• Je něco špatně v tomto záznamu ?

Motion tracking and gait feature estimation for recognising Parkinson's disease using MS Kinect

O. Ťupa, A. Procházka, O. Vyšata, M. Schätz, J. Mareš, M. Vališ, V. Mařík,

. 2015 ; 14 (-) : 97. [pub] 20151024

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc16020197

BACKGROUND: Analysis of gait features provides important information during the treatment of neurological disorders, including Parkinson's disease. It is also used to observe the effects of medication and rehabilitation. The methodology presented in this paper enables the detection of selected gait attributes by Microsoft (MS) Kinect image and depth sensors to track movements in three-dimensional space. METHODS: The experimental part of the paper is devoted to the study of three sets of individuals: 18 patients with Parkinson's disease, 18 healthy aged-matched individuals, and 15 students. The methodological part of the paper includes the use of digital signal-processing methods for rejecting gross data-acquisition errors, segmenting video frames, and extracting gait features. The proposed algorithm describes methods for estimating the leg length, normalised average stride length (SL), and gait velocity (GV) of the individuals in the given sets using MS Kinect data. RESULTS: The main objective of this work involves the recognition of selected gait disorders in both the clinical and everyday settings. The results obtained include an evaluation of leg lengths, with a mean difference of 0.004 m in the complete set of 51 individuals studied, and of the gait features of patients with Parkinson's disease (SL: 0.38 m, GV: 0.61 m/s) and an age-matched reference set (SL: 0.54 m, GV: 0.81 m/s). Combining both features allowed for the use of neural networks to classify and evaluate the selectivity, specificity, and accuracy. The achieved accuracy was 97.2 %, which suggests the potential use of MS Kinect image and depth sensors for these applications. CONCLUSIONS: Discussion points include the possibility of using the MS Kinect sensors as inexpensive replacements for complex multi-camera systems and treadmill walking in gait-feature detection for the recognition of selected gait disorders.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16020197
003      
CZ-PrNML
005      
20160725124337.0
007      
ta
008      
160722s2015 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1186/s12938-015-0092-7 $2 doi
024    7_
$a 10.1186/s12938-015-0092-7 $2 doi
035    __
$a (PubMed)26499251
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Ťupa, Ondřej $u Department of Computing and Control Engineering, University of Chemistry and Technology in Prague, Technická 5, 166 28, Prague 6, Czech Republic. Ondrej.Tupa@vscht.cz.
245    10
$a Motion tracking and gait feature estimation for recognising Parkinson's disease using MS Kinect / $c O. Ťupa, A. Procházka, O. Vyšata, M. Schätz, J. Mareš, M. Vališ, V. Mařík,
520    9_
$a BACKGROUND: Analysis of gait features provides important information during the treatment of neurological disorders, including Parkinson's disease. It is also used to observe the effects of medication and rehabilitation. The methodology presented in this paper enables the detection of selected gait attributes by Microsoft (MS) Kinect image and depth sensors to track movements in three-dimensional space. METHODS: The experimental part of the paper is devoted to the study of three sets of individuals: 18 patients with Parkinson's disease, 18 healthy aged-matched individuals, and 15 students. The methodological part of the paper includes the use of digital signal-processing methods for rejecting gross data-acquisition errors, segmenting video frames, and extracting gait features. The proposed algorithm describes methods for estimating the leg length, normalised average stride length (SL), and gait velocity (GV) of the individuals in the given sets using MS Kinect data. RESULTS: The main objective of this work involves the recognition of selected gait disorders in both the clinical and everyday settings. The results obtained include an evaluation of leg lengths, with a mean difference of 0.004 m in the complete set of 51 individuals studied, and of the gait features of patients with Parkinson's disease (SL: 0.38 m, GV: 0.61 m/s) and an age-matched reference set (SL: 0.54 m, GV: 0.81 m/s). Combining both features allowed for the use of neural networks to classify and evaluate the selectivity, specificity, and accuracy. The achieved accuracy was 97.2 %, which suggests the potential use of MS Kinect image and depth sensors for these applications. CONCLUSIONS: Discussion points include the possibility of using the MS Kinect sensors as inexpensive replacements for complex multi-camera systems and treadmill walking in gait-feature detection for the recognition of selected gait disorders.
650    _2
$a zrychlení $7 D000054
650    _2
$a dospělí $7 D000328
650    _2
$a senioři $7 D000368
650    _2
$a senioři nad 80 let $7 D000369
650    _2
$a algoritmy $7 D000465
650    _2
$a studie případů a kontrol $7 D016022
650    _2
$a ženské pohlaví $7 D005260
650    12
$a chůze (způsob) $7 D005684
650    _2
$a lidé $7 D006801
650    _2
$a zobrazování trojrozměrné $x metody $7 D021621
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a lidé středního věku $7 D008875
650    _2
$a nervová síť $7 D009415
650    _2
$a Parkinsonova nemoc $x patofyziologie $7 D010300
655    _2
$a časopisecké články $7 D016428
700    1_
$a Procházka, Aleš $u Department of Computing and Control Engineering, University of Chemistry and Technology in Prague, Technická 5, 166 28, Prague 6, Czech Republic. A.Prochazka@ieee.org. Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University, Zikova 1903/4, 166 36, Prague 6, Czech Republic. A.Prochazka@ieee.org.
700    1_
$a Vyšata, Oldřich $u Department of Computing and Control Engineering, University of Chemistry and Technology in Prague, Technická 5, 166 28, Prague 6, Czech Republic. Vysatao@gmail.com. Department of Neurology, Charles University, Sokolská 581, 500 05, Hradec Kralove, Czech Republic. Vysatao@gmail.com.
700    1_
$a Schätz, Martin $u Department of Computing and Control Engineering, University of Chemistry and Technology in Prague, Technická 5, 166 28, Prague 6, Czech Republic. Martin.Schatz@vscht.cz.
700    1_
$a Mareš, Jan $u Department of Computing and Control Engineering, University of Chemistry and Technology in Prague, Technická 5, 166 28, Prague 6, Czech Republic. Jan.Mares@vscht.cz.
700    1_
$a Vališ, Martin $u Department of Neurology, Charles University, Sokolská 581, 500 05, Hradec Kralove, Czech Republic. Valimar@seznam.cz.
700    1_
$a Mařík, Vladimír $u Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University, Zikova 1903/4, 166 36, Prague 6, Czech Republic. marik@labe.felk.cvut.cz.
773    0_
$w MED00008166 $t Biomedical engineering online $x 1475-925X $g Roč. 14, č. - (2015), s. 97
856    41
$u https://pubmed.ncbi.nlm.nih.gov/26499251 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20160722 $b ABA008
991    __
$a 20160725124555 $b ABA008
999    __
$a ok $b bmc $g 1154867 $s 944725
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 14 $c - $d 97 $e 20151024 $i 1475-925X $m Biomedical engineering online $n Biomed Eng Online $x MED00008166
LZP    __
$a Pubmed-20160722

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...