Disentangling soil microbiome functions by perturbation
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't, Review
PubMed
34231344
PubMed Central
PMC8518845
DOI
10.1111/1758-2229.12989
Knihovny.cz E-resources
- MeSH
- Bacteria MeSH
- Microbial Consortia MeSH
- Microbiota * genetics MeSH
- Soil * MeSH
- Soil Microbiology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Soil * MeSH
Soil biota contribute to diverse soil ecosystem services such as greenhouse gas mitigation, carbon sequestration, pollutant degradation, plant disease suppression and nutrient acquisition for plant growth. Here, we provide detailed insight into different perturbation approaches to disentangle soil microbiome functions and to reveal the underlying mechanisms. By applying perturbation, one can generate compositional and functional shifts of complex microbial communities in a controlled way. Perturbations can reduce microbial diversity, diminish the abundance of specific microbial taxa and thereby disturb the interactions within the microbial consortia and with their eukaryotic hosts. Four different microbiome perturbation approaches, namely selective heat, specific biocides, dilution-to-extinction and genome editing are the focus of this mini-review. We also discuss the potential of perturbation approaches to reveal the tipping point at which specific soil functions are lost and to link this change to key microbial taxa involved in specific microbiome-associated phenotypes.
Institute of Biology Leiden University Leiden Netherlands
Soil and Water Research Infrastructure Biology Centre CAS České Budějovice Czech Republic
See more in PubMed
Alabouvette, C. (1986) Fusarium‐wilt suppressive soils from the Chateaurenard region – review of a 10‐year study. Agronomie 6: 273–284. 10.1051/agro:19860307. DOI
Bardgett, R.D. , and van der Putten, W.H. (2014) Belowground biodiversity and ecosystem functioning. Nature 515: 505–511. 10.1038/nature13855. PubMed DOI
Blaser, M.J. (2016) Antibiotic use and its consequences for the normal microbiome. Science 352: 544–545. 10.1126/science.aad9358. PubMed DOI PMC
Carrión, V.J. , Perez‐Jaramillo, J. , Cordovez, V. , Tracanna, V. , de Hollander, M. , Ruiz‐Buck, D. , et al. (2019) Pathogen‐induced activation of disease‐suppressive functions in the endophytic root microbiome. Science 366: 606–612. 10.1126/science.aaw9285. PubMed DOI
Cha, J.Y. , Han, S. , Hong, H.J. , Cho, H. , Kim, D. , Kwon, Y. , et al. (2016) Microbial and biochemical basis of a Fusarium wilt‐suppressive soil. ISME J 10: 119–129. 10.1038/ismej.2015.95. PubMed DOI PMC
Chen, Q.‐L. , Ding, J. , Zhu, Y.‐G. , He, J.‐Z. , and Hu, H.‐W. (2020) Soil bacterial taxonomic diversity is critical to maintaining the plant productivity. Environ Int 140: 105766. 10.1016/j.envint.2020.105766. PubMed DOI
Cook, R.J. , and Rovira, A.D. (1976) The role of bacteria in the biological control of Gaeumannomyces graminis by suppressive soils. Soil Biol Biochem 8: 269–273. 10.1016/0038-0717(76)90056-0. DOI
Cycoń, M. , Mrozik, A. , and Piotrowska‐Seget, Z. (2019) Antibiotics in the soil environment—degradation and their impact on microbial activity and diversity. Front Microbiol 10: 338. 10.3389/fmicb.2019.00338. PubMed DOI PMC
Díaz‐García, L. , Huang, S. , Spröer, C. , Sierra‐Ramírez, R. , Bunk, B. , Overmann, J. , and Jiménez, D.J. (2021) Dilution‐to‐stimulation/extinction method: a combination enrichment strategy to develop a minimal and versatile Lignocellulolytic bacterial consortium. Appl Environ Microbiol 87: e02427–20. 10.1128/AEM.02427-20. PubMed DOI PMC
