Structural mechanism of heat-induced opening of a temperature-sensitive TRP channel

. 2021 Jul ; 28 (7) : 564-572. [epub] 20210708

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid34239124

Grantová podpora
R01 NS107253 NINDS NIH HHS - United States
U24 GM129539 NIGMS NIH HHS - United States
R01 NS083660 NINDS NIH HHS - United States
U24 GM129547 NIGMS NIH HHS - United States
R01 AR078814 NIAMS NIH HHS - United States
R01 CA206573 NCI NIH HHS - United States

Odkazy

PubMed 34239124
PubMed Central PMC8283911
DOI 10.1038/s41594-021-00615-4
PII: 10.1038/s41594-021-00615-4
Knihovny.cz E-zdroje

Numerous physiological functions rely on distinguishing temperature through temperature-sensitive transient receptor potential channels (thermo-TRPs). Although the function of thermo-TRPs has been studied extensively, structural determination of their heat- and cold-activated states has remained a challenge. Here, we present cryo-EM structures of the nanodisc-reconstituted wild-type mouse TRPV3 in three distinct conformations: closed, heat-activated sensitized and open states. The heat-induced transformations of TRPV3 are accompanied by changes in the secondary structure of the S2-S3 linker and the N and C termini and represent a conformational wave that links these parts of the protein to a lipid occupying the vanilloid binding site. State-dependent differences in the behavior of bound lipids suggest their active role in thermo-TRP temperature-dependent gating. Our structural data, supported by physiological recordings and molecular dynamics simulations, provide an insight for understanding the molecular mechanism of temperature sensing.

Zobrazit více v PubMed

Castillo K, Diaz-Franulic I, Canan J, Gonzalez-Nilo F & Latorre R Thermally activated TRP channels: molecular sensors for temperature detection. Phys Biol 15, 021001, doi:10.1088/1478-3975/aa9a6f (2018). PubMed DOI

Voets T TRP channels and thermosensation. Handb Exp Pharmacol 223, 729–741, doi:10.1007/978-3-319-05161-1_1 (2014). PubMed DOI

Islas LD Thermal effects and sensitivity of biological membranes. Curr Top Membr 74, 1–17, doi:10.1016/B978-0-12-800181-3.00001-4 (2014). PubMed DOI

Lamas JA, Rueda-Ruzafa L & Herrera-Pérez S Ion Channels and Thermosensitivity: TRP, TREK, or Both? Int J Mol Sci 20, 2371, doi:10.3390/ijms20102371 (2019). PubMed DOI PMC

Arrigoni C & Minor DL Global versus local mechanisms of temperature sensing in ion channels. Pflugers Arch 470, 733–744, doi:10.1007/s00424-017-2102-z (2018). PubMed DOI PMC

Dhaka A, Viswanath V & Patapoutian A Trp ion channels and temperature sensation. Annu Rev Neurosci 29, 135–161, doi:10.1146/annurev.neuro.29.051605.112958 (2006). PubMed DOI

Voets T, Talavera K, Owsianik G & Nilius B Sensing with TRP channels. Nat Chem Biol 1, 85–92, doi:10.1038/nchembio0705-85 (2005). PubMed DOI

Latorre R, Zaelzer C & Brauchi S Structure-functional intimacies of transient receptor potential channels. Q Rev Biophys 42, 201–246, doi:10.1017/S0033583509990072 (2009). PubMed DOI

Jordt SE, McKemy DD & Julius D Lessons from peppers and peppermint: the molecular logic of thermosensation. Curr Opin Neurobiol 13, 487–492, doi:10.1016/s0959-4388(03)00101-6 (2003). PubMed DOI

Clapham DE TRP channels as cellular sensors. Nature 426, 517–524, doi:10.1038/nature02196 (2003). PubMed DOI

Yuan P Structural biology of thermoTRPV channels. Cell Calcium 84, 102106, doi:10.1016/j.ceca.2019.102106 (2019). PubMed DOI PMC

Singh AK et al. Structural basis of temperature sensation by the TRP channel TRPV3. Nat Struct Mol Biol 26, 994–998, doi:10.1038/s41594-019-0318-7 (2019). PubMed DOI PMC

