Flammability Characteristics of Thermally Modified Meranti Wood Treated with Natural and Synthetic Fire Retardants
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
34208934
PubMed Central
PMC8272185
DOI
10.3390/polym13132160
PII: polym13132160
Knihovny.cz E-resources
- Keywords
- fire retardant, flammability characteristics, meranti, thermal modification,
- Publication type
- Journal Article MeSH
This paper deals with the effect of synthetic and natural flame retardants on flammability characteristics and chemical changes in thermally treated meranti wood (Shorea spp.). The basic chemical composition (extractives, lignin, holocellulose, cellulose, and hemicelluloses) was evaluated to clarify the relationships of temperature modifications (160 °C, 180 °C, and 210 °C) and incineration for 600 s. Weight loss, burning speed, the maximum burning rate, and the time to reach the maximum burning rate were evaluated. Relationships between flammable properties and chemical changes in thermally modified wood were evaluated with the Spearman correlation. The thermal modification did not confirm a positive contribution to the flammability and combustion properties of meranti wood. The effect of the synthetic retardant on all combustion properties was significantly higher compared to that of the natural retardant.
See more in PubMed
Baral S., Gaire N.P., Aryal S., Pandey M., Rayamajhi S., Vacik H. Growth Ring Measurements of Shorea robusta Reveal Responses to Climatic Variation. Forests. 2019;10:466. doi: 10.3390/f10060466. DOI
Baral S., Neumann M., Basnyat B., Gauli K., Gautam S., Bhandari S.K., Vacik H. Form Factors of an Economically Valuable Sal Tree (Shorea robusta) of Nepal. Forests. 2020;11:754. doi: 10.3390/f11070754. DOI
Hill C.A.S. Wood Modification: Chemical Thermal, and Other Processes. John Wiley & Sons; Hoboken, NJ, USA: 2006. p. 260.
Rowell R.M. Handbook of Wood Chemistry and Wood Composites. 2nd ed. CRC Press; Boca Raton, FL, USA: 2012. p. 703.
Militz H., Altgen M. Deterioration and Protection of Sustainable Biomaterials. American Chemical Society; Washington, DC, USA: 2014. Processes and Properties of Thermally Modified Wood Manufactured in Europe; pp. 269–285. (ACS Symposium Series Vol. 1158, Chapter 16).
Rosu L., Mustata F., Varganici C.D., Rosu D., Rusu T., Rosca I. Thermal behaviour and fungi resistance of composites based on wood and natural and synthetic epoxy resins cured with maleopimaric acid. Polym. Degrad. Stabil. 2019;160:148–161. doi: 10.1016/j.polymdegradstab.2018.12.022. DOI
Bakar B.F.A., Hiziroglu S., Tahir P.M. Properties of some thermally modified wood species. Mater Des. 2013;43:348–355. doi: 10.1016/j.matdes.2012.06.054. DOI
Gérardin V. New alternatives for wood preservation based on thermal and chemical modification of wood—A review. Ann. For. Sci. 2016;73:559–570. doi: 10.1007/s13595-015-0531-4. DOI
Čekovská H., Gaff M., Osvald A., Kačík F., Kubš J., Kaplan L. Fire Resistance of Thermally Modified Spruce Wood. BioResources. 2017;12:947–959. doi: 10.15376/biores.12.1.947-959. DOI
Baysal E., Kart S., Toker H., Degirmentepe S. Some physical characteristics of thermally modified oriental-beech wood. Maderas Cienc. Tecnol. 2014;16:291–298. doi: 10.4067/S0718-221X2014005000022. DOI
LeVan S.L. Chemistry of fire retardancy. In: Rowell R.M., editor. The Chemistry of Solid Wood. Advances in Chemistry Series 207. American Chemical Society; Washington, DC, USA: 1984. pp. 531–574. Chapter 14.
Poletto M., Zattera A.J., Forte M.C., Mariam M.C., Santana R. Thermal decomposition of wood: Influence of wood components and cellulose crystallite size. Bioresour. Technol. 2012;109:148–153. doi: 10.1016/j.biortech.2011.11.122. PubMed DOI
Mitchell P.H. Irreversible property changes of small loblolly pine specimens heated in air, nitrogen, or oxygen. Wood Fiber Sci. 1988;20:320–355.