Dong, X. , Rao, D. , Tian, L. , Wang, Q. , and Yang, K. (2020) A slurry microcosm study on the interaction between antibiotics and soil bacterial community. Heliyon 6: e03348. 10.1016/j.heliyon.2020.e03348. PubMed DOI PMC
Donhauser, J. , Niklaus, P.A. , Rousk, J. , Larose, C. , and Frey, B. (2020) Temperatures beyond the community optimum promote the dominance of heat‐adapted, fast growing and stress resistant bacteria in alpine soils. Soil Biol Biochem 148: 107873. 10.1016/j.soilbio.2020.107873. DOI
Duran, P. , Jorquera, M. , Viscardi, S. , Carrion, V.J. , Mora, M.D. , and Pozo, M.J. (2017) Screening and characterization of potentially suppressive soils against Gaeumannomyces graminis under extensive wheat cropping by Chilean indigenous communities. Front Microbiol 8: 1552. 10.3389/fmicb.2017.01552. PubMed DOI PMC
Francino, M.P. (2016) Antibiotics and the human gut microbiome: Dysbioses and accumulation of resistances. Front Microbiol 6: 1543. 10.3389/fmicb.2015.01543. PubMed DOI PMC
Garbeva, P. , and de Boer, W. (2009) Inter‐specific interactions between carbon‐limited soil bacteria affect behavior and gene expression. Microb Ecol 58: 36–46. 10.1007/s00248-009-9502-3. PubMed DOI
Garbeva, P. , Silby, M.W. , Raaijmakers, J.M. , Levy, S.B. , and de Boer, W. (2011) Transcriptional and antagonistic responses of Pseudomonas fluorescens Pf0‐1 to phylogenetically different bacterial competitors. ISME J 5: 973–985. 10.1038/ismej.2010.196. PubMed DOI PMC
Garland, J.L. , and Lehman, R.M. (1999) Dilution/extinction of community phenotypic characters to estimate relative structural diversity in mixed communities. FEMS Microbiol Ecol 30: 333–343. 10.1111/j.1574-6941.1999.tb00661.x. PubMed DOI
Gomes Exposito, R. , de Bruijn, I. , Postma, J. , and Raaijmakers, J.M. (2017) Current insights into the role of rhizosphere bacteria in disease suppressive soils. Front Microbiol 8: 2529. 10.3389/fmicb.2017.02529. PubMed DOI PMC
Hol, W.H.G. , Garbeva, P. , Hordijk, C. , Hundscheid, M.P.J. , Gunnewiek, P.J.A.K. , van Agtmaal, M. , et al. (2015) Non‐random species loss in bacterial communities reduces antifungal volatile production. Ecology 96: 2042–2048. 10.1890/14-2359.1. PubMed DOI
Jansson, J.K. , and Hofmockel, K.S. (2020) Soil microbiomes and climate change. Nat Rev Microbiol 18: 35–46. 10.1038/s41579-019-0265-7. PubMed DOI
Jones, D.L. , Nguyen, C. , and Finlay, R.D. (2009) Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant and Soil 321: 5–33. 10.1007/s11104-009-9925-0. DOI
Jurburg, S.D. , Nunes, I. , Brejnrod, A. , Jacquiod, S. , Priemé, A. , Sørensen, S.J. , et al. (2017a) Legacy effects on the recovery of soil bacterial communities from extreme temperature perturbation. Front Microbiol 8: 1832. 10.3389/fmicb.2017.01832. PubMed DOI PMC
Jurburg, S.D. , Nunes, I. , Stegen, J.C. , Le Roux, X. , Priemé, A. , Sørensen, S.J. , and Salles, J.F. (2017b) Autogenic succession and deterministic recovery following disturbance in soil bacterial communities. Sci Rep 7: 45691. 10.1038/srep45691. PubMed DOI PMC
Kang, D. , Jacquiod, S. , Herschend, J. , Wei, S. , Nesme, J. , and Sørensen, S.J. (2020) Construction of simplified microbial consortia to degrade recalcitrant materials based on enrichment and dilution‐to‐extinction cultures. Front Microbiol 10: 1030. 10.3389/fmicb.2019.03010. PubMed DOI PMC
Korenblum, E. , Dong, Y. , Szymanski, J. , Panda, S. , Jozwiak, A. , Massalha, H. , et al. (2020) Rhizosphere microbiome mediates systemic root metabolite exudation by root‐to‐root signaling. Proc Natl Acad Sci U S A 117: 3874–3883. 10.1073/pnas.1912130117. PubMed DOI PMC
