In silico analysis of RNA-dependent RNA polymerase of the SARS-CoV-2 and therapeutic potential of existing antiviral drugs

. 2021 Aug ; 135 () : 104591. [epub] 20210623

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34216889

The continued sustained threat of the SARS-CoV-2 virus world-wide, urgently calls for far-reaching effective therapeutic strategies for treating this emerging infection. Accordingly, this study explores mode of action and therapeutic potential of existing antiviral drugs. Multiple sequence alignment and phylogenetic analyses indicate that the RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 was mutable and similar to bat coronavirus RaTG13. Successive interactions between RdRp (nsp12 alone or in complex with cofactors nsp7-8) and viral RNA demonstrated that the binding affinity values remained the same, but the sites of interaction of RdRp (highly conserved for homologous sequences from different organisms) were altered in the presence of selected antiviral drugs such as Remdesivir, and Sofosbuvir. The antiviral drug Sofosbuvir reduced the number of hydrogen bonds formed between RdRp and RNA. Remdesivir bound more tightly to viral RNA than viral RdRp alone or the nsp12-7-8 hexadecameric complex, resulting in a significant number of hydrogen bonds being formed in the uracil-rich region. The interaction between nsp12-7-8 complex and RNA was mediated by specific interaction sites of nsp7-8. Therefore, the conserved nature of RdRp interaction sites, and alterations due to drug intervention indicate the therapeutic potential of the selected drugs. In this article, we provide additional focus on the interacting amino acids of the nsp7-8 complex and highlight crucial regions that could be targeted for precluding a correct recognition of subunits involved in the hexadecameric assembly, to rationally design molecules endowed with a significant antiviral profile.

Zobrazit více v PubMed

Bryson-Cahn C., Duchin J., Makarewicz V.A., Kay M., Rietberg K., Napolitano N., Kamangu C., Dellit T.H., Lynch J.B. A novel approach for a novel pathogen: using a home assessment team to evaluate patients for COVID-19. Clin. Infect. Dis. 2020;71:2211–2214. PubMed PMC

Contini C., Di Nuzzo M., Barp N., Bonazza A., De Giorgio R., Tognon M., Rubino S. The novel zoonotic COVID-19 pandemic: an expected global health concern. J Infect Dev Ctries. 2020;14:254–264. PubMed

Lauer S.A., Grantz K.H., Bi Q., Jones F.K., Zheng Q., Meredith H.R., Azman A.S., Reich N.G., Lessler J. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Ann. Intern. Med. 2020;172:577–582. PubMed PMC

Zu Z.Y., Jiang M.D., Xu P.P., Chen W., Ni Q.Q., Lu G.M., Zhang L.J. Coronavirus disease 2019 (COVID-19): a perspective from China. Radiology. 2020;296:E15–E25. PubMed PMC

Sharma A., Tiwari S., Deb M.K., Marty J.L. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): a global pandemic and treatment strategies. Int. J. Antimicrob. Agents. 2020;56:106054. PubMed PMC

Parvin F., Islam S., Urmy Z., Ahmed S. The symptoms, contagious process, prevention and post treatment of covid-19. Eur J Physiother Rehab Studies. 2020;1

Ou X., Liu Y., Lei X., Li P., Mi D., Ren L., Guo L., Guo R., Chen T., Hu J., Xiang Z., Mu Z., Chen X., Chen J., Hu K., Jin Q., Wang J., Qian Z. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat. Commun. 2020;11:1620. PubMed PMC

Tsiambas E., Papanikolaou V., Chrysovergis A., Mastronikolis N., Ragos V., Kavantzas N., Lazaris A.C., Kyrodimos E. Coronavirus in hematologic malignancies: targeting molecules beyond the angiotensin-converting enzyme 2 (ACE2) wall in COVID-19. Pathol. Oncol. Res. 2020;26:2823–2825. PubMed PMC

Kadam S., Sukhramani G., Bishnoi P., Pable A., Barvkar V. Preprints.org. 2020. Molecular and structural insights into COVID-19 pandemic. PubMed PMC

Li X., Geng M., Peng Y., Meng L., Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal. 2020;10:102–108. PubMed PMC

