Biomechanical Modeling to Inform Pulmonary Valve Replacement in Tetralogy of Fallot Patients After Complete Repair
Language English Country England, Great Britain Media print-electronic
Document type Journal Article, Observational Study, Research Support, Non-U.S. Gov't
Grant support
Wellcome Trust - United Kingdom
K23 HL150279
NHLBI NIH HHS - United States
WT 203148/Z/16/Z
Wellcome
PubMed
34216743
PubMed Central
PMC9810481
DOI
10.1016/j.cjca.2021.06.018
PII: S0828-282X(21)00353-6
Knihovny.cz E-resources
- MeSH
- Models, Biological * MeSH
- Heart Valve Prosthesis Implantation methods MeSH
- Adult MeSH
- Tetralogy of Fallot surgery MeSH
- Hemodynamics physiology MeSH
- Pulmonary Valve Insufficiency congenital diagnosis surgery MeSH
- Cardiac Surgical Procedures methods MeSH
- Humans MeSH
- Magnetic Resonance Imaging, Cine MeSH
- Abnormalities, Multiple * MeSH
- Follow-Up Studies MeSH
- Pulmonary Valve abnormalities diagnostic imaging surgery MeSH
- Reoperation MeSH
- Retrospective Studies MeSH
- Heart Ventricles diagnostic imaging physiopathology MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Observational Study MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND: A biomechanical model of the heart can be used to incorporate multiple data sources (electrocardiography, imaging, invasive hemodynamics). The purpose of this study was to use this approach in a cohort of patients with tetralogy of Fallot after complete repair (rTOF) to assess comparative influences of residual right ventricular outflow tract obstruction (RVOTO) and pulmonary regurgitation on ventricular health. METHODS: Twenty patients with rTOF who underwent percutaneous pulmonary valve replacement (PVR) and cardiovascular magnetic resonance imaging were included in this retrospective study. Biomechanical models specific to individual patient and physiology (before and after PVR) were created and used to estimate the RV myocardial contractility. The ability of models to capture post-PVR changes of right ventricular (RV) end-diastolic volume (EDV) and effective flow in the pulmonary artery (Qeff) was also compared with expected values. RESULTS: RV contractility before PVR (mean 66 ± 16 kPa, mean ± standard deviation) was increased in patients with rTOF compared with normal RV (38-48 kPa) (P < 0.05). The contractility decreased significantly in all patients after PVR (P < 0.05). Patients with predominantly RVOTO demonstrated greater reduction in contractility (median decrease 35%) after PVR than those with predominant pulmonary regurgitation (median decrease 11%). The model simulated post-PVR decreased EDV for the majority and suggested an increase of Qeff-both in line with published data. CONCLUSIONS: This study used a biomechanical model to synthesize multiple clinical inputs and give an insight into RV health. Individualized modeling allows us to predict the RV response to PVR. Initial data suggest that residual RVOTO imposes greater ventricular work than isolated pulmonary regurgitation.
CONTEXTE :: Une modélisation biomécanique du cœur peut être utilisée pour intégrer des sources de données multiples (électrocardiographie, imagerie, hémodynamique invasive). Le but de cette étude était d’utiliser cette approche pour une cohorte de patients atteints de tétralogie de Fallot aprèsr réparation complète (TdFr) pour évaluer, au niveau du ventricule, les influences comparatives de la sténose résiduelle de la voie d’éjection du ventricule droit (SVEVD) et de la régurgitation pulmonaire. MÉTHODES :: Vingt patients atteints de TdFr ayant subi un remplacement percutane de la valve pulmonaire (RVP) et une imagerie par résonance magnétique cardiovasculaire ont été inclus dans cette étude rétrospective. Des modèles biomécaniques adaptés à chaque patient et à sa physiologie (avant et après le RVP) ont été créés et utilisés pour estimer la contractilité myocardique du ventricule droit (VD). La capacité des modèles à capturer les changements post-RVP du volume télédiastolique (VTD) du VD et du débit effectif dans l’artère pulmonaire (Qeff) a également été comparée aux valeurs attendues. RÉSULTATS :: La contractilité du VD avant le RVP (moyenne 66 ± 16 kPa, moyenne ± déviation standard)) était plus élevée chez les patients atteints de TdFr par rapport au VD normal (38–48 kPa) (P < 0,05). La contractilité a diminué de manière significative chez tous les patients après le RVP (P < 0,05). Les patients présentant une SVEVD prédominante ont montré une plus grande réduction de la contractilité (diminution médiane de 35 %) après le RVP que ceux présentant une régurgitation pulmonaire prédominante (diminution médiane de 11 %). Le modèle a simulé une diminution du VTD-VD après le RVP pour la majorité des patients et a suggéré une augmentation du Qeff, ce qui est conforme aux données publiées. CONCLUSIONS :: Cette étude a utilisé un modèle biomécanique pour synthétiser de multiples données cliniques et donner un aperçu de l’état de santé du VD. La modélisation individualisée nous permet de prédire la réponse du VD au RVP. Les premières données suggèrent que la SVEVD résiduelle impose un travail ventriculaire plus important que la régurgitation pulmonaire isolée.