Kurm, V. , Geisen, S. , and Gera Hol, W.H. (2019) A low proportion of rare bacterial taxa responds to abiotic changes compared with dominant taxa. Environ Microbiol 21: 750–758. 10.1111/1462-2920.14492. PubMed DOI PMC
Lam, K.N. , Spanogiannopoulos, P. , Soto‐Perez, P. , Alexander, M. , Nalley, M.J. , Bisanz, J.E. , et al. (2020) Phage‐delivered CRISPR‐Cas9 for strain‐specific depletion and genomic deletions in the gut microbiota. bioRxiv . 10.1101/2020.07.09.193847. PubMed DOI PMC
Lee, S.‐M. , Kong, H.G. , Song, G.C. , and Ryu, C.‐M. (2020) Disruption of Firmicutes and Actinobacteria abundance in tomato rhizosphere causes the incidence of bacterial wilt disease. ISME J 15: 330–347. 10.1038/s41396-020-00785-x. PubMed DOI PMC
Maron, J.L. , Marler, M. , Klironomos, J.N. , and Cleveland, C.C. (2011) Soil fungal pathogens and the relationship between plant diversity and productivity. Ecol Lett 14: 36–41. 10.1111/j.1461-0248.2010.01547.x. PubMed DOI
Mendes, R. , Garbeva, P. , and Raaijmakers, J.M. (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37: 634–663. 10.1111/1574-6976.12028. PubMed DOI
Naylor, D. , Fansler, S. , Brislawn, C. , Nelson, W.C. , Hofmockel, K.S. , Jansson, J.K. , and McClure, R. (2020a) Deconstructing the soil microbiome into reduced‐complexity functional modules. MBio 11: e01349‐20. 10.1128/mBio.01349-20. PubMed DOI PMC
Naylor, D. , Sadler, N. , Bhattacharjee, A. , Graham, E.B. , Anderton, C.R. , McClure, R. , et al. (2020b) Soil microbiomes under climate change and implications for carbon cycling. Annu Rev Env Resour 45: 29–59. 10.1146/annurev-environ-012320-082720. DOI
Opal, S.M. (2009) A Brief History of Microbiology and Immunology. In Vaccines: A biography, pp. 31–56. New York, NY: Springer Verlag. 10.1007/978-1-4419-1108-7_3. DOI
Oyserman, B.O. , Medema, M.H. , and Raaijmakers, J.M. (2018) Road MAPs to engineer host microbiomes. Current opinion in microbiology, environmental microbiology*. The New Microscopy 43: 46–54. 10.1016/j.mib.2017.11.023. PubMed DOI
Pande, S. , and Kost, C. (2017) Bacterial Unculturability and the formation of intercellular metabolic networks. Trends Microbiol 25: 349–361. 10.1016/j.tim.2017.02.015. PubMed DOI
Peter, H. , Beier, S. , Bertilsson, S. , Lindström, E.S. , Langenheder, S. , and Tranvik, L.J. (2011) Function‐specific response to depletion of microbial diversity. ISME J 5: 351–361. 10.1038/ismej.2010.119. PubMed DOI PMC
Philippot, L. , Raaijmakers, J.M. , Lemanceau, P. , and van der Putten, W.H. (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11: 789–799. 10.1038/nrmicro3109. PubMed DOI
Raaijmakers, J.M. , and Weller, D.M. (1998) Natural plant protection by 2,4‐diacetylphloroglucinol – producing Pseudomonas spp. in take‐all decline soils. Mol Plant Microbe In 11: 144–152. 10.1094/Mpmi.1998.11.2.144. DOI
Ramachandran, G. , and Bikard, D. (2019) Editing the microbiome the CRISPR way. Philos Trans R Soc B Biol Sci 374: 20180103. 10.1098/rstb.2018.0103. PubMed DOI PMC
Riah‐Anglet, W. , Trinsoutrot‐Gattin, I. , Martin‐Laurent, F. , Laroche‐Ajzenberg, E. , Norini, M.‐P. , Latour, X. , and Laval, K. (2015) Soil microbial community structure and function relationships: a heat stress experiment. Appl Soil Ecol 86: 121–130. 10.1016/j.apsoil.2014.10.001. DOI
Rillig, M.C. , Muller, L.A. , and Lehmann, A. (2017) Soil aggregates as massively concurrent evolutionary incubators. ISME J 11: 1943–1948. 10.1038/ismej.2017.56. PubMed DOI PMC
Scherlach, K. , and Hertweck, C. (2018) Mediators of mutualistic microbe‐microbe interactions. Nat Prod Rep 35: 303–308. 10.1039/c7np00035a. PubMed DOI