Ullah M.A., Araf Y., Sarkar B., Moin A.T., Reshad R.A.I., Rahman M.D.H. Pathogenesis, diagnosis and possible therapeutic options for COVID-19. J Clin Exp Invest. 2020;11

Ye Z.W., Yuan S., Yuen K.S., Fung S.Y., Chan C.P., Jin D.Y. Zoonotic origins of human coronaviruses. Int. J. Biol. Sci. 2020;16:1686–1697. PubMed PMC

Perlman S., Netland J. Coronaviruses post-SARS: update on replication and pathogenesis. Nat. Rev. Microbiol. 2009;7:439–450. PubMed PMC

Walls A.C., Park Y.J., Tortorici M.A., Wall A., McGuire A.T., Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181:281–292. e286. PubMed PMC

Fehr A.R., Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol. Biol. 2015;1282:1–23. PubMed PMC

Coutard B., Valle C., de Lamballerie X., Canard B., Seidah N.G., Decroly E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antivir. Res. 2020;176:104742. PubMed PMC

Yan R., Zhang Y., Li Y., Xia L., Guo Y., Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020;367:1444–1448. PubMed PMC

Zhou P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W., Si H.R., Zhu Y., Li B., Huang C.L., Chen H.D., Chen J., Luo Y., Guo H., Jiang R.D., Liu M.Q., Chen Y., Shen X.R., Wang X., Zheng X.S., Zhao K., Chen Q.J., Deng F., Liu L.L., Yan B., Zhan F.X., Wang Y.Y., Xiao G.F., Shi Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–273. PubMed PMC

Brogi S., Calderone V. Off-target ACE2 ligands: possible therapeutic option for CoVid-19? Br. J. Clin. Pharmacol. 2020;86:1178–1179. PubMed PMC

Domingo E. Molecular basis of genetic variation of viruses. Virus as Populations. 2020:35–71.

Ah A.K., St Z. Preprocessing of the candidate antiviral drugs against COVID-19 in models of SARS cov 2 targets. Prensa Med. Argent. 2020;106

Gao Y., Yan L., Huang Y., Liu F., Zhao Y., Cao L., Wang T., Sun Q., Ming Z., Zhang L., Ge J., Zheng L., Zhang Y., Wang H., Zhu Y., Zhu C., Hu T., Hua T., Zhang B., Yang X., Li J., Yang H., Liu Z., Xu W., Guddat L.W., Wang Q., Lou Z., Rao Z. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science. 2020;368:779–782. PubMed PMC

Lehmann K.C., Gulyaeva A., Zevenhoven-Dobbe J.C., Janssen G.M., Ruben M., Overkleeft H.S., van Veelen P.A., Samborskiy D.V., Kravchenko A.A., Leontovich A.M., Sidorov I.A., Snijder E.J., Posthuma C.C., Gorbalenya A.E. Discovery of an essential nucleotidylating activity associated with a newly delineated conserved domain in the RNA polymerase-containing protein of all nidoviruses. Nucleic Acids Res. 2015;43:8416–8434. PubMed PMC

Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., Cheng Z., Yu T., Xia J., Wei Y., Wu W., Xie X., Yin W., Li H., Liu M., Xiao Y., Gao H., Guo L., Xie J., Wang G., Jiang R., Gao Z., Jin Q., Wang J., Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. PubMed PMC

Lin L., Lu L., Cao W., Li T. Hypothesis for potential pathogenesis of SARS-CoV-2 infection-a review of immune changes in patients with viral pneumonia. Emerg. Microb. Infect. 2020;9:727–732. PubMed PMC

Zhang H., Penninger J.M., Li Y., Zhong N., Slutsky A.S. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46:586–590. PubMed PMC

Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. PubMed PMC

Clamp M., Cuff J., Searle S.M., Barton G.J. The Jalview Java alignment editor. Bioinformatics. 2004;20:426–427. PubMed

Sievers F., Higgins D.G. Clustal omega. Curr Protoc Bioinformatics. 2014;48 3 13 11-16. PubMed

Hall B.G. Building phylogenetic trees from molecular data with MEGA. Mol. Biol. Evol. 2013;30:1229–1235. PubMed

Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018;35:1547–1549. PubMed PMC