See more in PubMed
Vliegen HW, van Straten A, de Roos A, et al. Magnetic resonance imaging to assess the hemodynamic effects of pulmonary valve replacement in adults late after repair of tetralogy of Fallot. Circulation 2002;106:1703–7. PubMed
Quail MA, Frigiola A, Giardini A, et al. Impact of pulmonary valve replacement in tetralogy of Fallot with pulmonary regurgitation: a comparison of intervention and nonintervention. Ann Thorac Surg 2012;94:1619–26. PubMed
Bokma JP, Winter MM, Oosterhof T, et al. Preoperative thresholds for mid-to-late haemodynamic and clinical outcomes after pulmonary valve replacement in tetralogy of Fallot. Eur Heart J 2016;37:829–35. PubMed
Dave HH, Buechel ERV, Dodge-Khatami A, et al. Early insertion of a pulmonary valve for chronic regurgitation helps restoration of ventricular dimensions. Ann Thorac Surg 2005;80:1615–21. PubMed
Frigiola A, Hughes M, Turner M, et al. Physiological and phenotypic characteristics of late survivors of tetralogy of Fallot repair who are free from pulmonary valve replacement. Circulation 2013;128:1861–8. PubMed
Tweddell JS, Simpson P, Li S-H, et al. Timing and technique of pulmonary valve replacement in the patient with tetralogy of Fallot. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 2012;15:27–33. PubMed
Therrien J, Provost Y, Merchant N, et al. Optimal timing for pulmonary valve replacement in adults after tetralogy of Fallot repair. Am J Cardiol 2005;95:779–82. PubMed
Geva T. Repaired tetralogy of Fallot: the roles of cardiovascular magnetic resonance in evaluating pathophysiology and for pulmonary valve replacement decision support. J Cardiovasc Magn Reson 2011;13:9. PubMed PMC
Valente AM, Gauvreau K, Assenza GE, et al. Contemporary predictors of death and sustained ventricular tachycardia in patients with repaired tetralogy of Fallot enrolled in the INDICATOR cohort. Heart 2014;100:247–53. PubMed PMC
Wang VY, Nielsen PM, Nash MP. Image-based predictive modeling of heart mechanics. Annu Rev Biomed Eng 2015;17:351–83. PubMed
Chabiniok R, Wang VY, Hadjicharalambous M, et al. Multiphysics and multiscale modelling, data—model fusion and integration of organ physiology in the clinic: ventricular cardiac mechanics. Interface Focus 2016;6:20150083. PubMed PMC
Asner L, Hadjicharalambous M, Chabiniok R, et al. Estimation of passive and active properties in the human heart using 3D tagged MRI. Biomech Model Mechanobiol 2016;15:1121–39. PubMed PMC
Chabiniok R, Moireau P, Lesault P-F, et al. Estimation of tissue contractility from cardiac cine-MRI using a biomechanical heart model. Biomech Model Mechanobiol 2012;11:609–30. PubMed
Ruijsink B, Zugaj K, Wong J, et al. Dobutamine stress testing in patients with Fontan circulation augmented by biomechanical modeling. PLoS One 2020;15:e0229015. PubMed PMC
Genet M, Stoeck CT, von Deuster C, Lee LC, Kozerke S. Equilibrated warping: finite element image registration with finite strain equilibrium gap regularization. Med Image Anal 2018;50:1–22. PubMed
Castellanos DA, Skardova K, Bhattaru A, et al. Left ventricular torsion obtained using equilibrated warping in patients with repaired tetralogy of Fallot. Pediatr Cardiol 2021;42:1275–83. PubMed PMC
Kawel-Boehm N, Maceira A, Valsangiacomo-Buechel ER, et al. Normal values for cardiovascular magnetic resonance in adults and children. J Cardiovasc Magn Reson 2015;17:29. PubMed PMC
Caruel M, Chabiniok R, Moireau P, Lecarpentier Y, Chapelle D. Dimensional reductions of a cardiac model for effective validation and calibration. Biomech Model Mechanobiol 2014;13:897–914. PubMed
Le Gall A, Vallée F, Pushparajah K, et al. Monitoring of cardiovascular physiology augmented by a patient-specific biomechanical model during general anesthesia. A proof of concept study. PLoS One 2020;15:e0232830. PubMed PMC
Chapelle D, Le Tallec P, Moireau P, Sorine M. An energy-preserving muscle tissue model: formulation and compatible discretizations. Int J Multiscale Comput Eng 2012;10:189.
