Intestinal Parasites of Neotropical Wild Jaguars, Pumas, Ocelots, and Jaguarundis in Colombia: Old Friends Brought Back from Oblivion and New Insights

. 2021 Jun 30 ; 10 (7) : . [epub] 20210630

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34209062

Neotropical wild felids (NWF) are obligate carnivore species present in Central and South America, and some are considered endangered due to constantly decreasing populations. NWF can become infected by a wide range of protozoan and metazoan parasites, some of them affecting their health conditions and others having anthropozoonotic relevance. Parasitological studies on NWF are still very scarce, and most data originated from dead or captive animals. On this account, the current study aimed to characterize gastrointestinal parasites of free-ranging jaguars (Panthera onca), pumas (Puma concolor), ocelots (Leopardus pardalis), and jaguarundis (Herpailurus yagouaroundi), i.e., four out of six NWF species endemic to Colombia. Fecal samples from jaguars (n = 10) and ocelots (n = 4) were collected between 2012 and 2017 as part of the Jaguar Corridor Initiative from six geographic locations in Colombia. In addition, cestode specimens were obtained during puma and jaguarundi necropsies. Scat samples were processed by standardized sodium acetate-acetic acid-formalin (SAF), sedimentation, and flotation techniques and by carbol fuchsin-stained fecal smears. Morphological evaluation of feces showed the presence of one cestode (Spirometra sp.), a nematode (Toxocara cati), an acanthocephalan (Oncicola sp.), and one cyst-forming coccidian (Cystoisospora-like oocysts). Feces oocysts were submitted to a Toxoplasma gondii-specific PCR for species identification, but no product was amplified. The cestodes isolated from a puma and jaguarundi were molecularly characterized by sequencing cytochrome c oxidase subunit I, identifying them as Taenia omissa and as a T. omissa sister lineage, respectively. These results collectively demonstrate the potential role of NWF as natural reservoir hosts for neglected zoonotic parasites (e.g., Spirometra sp., T. cati) and highlight their possible role in parasite transmission to human communities. Due to public health concerns, the occurrence of these parasites should be monitored in the future for appropriate zoonotic management practices in conservation strategies and wild felid health management programs.

Zobrazit více v PubMed

Kitchener A.C., Breitenmoser-Würsten C., Eizirik E., Gentry A., Werdelin L., Wilting A., Yamaguchi N., Abramov A., Christiansen P., Driscoll C., et al. A revised taxonomy of the Felidae. The final report of the Cat Classification Task Force of the IUCN/SSC Cat Specialist Group. [(accessed on 29 June 2021)];Cat News. 2017 Available online: https://repository.si.edu/handle/10088/32616.

Li G., Davis B.W., Eizirik E., Murphy W.J. Phylogenomic evidence for ancient hybridization in the genomes of living cats (Felidae) Genome Res. 2016;26:1–11. doi: 10.1101/gr.186668.114. PubMed DOI PMC

Thornton D., Zeller K., Rondinini C., Boitani L., Crooks K., Burdett C., Rabinowitz A., Quigley H. Assessing the umbrella value of a range-wide conservation network for jaguars (Panthera onca) Ecol. Appl. 2016;26:1112–1124. doi: 10.1890/15-0602. PubMed DOI

Montazeri M., Mikaeili Galeh T., Moosazadeh M., Sarvi S., Dodangeh S., Javidnia J., Sharif M., Daryani A. The global serological prevalence of Toxoplasma gondii in felids during the last five decades (1967–2017): A systematic review and meta-analysis. Parasit. Vectors. 2020;13:82. doi: 10.1186/s13071-020-3954-1. PubMed DOI PMC

Pena H.F.J., Marvulo M.F.V., Horta M.C., Silva M.A., Silva J.C.R., Siqueira D.B., Lima P.-A.C.P., Vitaliano S.N., Gennari S.M. Isolation and genetic characterisation of Toxoplasma gondii from a red-handed howler monkey (Alouatta belzebul), a jaguarundi (Puma yagouaroundi), and a black-eared opossum (Didelphis aurita) from Brazil. Vet. Parasitol. 2011;175:377–381. doi: 10.1016/j.vetpar.2010.10.015. PubMed DOI

Zahedi A., Paparini A., Jian F., Robertson I., Ryan U. Public health significance of zoonotic Cryptosporidium species in wildlife: Critical insights into better drinking water management. Int. J. Parasitol. Parasites Wildl. 2016;5:88–109. doi: 10.1016/j.ijppaw.2015.12.001. PubMed DOI PMC

