In silico analysis of RNA-dependent RNA polymerase of the SARS-CoV-2 and therapeutic potential of existing antiviral drugs
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
34216889
PubMed Central
PMC8220294
DOI
10.1016/j.compbiomed.2021.104591
PII: S0010-4825(21)00385-1
Knihovny.cz E-zdroje
- Klíčová slova
- Computational biology, Molecular modelling, RdRp, Remdesivir, SARS-CoV-2, Sofosbuvir,
- MeSH
- antivirové látky farmakologie MeSH
- COVID-19 * MeSH
- fylogeneze MeSH
- lidé MeSH
- počítačová simulace MeSH
- RNA-dependentní RNA-polymerasa * MeSH
- SARS-CoV-2 MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antivirové látky MeSH
- RNA-dependentní RNA-polymerasa * MeSH
The continued sustained threat of the SARS-CoV-2 virus world-wide, urgently calls for far-reaching effective therapeutic strategies for treating this emerging infection. Accordingly, this study explores mode of action and therapeutic potential of existing antiviral drugs. Multiple sequence alignment and phylogenetic analyses indicate that the RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 was mutable and similar to bat coronavirus RaTG13. Successive interactions between RdRp (nsp12 alone or in complex with cofactors nsp7-8) and viral RNA demonstrated that the binding affinity values remained the same, but the sites of interaction of RdRp (highly conserved for homologous sequences from different organisms) were altered in the presence of selected antiviral drugs such as Remdesivir, and Sofosbuvir. The antiviral drug Sofosbuvir reduced the number of hydrogen bonds formed between RdRp and RNA. Remdesivir bound more tightly to viral RNA than viral RdRp alone or the nsp12-7-8 hexadecameric complex, resulting in a significant number of hydrogen bonds being formed in the uracil-rich region. The interaction between nsp12-7-8 complex and RNA was mediated by specific interaction sites of nsp7-8. Therefore, the conserved nature of RdRp interaction sites, and alterations due to drug intervention indicate the therapeutic potential of the selected drugs. In this article, we provide additional focus on the interacting amino acids of the nsp7-8 complex and highlight crucial regions that could be targeted for precluding a correct recognition of subunits involved in the hexadecameric assembly, to rationally design molecules endowed with a significant antiviral profile.
Department of Biotechnology The University of Burdwan Burdwan 713104 West Bengal India
Department of Genetics University of Calcutta 35 Ballygunge Circular Road Kolkata 700019 India
Department of Pharmacy University of Pisa Via Bonanno 6 56126 Pisa Italy
Zobrazit více v PubMed
Bryson-Cahn C., Duchin J., Makarewicz V.A., Kay M., Rietberg K., Napolitano N., Kamangu C., Dellit T.H., Lynch J.B. A novel approach for a novel pathogen: using a home assessment team to evaluate patients for COVID-19. Clin. Infect. Dis. 2020;71:2211–2214. PubMed PMC
Contini C., Di Nuzzo M., Barp N., Bonazza A., De Giorgio R., Tognon M., Rubino S. The novel zoonotic COVID-19 pandemic: an expected global health concern. J Infect Dev Ctries. 2020;14:254–264. PubMed
Lauer S.A., Grantz K.H., Bi Q., Jones F.K., Zheng Q., Meredith H.R., Azman A.S., Reich N.G., Lessler J. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Ann. Intern. Med. 2020;172:577–582. PubMed PMC
Zu Z.Y., Jiang M.D., Xu P.P., Chen W., Ni Q.Q., Lu G.M., Zhang L.J. Coronavirus disease 2019 (COVID-19): a perspective from China. Radiology. 2020;296:E15–E25. PubMed PMC
Sharma A., Tiwari S., Deb M.K., Marty J.L. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): a global pandemic and treatment strategies. Int. J. Antimicrob. Agents. 2020;56:106054. PubMed PMC
Parvin F., Islam S., Urmy Z., Ahmed S. The symptoms, contagious process, prevention and post treatment of covid-19. Eur J Physiother Rehab Studies. 2020;1