Nilius B, Bíró T & Owsianik G TRPV3: time to decipher a poorly understood family member! J Physiol 592, 295–304, doi:10.1113/jphysiol.2013.255968 (2014). PubMed DOI PMC

Yang P & Zhu MX Trpv3. Handb Exp Pharmacol 222, 273–291, doi:10.1007/978-3-642-54215-2_11 (2014). PubMed DOI

Broad LM et al. TRPV3 in Drug Development. Pharmaceuticals (Basel) 9, 55, doi:10.3390/ph9030055 (2016). PubMed DOI PMC

Chung MK, Lee H, Mizuno A, Suzuki M & Caterina MJ 2-aminoethoxydiphenyl borate activates and sensitizes the heat-gated ion channel TRPV3. J Neurosci 24, 5177–5182, doi:10.1523/JNEUROSCI.0934-04.2004 (2004). PubMed DOI PMC

Xiao R et al. Calcium plays a central role in the sensitization of TRPV3 channel to repetitive stimulations. J Biol Chem 283, 6162–6174, doi:10.1074/jbc.M706535200 (2008). PubMed DOI PMC

Liu B, Yao J, Zhu MX & Qin F Hysteresis of gating underlines sensitization of TRPV3 channels. J Gen Physiol 138, 509–520, doi:10.1085/jgp.201110689 (2011). PubMed DOI PMC

Moqrich A et al. Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 307, 1468–1472, doi:10.1126/science.1108609 (2005). PubMed DOI

Xu H et al. TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature 418, 181–186, doi:10.1038/nature00882 (2002). PubMed DOI

Peier AM et al. A heat-sensitive TRP channel expressed in keratinocytes. Science 296, 2046–2049, doi:10.1126/science.1073140 (2002). PubMed DOI

Smith GD et al. TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature 418, 186–190, doi:10.1038/nature00894 (2002). PubMed DOI

Shimada H et al. The structure of lipid nanodisc-reconstituted TRPV3 reveals the gating mechanism. Nat Struct Mol Biol 27, 645–652, doi:10.1038/s41594-020-0439-z (2020). PubMed DOI

Deng Z et al. Gating of human TRPV3 in a lipid bilayer. Nat Struct Mol Biol 27, 635–644, doi:10.1038/s41594-020-0428-2 (2020). PubMed DOI PMC

Zubcevic L, Borschel WF, Hsu AL, Borgnia MJ & Lee SY Regulatory switch at the cytoplasmic interface controls TRPV channel gating. Elife 8, 47746, doi:10.7554/eLife.47746 (2019). PubMed DOI PMC

Zubcevic L et al. Conformational ensemble of the human TRPV3 ion channel. Nat Commun 9, 4773, doi:10.1038/s41467-018-07117-w (2018). PubMed DOI PMC

Singh AK, McGoldrick LL & Sobolevsky AI Structure and gating mechanism of the transient receptor potential channel TRPV3. Nat Struct Mol Biol 25, 805–813, doi:10.1038/s41594-018-0108-7 (2018). PubMed DOI PMC

Nasr ML et al. Covalently circularized nanodiscs for studying membrane proteins and viral entry. Nat Methods 14, 49–52, doi:10.1038/nmeth.4079 (2017). PubMed DOI PMC

Shi DJ, Ye S, Cao X, Zhang R & Wang K Crystal structure of the N-terminal ankyrin repeat domain of TRPV3 reveals unique conformation of finger 3 loop critical for channel function. Protein Cell 4, 942–950, doi:10.1007/s13238-013-3091-0 (2013). PubMed DOI PMC

Gao Y, Cao E, Julius D & Cheng Y TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534, 347–351, doi:10.1038/nature17964 (2016). PubMed DOI PMC

Cao E, Liao M, Cheng Y & Julius D TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 504, 113–118, doi:10.1038/nature12823 (2013). PubMed DOI PMC

Liu B & Qin F Single-residue molecular switch for high-temperature dependence of vanilloid receptor TRPV3. Proc Natl Acad Sci U S A 114, 1589–1594, doi:10.1073/pnas.1615304114 (2017). PubMed DOI PMC