Elfiky A.A. Ribavirin, remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): a molecular docking study. Life Sci. 2020;253:117592. PubMed PMC

Elfiky A.A. SARS-CoV-2 RNA dependent RNA polymerase (RdRp) targeting: an in silico perspective. J. Biomol. Struct. Dyn. 2020:1–9. PubMed PMC

Brogi S., Ramunno A., Savi L., Chemi G., Alfano G., Pecorelli A., Pambianchi E., Galatello P., Compagnoni G., Focher F., Biamonti G., Valacchi G., Butini S., Gemma S., Campiani G., Brindisi M. First dual AK/GSK-3 beta inhibitors endowed with antioxidant properties as multifunctional, potential neuroprotective agents. Eur. J. Med. Chem. 2017;138:438–457. PubMed

Reale A., Brogi S., Chelini A., Paolino M., Di Capua A., Giuliani G., Cappelli A., Giorgi G., Chemi G., Grillo A., Valoti M., Sautebin L., Rossi A., Pace S., La Motta C., Di Cesare Mannelli L., Lucarini E., Ghelardini C., Anzini M. Synthesis, biological evaluation and molecular modeling of novel selective COX-2 inhibitors: sulfide, sulfoxide, and sulfone derivatives of 1,5-diarylpyrrol-3-substituted scaffold. Bioorg. Med. Chem. 2019;27:115045. PubMed

Brindisi M., Ulivieri C., Alfano G., Gemma S., de Asis Balaguer F., Khan T., Grillo A., Chemi G., Menchon G., Prota A.E., Olieric N., Lucena-Agell D., Barasoain I., Diaz J.F., Nebbioso A., Conte M., Lopresti L., Magnano S., Amet R., Kinsella P., Zisterer D.M., Ibrahim O., O'Sullivan J., Morbidelli L., Spaccapelo R., Baldari C., Butini S., Novellino E., Campiani G., Altucci L., Steinmetz M.O., Brogi S. Structure-activity relationships, biological evaluation and structural studies of novel pyrrolonaphthoxazepines as antitumor agents. Eur. J. Med. Chem. 2019;162:290–320. PubMed

Sirous H., Chemi G., Campiani G., Brogi S. An integrated in silico screening strategy for identifying promising disruptors of p53-MDM2 interaction. Comput. Biol. Chem. 2019;83:107105. PubMed

Sirous H., Chemi G., Gemma S., Butini S., Debyser Z., Christ F., Saghaie L., Brogi S., Fassihi A., Campiani G., Brindisi M. Identification of novel 3-Hydroxy-pyran-4-One derivatives as potent HIV-1 integrase inhibitors using in silico structure-based combinatorial library design approach. Front Chem. 2019;7:574. PubMed PMC

Williams C.J., Headd J.J., Moriarty N.W., Prisant M.G., Videau L.L., Deis L.N., Verma V., Keedy D.A., Hintze B.J., Chen V.B., Jain S., Lewis S.M., Arendall W.B., 3rd, Snoeyink J., Adams P.D., Lovell S.C., Richardson J.S., Richardson D.C. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 2018;27:293–315. PubMed PMC

Luthy R., Bowie J.U., Eisenberg D. Assessment of protein models with three-dimensional profiles. Nature. 1992;356:83–85. PubMed

Yan Y., Zhang D., Zhou P., Li B., Huang S.Y. HDOCK: a web server for protein-protein and protein-DNA/RNA docking based on a hybrid strategy. Nucleic Acids Res. 2017;45:W365–W373. PubMed PMC

Wallace A.C., Laskowski R.A., Thornton J.M. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 1995;8:127–134. PubMed

Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. PubMed

Salentin S., Schreiber S., Haupt V.J., Adasme M.F., Schroeder M. PLIP: fully automated protein-ligand interaction profiler. Nucleic Acids Res. 2015;43:W443–W447. PubMed PMC

Nickolls J., Buck I., Garland M., Skadron K. Scalable parallel programming with CUDA. Queue. 2008;6:40.

Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983;79:926–935.

Jorgensen W.L., Maxwell D.S., Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 1996;118:11225–11236.