Ou X., Liu Y., Lei X., Li P., Mi D., Ren L., Guo L., Guo R., Chen T., Hu J., Xiang Z., Mu Z., Chen X., Chen J., Hu K., Jin Q., Wang J., Qian Z. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat. Commun. 2020;11:1620. PubMed PMC
Tsiambas E., Papanikolaou V., Chrysovergis A., Mastronikolis N., Ragos V., Kavantzas N., Lazaris A.C., Kyrodimos E. Coronavirus in hematologic malignancies: targeting molecules beyond the angiotensin-converting enzyme 2 (ACE2) wall in COVID-19. Pathol. Oncol. Res. 2020;26:2823–2825. PubMed PMC
Kadam S., Sukhramani G., Bishnoi P., Pable A., Barvkar V. Preprints.org. 2020. Molecular and structural insights into COVID-19 pandemic. PubMed PMC
Li X., Geng M., Peng Y., Meng L., Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal. 2020;10:102–108. PubMed PMC
Ullah M.A., Araf Y., Sarkar B., Moin A.T., Reshad R.A.I., Rahman M.D.H. Pathogenesis, diagnosis and possible therapeutic options for COVID-19. J Clin Exp Invest. 2020;11
Ye Z.W., Yuan S., Yuen K.S., Fung S.Y., Chan C.P., Jin D.Y. Zoonotic origins of human coronaviruses. Int. J. Biol. Sci. 2020;16:1686–1697. PubMed PMC
Perlman S., Netland J. Coronaviruses post-SARS: update on replication and pathogenesis. Nat. Rev. Microbiol. 2009;7:439–450. PubMed PMC
Walls A.C., Park Y.J., Tortorici M.A., Wall A., McGuire A.T., Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181:281–292. e286. PubMed PMC
Fehr A.R., Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol. Biol. 2015;1282:1–23. PubMed PMC
Coutard B., Valle C., de Lamballerie X., Canard B., Seidah N.G., Decroly E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antivir. Res. 2020;176:104742. PubMed PMC
Yan R., Zhang Y., Li Y., Xia L., Guo Y., Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020;367:1444–1448. PubMed PMC
Zhou P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W., Si H.R., Zhu Y., Li B., Huang C.L., Chen H.D., Chen J., Luo Y., Guo H., Jiang R.D., Liu M.Q., Chen Y., Shen X.R., Wang X., Zheng X.S., Zhao K., Chen Q.J., Deng F., Liu L.L., Yan B., Zhan F.X., Wang Y.Y., Xiao G.F., Shi Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–273. PubMed PMC
Brogi S., Calderone V. Off-target ACE2 ligands: possible therapeutic option for CoVid-19? Br. J. Clin. Pharmacol. 2020;86:1178–1179. PubMed PMC
Domingo E. Molecular basis of genetic variation of viruses. Virus as Populations. 2020:35–71.
Ah A.K., St Z. Preprocessing of the candidate antiviral drugs against COVID-19 in models of SARS cov 2 targets. Prensa Med. Argent. 2020;106
Gao Y., Yan L., Huang Y., Liu F., Zhao Y., Cao L., Wang T., Sun Q., Ming Z., Zhang L., Ge J., Zheng L., Zhang Y., Wang H., Zhu Y., Zhu C., Hu T., Hua T., Zhang B., Yang X., Li J., Yang H., Liu Z., Xu W., Guddat L.W., Wang Q., Lou Z., Rao Z. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science. 2020;368:779–782. PubMed PMC
Lehmann K.C., Gulyaeva A., Zevenhoven-Dobbe J.C., Janssen G.M., Ruben M., Overkleeft H.S., van Veelen P.A., Samborskiy D.V., Kravchenko A.A., Leontovich A.M., Sidorov I.A., Snijder E.J., Posthuma C.C., Gorbalenya A.E. Discovery of an essential nucleotidylating activity associated with a newly delineated conserved domain in the RNA polymerase-containing protein of all nidoviruses. Nucleic Acids Res. 2015;43:8416–8434. PubMed PMC
Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., Cheng Z., Yu T., Xia J., Wei Y., Wu W., Xie X., Yin W., Li H., Liu M., Xiao Y., Gao H., Guo L., Xie J., Wang G., Jiang R., Gao Z., Jin Q., Wang J., Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. PubMed PMC
Lin L., Lu L., Cao W., Li T. Hypothesis for potential pathogenesis of SARS-CoV-2 infection-a review of immune changes in patients with viral pneumonia. Emerg. Microb. Infect. 2020;9:727–732. PubMed PMC
Zhang H., Penninger J.M., Li Y., Zhong N., Slutsky A.S. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46:586–590. PubMed PMC
Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. PubMed PMC
Clamp M., Cuff J., Searle S.M., Barton G.J. The Jalview Java alignment editor. Bioinformatics. 2004;20:426–427. PubMed
Sievers F., Higgins D.G. Clustal omega. Curr Protoc Bioinformatics. 2014;48 3 13 11-16. PubMed
Hall B.G. Building phylogenetic trees from molecular data with MEGA. Mol. Biol. Evol. 2013;30:1229–1235. PubMed
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018;35:1547–1549. PubMed PMC
Elfiky A.A. Ribavirin, remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): a molecular docking study. Life Sci. 2020;253:117592. PubMed PMC
Elfiky A.A. SARS-CoV-2 RNA dependent RNA polymerase (RdRp) targeting: an in silico perspective. J. Biomol. Struct. Dyn. 2020:1–9. PubMed PMC
Brogi S., Ramunno A., Savi L., Chemi G., Alfano G., Pecorelli A., Pambianchi E., Galatello P., Compagnoni G., Focher F., Biamonti G., Valacchi G., Butini S., Gemma S., Campiani G., Brindisi M. First dual AK/GSK-3 beta inhibitors endowed with antioxidant properties as multifunctional, potential neuroprotective agents. Eur. J. Med. Chem. 2017;138:438–457. PubMed
Reale A., Brogi S., Chelini A., Paolino M., Di Capua A., Giuliani G., Cappelli A., Giorgi G., Chemi G., Grillo A., Valoti M., Sautebin L., Rossi A., Pace S., La Motta C., Di Cesare Mannelli L., Lucarini E., Ghelardini C., Anzini M. Synthesis, biological evaluation and molecular modeling of novel selective COX-2 inhibitors: sulfide, sulfoxide, and sulfone derivatives of 1,5-diarylpyrrol-3-substituted scaffold. Bioorg. Med. Chem. 2019;27:115045. PubMed
Brindisi M., Ulivieri C., Alfano G., Gemma S., de Asis Balaguer F., Khan T., Grillo A., Chemi G., Menchon G., Prota A.E., Olieric N., Lucena-Agell D., Barasoain I., Diaz J.F., Nebbioso A., Conte M., Lopresti L., Magnano S., Amet R., Kinsella P., Zisterer D.M., Ibrahim O., O'Sullivan J., Morbidelli L., Spaccapelo R., Baldari C., Butini S., Novellino E., Campiani G., Altucci L., Steinmetz M.O., Brogi S. Structure-activity relationships, biological evaluation and structural studies of novel pyrrolonaphthoxazepines as antitumor agents. Eur. J. Med. Chem. 2019;162:290–320. PubMed
Sirous H., Chemi G., Campiani G., Brogi S. An integrated in silico screening strategy for identifying promising disruptors of p53-MDM2 interaction. Comput. Biol. Chem. 2019;83:107105. PubMed
Sirous H., Chemi G., Gemma S., Butini S., Debyser Z., Christ F., Saghaie L., Brogi S., Fassihi A., Campiani G., Brindisi M. Identification of novel 3-Hydroxy-pyran-4-One derivatives as potent HIV-1 integrase inhibitors using in silico structure-based combinatorial library design approach. Front Chem. 2019;7:574. PubMed PMC
Williams C.J., Headd J.J., Moriarty N.W., Prisant M.G., Videau L.L., Deis L.N., Verma V., Keedy D.A., Hintze B.J., Chen V.B., Jain S., Lewis S.M., Arendall W.B., 3rd, Snoeyink J., Adams P.D., Lovell S.C., Richardson J.S., Richardson D.C. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 2018;27:293–315. PubMed PMC
Luthy R., Bowie J.U., Eisenberg D. Assessment of protein models with three-dimensional profiles. Nature. 1992;356:83–85. PubMed
Yan Y., Zhang D., Zhou P., Li B., Huang S.Y. HDOCK: a web server for protein-protein and protein-DNA/RNA docking based on a hybrid strategy. Nucleic Acids Res. 2017;45:W365–W373. PubMed PMC
Wallace A.C., Laskowski R.A., Thornton J.M. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 1995;8:127–134. PubMed
Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. PubMed
Salentin S., Schreiber S., Haupt V.J., Adasme M.F., Schroeder M. PLIP: fully automated protein-ligand interaction profiler. Nucleic Acids Res. 2015;43:W443–W447. PubMed PMC
Nickolls J., Buck I., Garland M., Skadron K. Scalable parallel programming with CUDA. Queue. 2008;6:40.
Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983;79:926–935.
