallam T., Berner N.C., Yim C., Duesberg G.S. Strain, Bubbles, Dirt, and Folds: A Study of Graphene Polymer-Assisted Transfer. Adv. Mater. Interfaces. 2014;1:1400115. doi: 10.1002/admi.201400115. DOI

Kalbac M., Frank O., Kavan L. The Control of Graphene Double-Layer Formation in Copper-Catalyzed Chemical Vapor Deposition. Carbon. 2012;50:3682–3687. doi: 10.1016/j.carbon.2012.03.041. DOI

Kovaříček P., Bastl Z., Valeš V., Kalbáč M. Covalent Reactions on Chemical Vapor Deposition Grown Graphene Studied by Surface-Enhanced Raman Spectroscopy. Chem. Eur. J. 2016;22:5404–5408. doi: 10.1002/chem.201504689. PubMed DOI

Plšek J., Kovaříček P., Valeš V., Kalbáč M. Tuning the Reactivity of Graphene by Surface Phase Orientation. Chem. Eur. J. 2017;23:1839–1845. doi: 10.1002/chem.201604311. PubMed DOI

Langer R., Zaoralová D., Medved’ M., Banáš P., Błoński P., Otyepka M. Variability of C–F Bonds Governs the Formation of Specific Structural Motifs in Fluorinated Graphenes. J. Phys. Chem. C. 2019;123:27896–27903. doi: 10.1021/acs.jpcc.9b07552. DOI

Hong V., Presolski S.I., Ma C., Finn M.G. Analysis and Optimization of Copper-Catalyzed Azide–Alkyne Cycloaddition for Bioconjugation. Angew. Chem. Int. Ed. 2009;48:9879–9883. doi: 10.1002/anie.200905087. PubMed DOI PMC

Rafiee J., Mi X., Gullapalli H., Thomas A.V., Yavari F., Shi Y., Ajayan P.M., Koratkar N.A. Wetting Transparency of Graphene. Nat. Mater. 2012;11:217–222. doi: 10.1038/nmat3228. PubMed DOI

Kozbial A., Zhou F., Li Z., Liu H., Li L. Are Graphitic Surfaces Hydrophobic? Acc. Chem. Res. 2016;49:2765–2773. doi: 10.1021/acs.accounts.6b00447. PubMed DOI

She C.Y., Dinh N.D., Tu A.T. Laser Raman Scattering of Glucosamine, N-Acetylglucosamine, and Glucuronic Acid. Biochim. Biophys. Acta Gen. Subj. 1974;372:345–357. doi: 10.1016/0304-4165(74)90196-2. DOI

Bansil R., Yannas I.V., Stanley H.E. Raman Spectroscopy: A Structural Probe of Glycosaminoglycans. Biochim. Biophys. Acta Gen. Subj. 1978;541:535–542. doi: 10.1016/0304-4165(78)90163-0. PubMed DOI

Carron K.T., Hurley L.G. Axial and Azimuthal Angle Determination with Surface-Enhanced Raman Spectroscopy: Thiophenol on Copper, Silver, and Gold Metal Surfaces. J. Phys. Chem. 1991;95:9979–9984. doi: 10.1021/j100177a068. DOI

Moullier P., Daveloose D., Leterrier F., Hoebeke J. Comparative Binding of Wheat Germ Agglutinin and Its Succinylated Form on Lymphocytes. Eur. J. Biochem. 1986;161:197–204. doi: 10.1111/j.1432-1033.1986.tb10142.x. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...