Brogi S., Butini S., Maramai S., Colombo R., Verga L., Lanni C., De Lorenzi E., Lamponi S., Andreassi M., Bartolini M., Andrisano V., Novellino E., Campiani G., Brindisi M., Gemma S. Disease-modifying anti-Alzheimer's drugs: inhibitors of human cholinesterases interfering with beta-amyloid aggregation. CNS Neurosci. Ther. 2014;20:624–632. PubMed PMC

Sirous H., Fassihi A., Brogi S., Campiani G., Christ F., Debyser Z., Gemma S., Butini S., Chemi G., Grillo A., Zabihollahi R., Aghasadeghi M.R., Saghaie L., Memarian H.R. Synthesis, molecular modelling and biological studies of 3-hydroxypyrane- 4-one and 3-hydroxy-pyridine-4-one derivatives as HIV-1 integrase inhibitors. Med. Chem. 2019;15:755–770. PubMed

Humphreys D.D., Friesner R.A., Berne B.J. A multiple-time-step molecular dynamics algorithm for macromolecules. J. Phys. Chem. 1994;98:6885–6892.

Hoover W.G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. 1985;31:1695–1697. PubMed

Martyna G.J., Tobias D.J., Klein M.L. Constant pressure molecular dynamics algorithms. J. Chem. Phys. 1994;101:4177–4189.

Essmann U., Perera L., Berkowitz M.L., Darden T., Lee H., Pedersen L.G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995;103:8577–8593.

Ludmir E.B., Enquist L.W. Viral genomes are part of the phylogenetic tree of life. Nat. Rev. Microbiol. 2009;7:615. author reply 615. PubMed

Chen X. Understanding the development and perception of global health for more effective student education. Yale J. Biol. Med. 2014;87:231–240. PubMed PMC

Rife B.D., Mavian C., Chen X., Ciccozzi M., Salemi M., Min J., Prosperi M.C. Phylodynamic applications in 21(st) century global infectious disease research. Glob Health Res Policy. 2017;2:13. PubMed PMC

Matyasek R., Kovarik A. Indicating Rapid Evolution in Their Hosts; Genes (Basel): 2020. Mutation Patterns of Human SARS-CoV-2 and Bat RaTG13 Coronavirus Genomes Are Strongly Biased towards C>U Transitions; p. 11. PubMed PMC

Lu J., Cui J., Qian Z., Wang Y., Zhang H., Duan Y., Wu X., Yao X., Song Y., Li X., Wu C., Tang X. On the origin and continuing evolution of SARS-CoV-2. Natl Sci Rev. 2020;7:1012–1023. PubMed PMC

te Velthuis A.J., van den Worm S.H., Snijder E.J. The SARS-coronavirus nsp7+nsp8 complex is a unique multimeric RNA polymerase capable of both de novo initiation and primer extension. Nucleic Acids Res. 2012;40:1737–1747. PubMed PMC

Hillen H.S., Kokic G., Farnung L., Dienemann C., Tegunov D., Cramer P. Structure of replicating SARS-CoV-2 polymerase. Nature. 2020;584:154–156. PubMed

Barakat K., Ahmed M., Tabana Y., Ha M. bioRxiv; 2020. A “Deep Dive” into the SARS-Cov-2 Polymerase Assembly: Identifying Novel Allosteric Sites and Analyzing the Hydrogen Bond Networks and Correlated Dynamics. 2020.2006.2002.130849. PubMed

Brogi S., Sirous H., Calderone V., Chemi G. Amyloid beta fibril disruption by oleuropein aglycone: long-time molecular dynamics simulation to gain insight into the mechanism of action of this polyphenol from extra virgin olive oil. Food Funct. 2020;11:8122–8132. PubMed

Yin W., Mao C., Luan X., Shen D.D., Shen Q., Su H., Wang X., Zhou F., Zhao W., Gao M., Chang S., Xie Y.C., Tian G., Jiang H.W., Tao S.C., Shen J., Jiang Y., Jiang H., Xu Y., Zhang S., Zhang Y., Xu H.E. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science. 2020;368:1499–1504. PubMed PMC

Jacome R., Campillo-Balderas J.A., Ponce de Leon S., Becerra A., Lazcano A. Sofosbuvir as a potential alternative to treat the SARS-CoV-2 epidemic. Sci. Rep. 2020;10:9294. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...