Jorgensen W.L., Maxwell D.S., Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 1996;118:11225–11236.
Brogi S., Butini S., Maramai S., Colombo R., Verga L., Lanni C., De Lorenzi E., Lamponi S., Andreassi M., Bartolini M., Andrisano V., Novellino E., Campiani G., Brindisi M., Gemma S. Disease-modifying anti-Alzheimer's drugs: inhibitors of human cholinesterases interfering with beta-amyloid aggregation. CNS Neurosci. Ther. 2014;20:624–632. PubMed PMC
Sirous H., Fassihi A., Brogi S., Campiani G., Christ F., Debyser Z., Gemma S., Butini S., Chemi G., Grillo A., Zabihollahi R., Aghasadeghi M.R., Saghaie L., Memarian H.R. Synthesis, molecular modelling and biological studies of 3-hydroxypyrane- 4-one and 3-hydroxy-pyridine-4-one derivatives as HIV-1 integrase inhibitors. Med. Chem. 2019;15:755–770. PubMed
Humphreys D.D., Friesner R.A., Berne B.J. A multiple-time-step molecular dynamics algorithm for macromolecules. J. Phys. Chem. 1994;98:6885–6892.
Hoover W.G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. 1985;31:1695–1697. PubMed
Martyna G.J., Tobias D.J., Klein M.L. Constant pressure molecular dynamics algorithms. J. Chem. Phys. 1994;101:4177–4189.
Essmann U., Perera L., Berkowitz M.L., Darden T., Lee H., Pedersen L.G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995;103:8577–8593.
Ludmir E.B., Enquist L.W. Viral genomes are part of the phylogenetic tree of life. Nat. Rev. Microbiol. 2009;7:615. author reply 615. PubMed
Chen X. Understanding the development and perception of global health for more effective student education. Yale J. Biol. Med. 2014;87:231–240. PubMed PMC
Rife B.D., Mavian C., Chen X., Ciccozzi M., Salemi M., Min J., Prosperi M.C. Phylodynamic applications in 21(st) century global infectious disease research. Glob Health Res Policy. 2017;2:13. PubMed PMC
Matyasek R., Kovarik A. Indicating Rapid Evolution in Their Hosts; Genes (Basel): 2020. Mutation Patterns of Human SARS-CoV-2 and Bat RaTG13 Coronavirus Genomes Are Strongly Biased towards C>U Transitions; p. 11. PubMed PMC
Lu J., Cui J., Qian Z., Wang Y., Zhang H., Duan Y., Wu X., Yao X., Song Y., Li X., Wu C., Tang X. On the origin and continuing evolution of SARS-CoV-2. Natl Sci Rev. 2020;7:1012–1023. PubMed PMC
te Velthuis A.J., van den Worm S.H., Snijder E.J. The SARS-coronavirus nsp7+nsp8 complex is a unique multimeric RNA polymerase capable of both de novo initiation and primer extension. Nucleic Acids Res. 2012;40:1737–1747. PubMed PMC
Hillen H.S., Kokic G., Farnung L., Dienemann C., Tegunov D., Cramer P. Structure of replicating SARS-CoV-2 polymerase. Nature. 2020;584:154–156. PubMed
Barakat K., Ahmed M., Tabana Y., Ha M. bioRxiv; 2020. A “Deep Dive” into the SARS-Cov-2 Polymerase Assembly: Identifying Novel Allosteric Sites and Analyzing the Hydrogen Bond Networks and Correlated Dynamics. 2020.2006.2002.130849. PubMed
Brogi S., Sirous H., Calderone V., Chemi G. Amyloid beta fibril disruption by oleuropein aglycone: long-time molecular dynamics simulation to gain insight into the mechanism of action of this polyphenol from extra virgin olive oil. Food Funct. 2020;11:8122–8132. PubMed
Yin W., Mao C., Luan X., Shen D.D., Shen Q., Su H., Wang X., Zhou F., Zhao W., Gao M., Chang S., Xie Y.C., Tian G., Jiang H.W., Tao S.C., Shen J., Jiang Y., Jiang H., Xu Y., Zhang S., Zhang Y., Xu H.E. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science. 2020;368:1499–1504. PubMed PMC
Jacome R., Campillo-Balderas J.A., Ponce de Leon S., Becerra A., Lazcano A. Sofosbuvir as a potential alternative to treat the SARS-CoV-2 epidemic. Sci. Rep. 2020;10:9294. PubMed PMC