Huxley AF. Muscle structure and theories of contraction. Prog Biophys Biophys Chem 1957;7:255–318. PubMed
Kimmig F, Chapelle D, Moireau P. Thermodynamic properties of muscle contraction models and associated discrete-time principles. Adv Model Simul Eng Sci 2019;6:6.
Stergiopulos N, Westerhof BE, Westerhof N. Total arterial inertance as the fourth element of the Windkessel model. Am J Physiol 1999;276:H81–8. PubMed
Sainte-Marie J, Chapelle D, Cimrman R, Sorine M. Modeling and estimation of the cardiac electromechanical activity. Comput Struct 2006;84:1743–59.
Klotz S, Hay I, Dickstein ML, et al. Single-beat estimation of end-diastolic pressure-volume relationship: a novel method with potential for noninvasive application. Am J Physiol Heart Circ Physiol 2006;291:H403–12. PubMed
Chabiniok R, Moireau P, Kiesewetter C, et al. Assessment of atrioventricular valve regurgitation using biomechanical cardiac modeling In: Pop M, Wright GA, eds. Functional Imaging and Modelling of the Heart: 9th International Conference, FIMH 2017, Toronto, ON, Canada, June 11–13, 2017, Proceedings. Springer, 2017:401–11.
Lurz P, Nordmeyer J, Muthurangu V, et al. Comparison of bare metal stenting and percutaneous pulmonary valve implantation for treatment of right ventricular outflow tract obstruction. Circulation 2009;119:2995–3001. PubMed
Švihlová H, Hron J, Málek J, Rajagopal KR, Rajagopal K. Determination of pressure data from velocity data with a view toward its application in cardiovascular mechanics. Part 1. Theoretical considerations. Int J Eng Sci 2016;105:108–27.
Nagueh SF, Smiseth OA, Appleton CP, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2016;29:277–314. PubMed
Janoušek J, Kovanda J, Ložek M, et al. Pulmonary right ventricular resynchronization in congenital heart disease. Circ Cardiovasc Imaging 2017;10:e006424. PubMed
Genet M, Lee LC, Baillargeon B, Guccione JM, Kuhl E. Modeling pathologies of diastolic and systolic heart failure. Ann Biomed Eng 2016;44:112–27. PubMed PMC
Göktepe S, Abilez OJ, Kuhl E. A generic approach toward finite growth with examples of athlete’s heart, cardiac dilation, and cardiac wall thickening. J Mech Phys Solids 2010;58:1661–80.
Lee LC, Genet M, Acevedo-Bolton G, et al. A computational model that predicts reverse growth in response to mechanical unloading. Biomech Model Mechanobiol 2015;14:12. PubMed PMC
Regazzoni F, Chapelle D, Moireau P. Combining data assimilation and machine learning to build data-driven models for unknown long time dynamics—applications in cardiovascular modeling. Int J Numer Methods Biomed Eng 2021;37:e3471. PubMed PMC
von Deuster C, Sammut E, Asner L, et al. Studying dynamic myofiber aggregate reorientation in dilated cardiomyopathy using in vivo magnetic resonance diffusion tensor imaging. Circ Cardiovasc Imaging 2016;9:e005018. PubMed PMC