Cao E, Cordero-Morales JF, Liu B, Qin F & Julius D TRPV1 channels are intrinsically heat sensitive and negatively regulated by phosphoinositide lipids. Neuron 77, 667–679, doi:10.1016/j.neuron.2012.12.016 (2013). PubMed DOI PMC

Feng Q Temperature sensing by thermal TRP channels: thermodynamic basis and molecular insights. Curr Top Membr 74, 19–50, doi:10.1016/B978-0-12-800181-3.00002-6 (2014). PubMed DOI

Vlachová V et al. Functional role of C-terminal cytoplasmic tail of rat vanilloid receptor 1. J Neurosci 23, 1340–1350 (2003). PubMed PMC

Yao J, Liu B & Qin F Modular thermal sensors in temperature-gated transient receptor potential (TRP) channels. Proc Natl Acad Sci U S A 108, 11109–11114, doi:10.1073/pnas.1105196108 (2011). PubMed DOI PMC

Grandl J et al. Temperature-induced opening of TRPV1 ion channel is stabilized by the pore domain. Nat Neurosci 13, 708–714 (2010). PubMed PMC

Grandl J et al. Pore region of TRPV3 ion channel is specifically required for heat activation. Nat Neurosci 11, 1007–1013 (2008). PubMed PMC

Brauchi S, Orio P & Latorre R Clues to understanding cold sensation: thermodynamics and electrophysiological analysis of the cold receptor TRPM8. Proc Natl Acad Sci U S A 101, 15494–15499, doi:10.1073/pnas.0406773101 (2004). PubMed DOI PMC

Brauchi S, Orta G, Salazar M, Rosenmann E & Latorre R A hot-sensing cold receptor: C-terminal domain determines thermosensation in transient receptor potential channels. J Neurosci 26, 4835–4840, doi:10.1523/JNEUROSCI.5080-05.2006 (2006). PubMed DOI PMC

Zhang F et al. Heat activation is intrinsic to the pore domain of TRPV1. Proc Natl Acad Sci U S A 115, E317–E324, doi:10.1073/pnas.1717192115 (2018). PubMed DOI PMC

Voets T et al. The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature 430, 748–754, doi:10.1038/nature02732 (2004). PubMed DOI

Gregorio-Teruel L et al. The Integrity of the TRP Domain Is Pivotal for Correct TRPV1 Channel Gating.Biophys J 109, 529–541, doi:10.1016/j.bpj.2015.06.039 (2015). PubMed DOI PMC

Kim SE, Patapoutian A & Grandl J Single residues in the outer pore of TRPV1 and TRPV3 have temperature-dependent conformations. PLoS One 8, e59593, doi:10.1371/journal.pone.0059593 (2013). PubMed DOI PMC

Macikova L, Vyklicka L, Barvik I, Sobolevsky AI & Vlachova V Cytoplasmic Inter-Subunit Interface Controls Use-Dependence of Thermal Activation of TRPV3 Channel. Int J Mol Sci 20, 3990, doi:10.3390/ijms20163990 (2019). PubMed DOI PMC

Laursen WJ, Schneider ER, Merriman DK, Bagriantsev SN & Gracheva EO Low-cost functional plasticity of TRPV1 supports heat tolerance in squirrels and camels. Proc Natl Acad Sci U S A 113, 11342–11347, doi:10.1073/pnas.1604269113 (2016). PubMed DOI PMC

Clapham DE & Miller C A thermodynamic framework for understanding temperature sensing by transient receptor potential (TRP) channels. Proc Natl Acad Sci U S A 108, 19492–19497, doi:10.1073/pnas.1117485108 (2011). PubMed DOI PMC

Jara-Oseguera A & Islas LD The role of allosteric coupling on thermal activation of thermo-TRP channels. Biophys J 104, 2160–2169, doi:10.1016/j.bpj.2013.03.055 (2013). PubMed DOI PMC

Kasimova MA et al. A hypothetical molecular mechanism for TRPV1 activation that invokes rotation of an S6 asparagine. J Gen Physiol 150, 1554–1566, doi:10.1085/jgp.201812124 (2018). PubMed DOI PMC