Oates S.C., Miller M.A., Hardin D., Conrad P.A., Melli A., Jessup D.A., Dominik C., Roug A., Tinker M.T., Miller W.A. Prevalence, environmental loading, and molecular characterization of Cryptosporidium and Giardia isolates from domestic and wild animals along the central California coast. Appl. Environ. Microbiol. 2012;78:8762–8772. doi: 10.1128/AEM.02422-12. PubMed DOI PMC

Rocha F.L., Roque A.L.R., de Lima J.S., Cheida C.C., Lemos F.G., de Azevedo F.C., Arrais R.C., Bilac D., Herrera H.M., Mourão G., et al. Trypanosoma cruzi infection in neotropical wild carnivores (Mammalia: Carnivora): At the top of the T. cruzi transmission chain. PLoS ONE. 2013;8:e67463. doi: 10.1371/journal.pone.0067463. PubMed DOI PMC

Alvarado-Rybak M., Solano-Gallego L., Millán J. A review of piroplasmid infections in wild carnivores worldwide: Importance for domestic animal health and wildlife conservation. Parasit. Vectors. 2016;9:538. doi: 10.1186/s13071-016-1808-7. PubMed DOI PMC

André M.R. Diversity of Anaplasma and Ehrlichia/Neoehrlichia agents in terrestrial wild carnivores worldwide: Implications for human and domestic animal health and wildlife conservation. Front. Vet. Sci. 2018;5:293. doi: 10.3389/fvets.2018.00293. PubMed DOI PMC

Diakou A., Dimzas D., Astaras C., Savvas I., Di Cesare A., Morelli S., Neofitos Κ., Migli D., Traversa D. Clinical investigations and treatment outcome in a European wildcat (Felis silvestris silvestris) infected by cardio-pulmonary nematodes. Vet. Parasitol. Reg. Stud. Rep. 2020;19:100357. doi: 10.1016/j.vprsr.2019.100357. PubMed DOI

Traversa D., Morelli S., Di Cesare A., Diakou A. Felid cardiopulmonary nematodes: Dilemmas solved and new questions posed. Pathogens. 2021;10:30. doi: 10.3390/pathogens10010030. PubMed DOI PMC

Pence D.B., Tewes M.E., Laack L.L. Helminths of the ocelot from Southern Texas. J. Wildl. Dis. 2003;39:683–689. doi: 10.7589/0090-3558-39.3.683. PubMed DOI

Seguel M., Gottdenker N. The diversity and impact of hookworm infections in wildlife. Int. J. Parasitol. Parasites Wildl. 2017;6:177–194. doi: 10.1016/j.ijppaw.2017.03.007. PubMed DOI PMC

González P., Carbonell E., Urios V., Rozhnov V.V. Coprology of Panthera tigris altaica and Felis bengalensis euptilurus from the Russian far east. J. Parasitol. 2007;93:948–950. doi: 10.1645/GE-3519RN.1. PubMed DOI

Arrabal J.P., Pérez M.G., Arce L.F., Kamenetzky L. First identification and molecular phylogeny of Sparganum proliferum from endangered felid (Panthera onca) and other wild definitive hosts in one of the regions with highest worldwide biodiversity. Int. J. Parasitol. Parasites Wildl. 2020;13:142–149. doi: 10.1016/j.ijppaw.2020.09.002. PubMed DOI PMC

Ulziijargal G., Yeruult C., Khulan J., Gantsetseg C., Wandra T., Yamasaki H., Narankhajid M. Molecular identification of Taenia hydatigena and Mesocestoides species based on copro-DNA analysis of wild carnivores in Mongolia. Int. J. Parasitol. Parasites Wildl. 2020;11:72–82. doi: 10.1016/j.ijppaw.2019.12.004. PubMed DOI PMC

Lavikainen A., Haukisalmi V., Deksne G., Holmala K., Lejeune M., Isomursu M., Jokelainen P., Näreaho A., Laakkonen J., Hoberg E.P., et al. Molecular identification of Taenia spp. in the Eurasian lynx (Lynx lynx) from Finland. Parasitology. 2013;140:653–662. doi: 10.1017/S0031182012002120. PubMed DOI