Korkut D.S., Guller B. The effects of heat treatment on physical properties and surface roughness of red-bud maple (Acer trautvetteri Med.) wood. Bioresour. Technol. 2008;99:2846–2851. doi: 10.1016/j.biortech.2007.06.043. PubMed DOI
Cademartori P.H.G., Missio A.L., Mattos B.D., Gatto D.A. Effect of thermal treatments on the technological properties of wood from two Eucalyptus species. An. Acad. Bras. Cienc. 2015;87:471–481. doi: 10.1590/0001-3765201520130121. PubMed DOI
Esteves B.M., Pereira H.M. Wood modification by heat treatment: A review. BioResources. 2009;4:370–404. doi: 10.15376/biores.4.1.370-404. DOI
Šimkovic I. Trends in thermal stability study of chemically modified lignocellulose materials. In: Albertov L.B., editor. Polymer Degradation and Stability Research Developments. Nova Science Publishers, Inc.; New York, NY, USA: 2007. pp. 217–236.
Harper C.A. Handbook of Building Materials for Fire Protection. McGraw-Hill Handbooks; New York, NY, USA: 2003. p. 800.
Alaee M., Wenning R.J. The significance of brominated flame retardants in the environment: Current understanding, issues, and challenges. Chemosphere. 2002;46:579–582. doi: 10.1016/S0045-6535(01)00224-7. PubMed DOI
Östman B., Voss A., Hughes A., Hovde P.J., Grexa O. The durability of Fire Retardant Treated Wood Products at Humid and Exterior Conditions Review of Literature. Fire Mater. 2001;25:95–104. doi: 10.1002/fam.758. DOI
Nothnagel E.A., Bacic A., Clarke A.E. Cell and Developmental Biology of Arabinogalactan-Proteins. Kluwer Academic/Plenum Publishers; Amsterdam, The Netherlands: 2000. p. 301. 301 Seiten.
Spiridon I., Popa V.I. Hemicelluloses: Major sources, properties, and applications. In: Belgacem M.N., Gandini A., editors. Monomers, Polymers, and Composites from Renewable Resources. Elsevier; Amsterdam, The Netherlands: 2008. pp. 289–304. Chapter 13.
Karaseva V., Bergeret A., Lacoste C., Ferry L., Fulcrand H. Influence of Extraction Conditions on Chemical Composition and Thermal Properties of Chestnut Wood Extracts as Tannin Feedstock. ACS Sustain. Chem. Eng. 2019;7:17047–17054. doi: 10.1021/acssuschemeng.9b03000. DOI
LeVan S.L., Winandy J.E. Effect of fire retardant treatments of wood strength: A review. Wood Fiber. Sci. 1990;22:113–131.
Unger A., Schniewind A., Unger W. Conservation of Wood Artifacts: A Handbook. Springer; Berlin/Heidelberg, Germany: Cham, Switzerland: 2001. p. 578.
Gottschalk A. Glycoproteins: Their Composition, Structure, and Function. 2nd ed. Elsevier; Amsterdam, The Netherlands: 1972. p. 1378.
Reid R., Clamp J.R. The biochemical and histochemical nomenclature of mucus. Br. Med. Bull. 1978;34:5–8. doi: 10.1093/oxfordjournals.bmb.a071458. PubMed DOI
Kornfeld R., Kornfeld S. Comparative Aspects of Glycoprotein Structure. Annu. Rev. Biochem. 1976;45:217–238. doi: 10.1146/annurev.bi.45.070176.001245. PubMed DOI
Marshall R.D. Glycoproteins. Annu. Rev. Biochem. 1972;41:673–702. doi: 10.1146/annurev.bi.41.070172.003325. PubMed DOI
D’Adamo P. Larch arabinogalactan. J. Naturopath. Med. 1996;4:32–39.
Goellner E.M., Utermoehlen J., Kramer R., Classen B. Structure of arabinogalactan from Larix laricina and its reactivity with antibodies directed against type-II-arabinogalactans. Carbohydr. Polym. 2011;86:1739–1744. doi: 10.1016/j.carbpol.2011.07.006. DOI
Grube B., Stier H., Riede L., Gruenwald L. Tolerability of a proprietary larch arabinogalactan extract: A randomized, double-blind, placebo-controlled clinical trial in healthy subjects. Food Nutr. Sci. 2012;3:1533–1538. doi: 10.4236/fns.2012.311200. DOI
ISO 13061-2 . Wood-Determination of Density for Physical and Mechanical Tests. International Organization for Standardization; Geneva, Switzerland: 2014.