Schlatter, D. , Kinkel, L. , Thomashow, L. , Weller, D. , and Paulitz, T. (2017) Disease suppressive soils: new insights from the soil microbiome. Phytopathology 107: 1284–1297. 10.1094/Phyto-03-17-0111-Rvw. PubMed DOI
Schwartz, D.J. , Langdon, A.E. , and Dantas, G. (2020) Understanding the impact of antibiotic perturbation on the human microbiome. Genome Med 12: 82. 10.1186/s13073-020-00782-x. PubMed DOI PMC
Shelake, R.M. , Pramanik, D. , and Kim, J.‐Y. (2019) Exploration of plant‐microbe interactions for sustainable agriculture in CRISPR era. Microorganisms 7: 269. 10.3390/microorganisms7080269. PubMed DOI PMC
Siegel‐Hertz, K. , Edel‐Hermann, V. , Chapelle, E. , Terrat, S. , Raaijmakers, J.M. , and Steinberg, C. (2018) Comparative microbiome analysis of a Fusarium wilt suppressive soil and a Fusarium wilt conducive soil from the Chateaurenard region. Front Microbiol 9: 568. 10.3389/fmicb.2018.00568. PubMed DOI PMC
Song, C. , Jin, K. , and Raaijmakers, J.M. (2021) Designing a home for beneficial plant microbiomes. Curr Opin Plant Biol 62: 102025. 10.1016/j.pbi.2021.102025. PubMed DOI
Tecon, R. , and Or, D. (2017) Biophysical processes supporting the diversity of microbial life in soil. FEMS Microbiol Rev 41: 599–623. 10.1093/femsre/fux039. PubMed DOI PMC
Tracanna, V. , Ossowicki, A. , Petrus, M.L.C. , Overduin, S. , Terlouw, B.R. , Lund, G. , et al. (2021) Dissecting disease‐suppressive rhizosphere microbiomes by functional amplicon sequencing and 10× metagenomics. mSystems 6: e0111620. 10.1128/mSystems.01116-20. PubMed DOI PMC
Traxler, M.F. , Watrous, J.D. , Alexandrov, T. , Dorrestein, P.C. , and Kolter, R. (2013) Interspecies interactions stimulate diversification of the Streptomyces coelicolor secreted metabolome. MBio 4: 4. 10.1128/mBio.00459-13. PubMed DOI PMC
Tyc, O. , van den Berg, M. , Gerards, S. , van Veen, J.A. , Raaijmakers, J.M. , de Boer, W. , and Garbeva, P. (2014) Impact of interspecific interactions on antimicrobial activity among soil bacteria. Front Microbiol 5: 567. 10.3389/fmicb.2014.00567. PubMed DOI PMC
Veach, A.M. , Chen, H. , Yang, Z.K. , Labbe, A.D. , Engle, N.L. , Tschaplinski, T.J. , et al. (2020) Plant hosts modify belowground microbial community response to extreme drought. mSystems 5: e00092‐20. 10.1128/mSystems.00092-20. PubMed DOI PMC
van der Voort, M. , Kempenaar, M. , van Driel, M. , Raaijmakers, J.M. , and Mendes, R. (2016) Impact of soil heat on reassembly of bacterial communities in the rhizosphere microbiome and plant disease suppression. Ecol Lett 19: 375–382. 10.1111/ele.12567. PubMed DOI
Vos, M. , Wolf, A.B. , Jennings, S.J. , and Kowalchuk, G.A. (2013) Micro‐scale determinants of bacterial diversity in soil. FEMS Microbiol Rev 37: 936–954. 10.1111/1574-6976.12023. PubMed DOI
de Vries, F.T. , Griffiths, R.I. , Knight, C.G. , Nicolitch, O. , and Williams, A. (2020) Harnessing rhizosphere microbiomes for drought‐resilient crop production. Science 368: 270–274. 10.1126/science.aaz5192. PubMed DOI
Yan, Y. , Kuramae, E.E. , de Hollander, M. , Klinkhamer, P.G.L. , and van Veen, J.A. (2017) Functional traits dominate the diversity‐related selection of bacterial communities in the rhizosphere. ISME J 11: 56–66. 10.1038/ismej.2016.108. PubMed DOI PMC
Yan, Y. , Kuramae, E.E. , Klinkhamer, P.G.L. , and van Veen, J.A. (2015) Revisiting the dilution procedure used to manipulate microbial biodiversity in terrestrial systems. Appl Environ Microbiol 81: 4246–4252. 10.1128/AEM.00958-15. PubMed DOI PMC
Zegeye, E.K. , Brislawn, C.J. , Farris, Y. , Fansler, S.J. , Hofmockel, K.S. , Jansson, J.K. , et al. (2019) Selection, succession, and stabilization of soil microbial consortia. mSystems 4: e00055–19. 10.1128/mSystems.00055-19. PubMed DOI PMC