Souza U.A., Webster A., Dall’Agnol B., Peters F.B., Favarini M.O., Schott D., Zitelli L.C., Mazim F.D., Kasper C.B., Ott R., et al. Ticks, mites, fleas, and vector-borne pathogens in free-ranging neotropical wild felids from southern Brazil. Ticks Tick. Borne. Dis. 2021;12:101706. doi: 10.1016/j.ttbdis.2021.101706. PubMed DOI

Marcogliese D.J. Parasites of the superorganism: Are they indicators of ecosystem health? Int. J. Parasitol. 2005;35:705–716. doi: 10.1016/j.ijpara.2005.01.015. PubMed DOI

Hudson P.J., Dobson A.P., Lafferty K.D. Is a healthy ecosystem one that is rich in parasites? Trends Ecol. Evol. 2006;21:381–385. doi: 10.1016/j.tree.2006.04.007. PubMed DOI

Pimm S.L., Jenkins C.N., Abell R., Brooks T.M., Gittleman J.L., Joppa L.N., Raven P.H., Roberts C.M., Sexton J.O. The biodiversity of species and their rates of extinction, distribution, and protection. Science. 2014;344:1246752. doi: 10.1126/science.1246752. PubMed DOI

Jenkins C.N., Pimm S.L., Joppa L.N. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl. Acad. Sci. USA. 2013;110:1–10. doi: 10.1073/pnas.1302251110. PubMed DOI PMC

Scognamillo D., Maxit I.E., Sunquist M., Polisar J. Coexistence of jaguar (Panthera onca) and puma (Puma concolor) in a mosaic landscape in the Venezuelan llanos. J. Zool. 2003;259:269–279. doi: 10.1017/S0952836902003230. DOI

Boron V., Xofis P., Link A., Payan E., Tzanopoulos J. Conserving predators across agricultural landscapes in Colombia: Habitat use and space partitioning by jaguars, pumas, ocelots and jaguarundis. Oryx. 2020;54:554–563. doi: 10.1017/S0030605318000327. DOI

Nagy-Reis M., Oshima J.E.d.F., Kanda C.Z., Palmeira F.B.L., Melo F.R., Morato R.G., Bonjorne L., Magioli M., Leuchtenberger C., Rohe F., et al. Neotropical Carnivores: A data set on carnivore distribution in the Neotropics. Ecology. 2020;101 doi: 10.1002/ecy.3128. PubMed DOI

Jędrzejewski W., Robinson H.S., Abarca M., Zeller K.A., Velasquez G., Paemelaere E.A.D., Goldberg J.F., Payan E., Hoogesteijn R., Boede E.O., et al. Estimating large carnivore populations at global scale based on spatial predictions of density and distribution—Application to the jaguar (Panthera onca) PLoS ONE. 2018;13:e0194719. doi: 10.1371/journal.pone.0194719. PubMed DOI PMC

Boron V., Tzanopoulos J., Gallo J., Barragan J., Jaimes-Rodriguez L., Schaller G., Payán E. Jaguar densities across human-dominated landscapes in Colombia: The contribution of unprotected areas to long term conservation. PLoS ONE. 2016;11:e0153973. doi: 10.1371/journal.pone.0153973. PubMed DOI PMC

Thompson R.C.A., Lymbery A.J., Smith A. Parasites, emerging disease and wildlife conservation. Int. J. Parasitol. 2010;40:1163–1170. doi: 10.1016/j.ijpara.2010.04.009. PubMed DOI

Otranto D., Deplazes P. Zoonotic nematodes of wild carnivores. Int. J. Parasitol. Parasites Wildl. 2019;9:370–383. doi: 10.1016/j.ijppaw.2018.12.011. PubMed DOI PMC

Payán E., Boron V. The future of wild mammals in oil palm landscapes in the Neotropics. Front. For. Glob. Chang. 2019;2:61. doi: 10.3389/ffgc.2019.00061. DOI

Boron V., Deere N.J., Xofis P., Link A., Quiñones-Guerrero A., Payan E., Tzanopoulos J. Richness, diversity, and factors influencing occupancy of mammal communities across human-modified landscapes in Colombia. Biol. Conserv. 2019;232:108–116. doi: 10.1016/j.biocon.2019.01.030. DOI

Reperant L.A., Cornaglia G., Osterhaus A.D.M.E. The importance of understanding the human–animal interface. In: Mackenzie J.S., Jeggo M., Daszak P., Richt J.A., editors. One Health: The Human-Animal-Environment Interfaces in Emerging Infectious Diseases. Volume 365. Springer; Berlin/Heidelberg, Germany: 2012. pp. 49–81.