Gaff M., Kačík F., Gašparík M., Todaro L., Jones D., Corleto R., Osvaldová L.M., Čekovská H. The effect of synthetic and natural fire-retardants on burning and chemical characteristics of thermally modified teak (Tectona grandis L. f.) wood. Constr. Build. Mater. 2019;200:551–558. doi: 10.1016/j.conbuildmat.2018.12.106. DOI
Aydin T.Y. Ultrasonic evaluation of time and temperature-dependent orthotropic compression properties of oak wood. J. Mater. Res. Technol. 2020;9:6028–6036. doi: 10.1016/j.jmrt.2020.04.006. DOI
Corleto R., Gaff M., Niemz P., Sethy A.K., Todaro L., Ditommaso G., Macků J. Effect of thermal modification on properties and milling behaviour of African padauk (Pterocarpus soyauxii Taub.) wood. J. Mater. Res. Technol. 2020;9:9315–9327. doi: 10.1016/j.jmrt.2020.06.018. DOI
ISO 13061-1 . Wood-Determination of Moisture Content for Physical and Mechanical Tests. International Organization for Standardization; Geneva, Switzerland: 2014.
ČSN 73 0862/B-2 . Determining the Degree of Flammability of Construction Materials—Amemedment B-2. Czech Standards Institute; Prague, Czech Republic: 1991.
ISO 13061-1 . Physical and Mechanical Properties of Wood—Test Methods for Small Clear Wood Specimens—Part 1: Determination of Moisture Content for Physical and Mechanical Tests. International Organization for Standardization; Geneva, Switzerland: 2014.
ASTM D1107-96 . Standard Test Method for Ethanol-Toluene Solubility of Wood. ASTM International; West Conshohocken, PA, USA: 2013.
Sluiter A., Hames B., Ruiz R., Scarlata C., Sluiter J., Templeton D., Crocker D. Laboratory Analytical Procedure (LAP) National Renewable Energy Laboratory; Golden, CO, USA: 2012. Determination of Structural Carbohydrates and Lignin in Biomass. NREL/TP-510-42618.
Wise L.E., Murphy M., D’Addieco A.A. Chlorite holocellulose, its fractionation and bearing on summative wood analysis and studies on the hemicelluloses. Paper Trade J. 1946;122:35–43.
Seifert K. Uber ein Neues Verfahren Zur Schnellbestimmung der Rein- Cellulose. Papier. 1956;10:301–306.
Gašparík M., Osvaldová L., Čekovská H., Potůček D. Flammability characteristics of thermally modified oak wood treated with fire-retardant. BioResources. 2017;12:8451–8467.
Sikora A., Kačík F., Gaff M., Vondrová V., Bubeníková T., Kubovský I. Impact of thermal modification on color and chemical changes of spruce and oak wood. J. Wood. Sci. 2018;64:406–416. doi: 10.1007/s10086-018-1721-0. DOI
Esteves B., Videira R., Pereira H. Chemistry and ecotoxicity of heat-treated pine wood extractives. Wood Sci. Technol. 2011;45:661–676. doi: 10.1007/s00226-010-0356-0. DOI
Kačíková D., Kubovský I., Gaff M., Kačík F. Changes of Meranti, Padauk and Merbau Wood Lignin during ThermoWood Process. Polymers. 2021;13:993. doi: 10.3390/polym13070993. PubMed DOI PMC
Mohamed A.L., Hassabo A.G. Flame Retardant of Cellulosic Materials and Their Composites. In: Visakh P., Arao Y., editors. Flame Retardants. Springer; Cham, Switzerland: 2015. Engineering Materials.
Hu F., Jung S., Ragauskas A. Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresour. Technol. 2012;117:7–12. doi: 10.1016/j.biortech.2012.04.037. PubMed DOI
Werner K., Pommer L., Broström M. Thermal decomposition of hemicelluloses. J. Anal. Appl. Pyrol. 2014;110:130–137. doi: 10.1016/j.jaap.2014.08.013. DOI
Rafiqul I.S.M., Sakinah A.M.M., Karim M.R. Production of Xylose from Meranti Wood Sawdust by Dilute Acid Hydrolysis. Appl. Biochem. Biotechnol. 2014;174:542–555. doi: 10.1007/s12010-014-1059-z. PubMed DOI
Shinde S.D., Meng X., Kumar R., Ragauskas A.J. Recent advances in understanding the pseudolignin formation in a lignocellulosic biorefinery. Green Chem. 2018;20:2192–2205. doi: 10.1039/C8GC00353J. DOI