Kuchta R., Kołodziej-Sobocińska M., Brabec J., Młocicki D., Sałamatin R., Scholz T. Sparganosis (Spirometra) in Europe in the molecular era. Clin. Infect. Dis. 2021;72:882–890. doi: 10.1093/cid/ciaa1036. PubMed DOI

Mueller J.F., Miranda Froes O., Fernandez T. On the occurrence of Spirometra mansonoides in South America. J. Parasitol. 1975;61:774–775. doi: 10.2307/3279487. PubMed DOI

Schmidt G.D., Martin R.L. Tapeworms of the Chaco Boreal, Paraguay, by two new species. J. Helminthol. 1978;52:205–209. doi: 10.1017/S0022149X00005381. PubMed DOI

Acuña-Olea F., Sacristán I., Aguilar E., García S., López M.J., Oyarzún-Ruiz P., Brito J.L., Fredes F., Napolitano C. Gastrointestinal and cardiorespiratory endoparasites in the wild felid guigna (Leopardus guigna) in Chile: Richness increases with latitude and first records for the host species. Int. J. Parasitol. Parasites Wildl. 2020;13:13–21. doi: 10.1016/j.ijppaw.2020.07.013. PubMed DOI PMC

Almeida G.G., Coscarelli D., Melo M.N., Melo A.L., Pinto H.A. Molecular identification of Spirometra spp. (Cestoda: Diphyllobothriidae) in some wild animals from Brazil. Parasitol. Int. 2016;65:428–431. doi: 10.1016/j.parint.2016.05.014. PubMed DOI

Tantaleán M., Michaud C. Huéspedes definitivos de Spirometra mansonoides (Cestoda: Diphyllobothriidae) en el Perú. Rev. Peru. Biol. 2005;12:153–157. doi: 10.15381/rpb.v12i1.2370. DOI

Moulinier R., Martinez E., Torres J., Noya O., de NOya B.A., Reyes O. Human proliferative sparganosis in Venezuela: Report of a case. Am. J. Trop. Med. Hyg. 1982;31:358–363. doi: 10.4269/ajtmh.1982.31.358. PubMed DOI

Beaver P.C., Rolon F.A. Proliferating larval cestode in a man in Paraguay. Am. J. Trop. Med. Hyg. 1981;30:625–637. doi: 10.4269/ajtmh.1981.30.625. PubMed DOI

Kikuchi T., Maruyama H. Human proliferative sparganosis update. Parasitol. Int. 2020;75:102036. doi: 10.1016/j.parint.2019.102036. PubMed DOI

Gomez J.J., Botero D. The first case of sparganosis in Colombia. Am. J. Trop. Med. Hyg. 1958;7:597–599. doi: 10.4269/ajtmh.1958.7.597. PubMed DOI

Peng Z.-W., Ning Y., Liu D., Sun Y., Wang L.-X., Zhai Q.-A., Hou Z.-J., Chai H.-L., Jiang G.-S. Ascarid infection in wild Amur tigers (Panthera tigris altaica) in China. BMC Vet. Res. 2020;16:86. doi: 10.1186/s12917-020-02296-5. PubMed DOI PMC

Bolivar-Mejia A., Alarcón-Olave C., Calvo-Betancourt L.S., Paniz-Mondolfi A., Delgado O., Rodriguez-Morales A.J. Toxocariasis in the Americas: Burden and disease control. Curr. Trop. Med. Rep. 2014;1:62–68. doi: 10.1007/s40475-013-0010-7. DOI

López-Osorio S., Penagos-Tabares F., Chaparro-Gutiérrez J.J. Prevalence of Toxocara spp. in dogs and cats in South America (excluding Brazil) Adv. Parasitol. 2020;109:743–778. doi: 10.1016/bs.apar.2020.01.029. PubMed DOI

Duszynski D.W., Kvičerová J., Seville R.S. The Biology and Identification of the Coccidia (Apicomplexa) of Carnivores of the World. Elsevier; Amsterdam, The Netherlands: 2018.

Dubey J.P. A review of Cystoisospora felis and C. rivolta-induced coccidiosis in cats. Vet. Parasitol. 2018;263:34–48. doi: 10.1016/j.vetpar.2018.09.016. PubMed DOI

Lühe M.F.L. Cystotänien südamerikanischer Feliden. Zool Jahrb. 1910;12:687–710.

Gomez-Puerta L.A., Yucra D., Lopez-Urbina M.T., Gonzalez A.E. The alpaca (Vicugna pacos) as a natural intermediate host of Taenia omissa (Cestoda: Taeniidae) Vet. Parasitol. 2017;246:93–95. doi: 10.1016/j.vetpar.2017.09.007. PubMed DOI

Gomez-Puerta L.A., Alarcon V., Pacheco J., Franco F., Lopez-Urbina M.T., Gonzalez A.E. Molecular and morphological evidence of Taenia omissa in pumas (Puma concolor) in the Peruvian Highlands. Rev. Bras. Parasitol. Veterinária. 2016;25:368–373. doi: 10.1590/S1984-29612016046. PubMed DOI

Figueiredo A.M., de Carvalho L.M., González M.J.P., Torres R.T., Pla S., Núñez-Arjona J.C., Rueda C., Vallverdú-Coll N., Silvestre F., Peña J., et al. Parasites of the reintroduced Iberian lynx (Lynx pardinus) and sympatric mesocarnivores in Extremadura, Spain. Pathogens. 2021;10:274. doi: 10.3390/pathogens10030274. PubMed DOI PMC

Amin O.M. Classification of the Acanthocephala. Folia Parasitol. 2013;60:273–305. doi: 10.14411/fp.2013.031. PubMed DOI

Sianto L., de Souza M.V., Chame M., da Luz M.d.F., Guidon N., Pessis A.-M., Araújo A. Helminths in feline coprolites up to 9000 years in the Brazilian Northeast. Parasitol. Int. 2014;63:851–857. doi: 10.1016/j.parint.2014.08.002. PubMed DOI

Patton S., Rabinowitz A., Randolph S., Johnson S.S. A coprological survey of parasites of wild Neotropical Felidae. J. Parasitol. 1986;72:517. doi: 10.2307/3281500. PubMed DOI

Santos E.G.N., Chame M., Chagas-Moutinho V.A., Santos C.P. Morphology and molecular analysis of Oncicola venezuelensis (Acanthocephala: Oligacanthorhynchidae) from the ocelot Leopardus pardalis in Brazil. J. Helminthol. 2017;91:605–612. doi: 10.1017/S0022149X16000651. PubMed DOI

Marteau M. Oncicola venezuelensis n. sp. (Archiacanthocephala: Oligacanthorhynchida), parasite de l’Ocelot (Felis pardalis L.) Ann. Parasitol. Hum. Comparée. 1977;52:25–33. doi: 10.1051/parasite/1977521025. PubMed DOI

Thatcher V.E., Nickol B.B. Some acanthocephalans from Panama and Colombia. Proc. Helminthol. Soc. Wash. 1972;39:245–248.

Benatti D., De Santi M., Werther K., Tebaldi J.H., Hoppe E.G.L. Helminthfauna of road-killed cougars (Puma concolor) from the Northeastern Region of São Paulo State, Brazil. Rev. Bras. Parasitol. Veterinária. 2021;30:e024120. doi: 10.1590/s1984-29612021008. PubMed DOI

Palmer J.P.S., Dib L.V., Lobão L.F., Pinheiro J.L., Ramos R.C.F., Uchoa C.M.A., Bastos O.M.P., Silva M.E.M., Nascimento J.L.D., Pissinatti A., et al. Oncicola venezuelensis (Marteau, 1977) (Acanthocephala: Oligacanthorhynchidae) in puma concolor in Rio de Janeiro, Brazil. Rev. Bras. Parasitol. Vet. 2020;29:1–13. doi: 10.1590/s1984-29612020046. PubMed DOI

Orrell T. NMNH Extant Specimen Records. National Museum of Natural History, Smithsonian Institution; Washington, DC, USA: 2017.

Vieira F.M., Muniz-Pereira L.C., de Souza Lima S., Neto A.H.A.M., Guimarães E.V., Luque J.L. A new metastrongyloidean species (Nematoda) parasitizing pulmonary arteries of Puma (Herpailurus) yagouaroundi (É. Geoffroy, 1803) (Carnivora: Felidae) from Brazil. J. Parasitol. 2013;99:327–331. doi: 10.1645/GE-3171.1. PubMed DOI

Di Cesare A., Morelli S., Colombo M., Simonato G., Veronesi F., Marcer F., Diakou A., D’Angelosante R., Pantchev N., Psaralexi E., et al. Is angiostrongylosis a realistic threat for domestic cats? Front. Vet. Sci. 2020;7 doi: 10.3389/fvets.2020.00195. PubMed DOI PMC

Beck H.E., Zimmermann N.E., McVicar T.R., Vergopolan N., Berg A., Wood E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data. 2018;5:180214. doi: 10.1038/sdata.2018.214. PubMed DOI PMC

Rabinowitz A., Zeller K.A. A range-wide model of landscape connectivity and conservation for the jaguar, Panthera onca. Biol. Conserv. 2010;143:939–945. doi: 10.1016/j.biocon.2010.01.002. DOI

Chame M. Terrestrial mammal feces: A morphometric summary and description. Mem. Inst. Oswaldo Cruz. 2003;98:71–94. doi: 10.1590/S0074-02762003000900014. PubMed DOI

Zuercher G.L., Gipson P.S., Stewart G.C. Identification of carnivore feces by local peoples and molecular analyses. Wildl. Soc. Bull. 2003;31:961–970.

Wultsch C., Waits L.P., Hallerman E.M., Kelly M.J. Optimizing collection methods for noninvasive genetic sampling of neotropical felids. Wildl. Soc. Bull. 2015;39:403–412. doi: 10.1002/wsb.540. DOI

Sikes R.S., Gannon W.L. Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J. Mammal. 2011;92:235–253. doi: 10.1644/10-MAMM-F-355.1. PubMed DOI PMC

Sikes R.S. 2016 Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. J. Mammal. 2016;97:663–688. doi: 10.1093/jmammal/gyw078. PubMed DOI PMC

Yang J., Scholten T. A Fixative for intestinal parasites permitting the use of concentration and permanent staining procedures. Am. J. Clin. Pathol. 1977;67:300–304. doi: 10.1093/ajcp/67.3.300. PubMed DOI

Dennis W.R., Stone W.M., Swanson L.E. A new laboratory and field diagnostic test for fluke ova in feces. J. Am. Vet. Med. Assoc. 1954;124:47–50. PubMed

Heine J. A simple technic for the demonstration of cryptosporidia in feces. Zentralbl. Veterinarmed. B. 1982;29:324–327. doi: 10.1111/j.1439-0450.1982.tb01233.x. PubMed DOI

Deplazes P., Eckert J., Mathis A., von Samson-Himmelstjerna G., Zahner H. Parasitology in Veterinary Medicine. Wageningen Academic Publishers; Wagenigen, The Netherlands: 2016.

Bowles J., Blair D., McManus D.P. Genetic variants within the genus Echinococcus identified by mitochondrial DNA sequencing. Mol. Biochem. Parasitol. 1992;54:165–173. doi: 10.1016/0166-6851(92)90109-W. PubMed DOI

Wicht B., Yanagida T., Scholz T., Ito A., Jiménez J.A., Brabec J. Multiplex PCR for differential identification of broad tapeworms (Cestoda : Diphyllobothrium) infecting humans. J. Clin. Microbiol. 2010;48:3111–3116. doi: 10.1128/JCM.00445-10. PubMed DOI PMC

Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S., Duran C., et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC

Katoh K., Standley D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC

Nguyen L.-T., Schmidt H.A., von Haeseler A., Minh B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating Maximum-Likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC

Chernomor O., von Haeseler A., Minh B.Q. Terrace aware data structure for phylogenomic inference from supermatrices. Syst. Biol. 2016;65:997–1008. doi: 10.1093/sysbio/syw037. PubMed DOI PMC

Kalyaanamoorthy S., Minh B.Q., Wong T.K.F., von Haeseler A., Jermiin L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods. 2017;14:587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC

Homan W.L., Vercammen M., De Braekeleer J., Verschueren H. Identification of a 200- to 300-fold repetitive 529 bp DNA fragment in Toxoplasma gondii, and its use for diagnostic and quantitative PCR. Int. J. Parasitol. 2000;30:69–75. doi: 10.1016/S0020-7519(99)00170-8. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Neglected zoonotic helminthiases in wild canids: new insights from South America

. 2023 ; 10 () : 1235182. [epub] 20230811

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...