Goehring A et al. Screening and large-scale expression of membrane proteins in mammalian cells for structural studies. Nat Protoc 9, 2574–2585, doi:10.1038/nprot.2014.173nprot.2014.173 [pii] (2014). PubMed DOI PMC

Russo CJ & Passmore LA Electron microscopy: Ultrastable gold substrates for electron cryomicroscopy. Science 346, 1377–1380, doi:10.1126/science.1259530346/6215/1377 [pii] (2014). PubMed DOI PMC

Kawate T & Gouaux E Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14, 673–681 (2006). PubMed

Hattori M, Hibbs RE & Gouaux E A fluorescence-detection size-exclusion chromatography-based thermostability assay for membrane protein precrystallization screening. Structure 20, 1293–1299, doi:10.1016/j.str.2012.06.009S0969-2126(12)00231-6 [pii] (2012). PubMed DOI PMC

Suloway C et al. Automated molecular microscopy: the new Leginon system. J Struct Biol 151, 41–60, doi:10.1016/j.jsb.2005.03.010 (2005). PubMed DOI

Scheres SH RELION: implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol 180, 519–530, doi:10.1016/j.jsb.2012.09.006S1047-8477(12)00248-1 [pii] (2012). PubMed DOI PMC

Punjani A, Rubinstein JL, Fleet DJ & Brubaker MA cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods 14, 290–296, doi:10.1038/nmeth.4169 (2017). PubMed DOI

Zheng SQ et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat Methods 14, 331–332, doi:10.1038/nmeth.4193 (2017). PubMed DOI PMC

Zhang K Gctf: Real-time CTF determination and correction. J Struct Biol 193, 1–12, doi:10.1016/j.jsb.2015.11.003S1047-8477(15)30100-3 [pii] (2016). PubMed DOI PMC

Afonine PV et al. New tools for the analysis and validation of cryo-EM maps and atomic models. Acta Crystallogr D Struct Biol 74, 814–840, doi:10.1107/S2059798318009324 (2018). PubMed DOI PMC

Pettersen EF et al. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25, 1605–1612, doi:10.1002/jcc.20084 (2004). PubMed DOI

Pettersen EF et al. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci 30, 70–82, doi:10.1002/pro.3943 (2021). PubMed DOI PMC

Terwilliger TC, Ludtke SJ, Read RJ, Adams PD & Afonine PV Improvement of cryo-EM maps by density modification. Nat Methods 17, 923–927, doi:10.1038/s41592-020-0914-9 (2020). PubMed DOI PMC

Emsley P & Cowtan K Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 2126–2132 (2004). PubMed

Afonine PV et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr D Biol Crystallogr 68, 352–367, doi:10.1107/S0907444912001308 (2012). PubMed DOI PMC

The PyMOL Molecular Graphics System (DeLano Scientific, San Carlos, CA, USA, 2002).

Dawaliby R et al. Phosphatidylethanolamine Is a Key Regulator of Membrane Fluidity in Eukaryotic Cells. J Biol Chem 291, 3658–3667, doi:10.1074/jbc.M115.706523 (2016). PubMed DOI PMC

Abraham MJ & Gready JE Optimization of parameters for molecular dynamics simulation using smooth particle-mesh Ewald in GROMACS 4.5. J Comput Chem 32, 2031–2040, doi:10.1002/jcc.21773 (2011). PubMed DOI

Lindorff-Larsen K et al. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 78, 1950–1958, doi:10.1002/prot.22711 (2010). PubMed DOI PMC

Jorgensen WL & Tirado-Rives J Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. Proc Natl Acad Sci U S A 102, 6665–6670, doi:10.1073/pnas.0408037102 (2005). PubMed DOI PMC

Dittert I et al. Improved superfusion technique for rapid cooling or heating of cultured cells under patch-clamp conditions. J Neurosci Methods 151, 178–185, doi:10.1016/j.jneumeth.2005.07.005 (2006). PubMed DOI

Cao C, Zakharian E, Borbiro I & Rohacs T Interplay between calmodulin and phosphatidylinositol 4,5-bisphosphate in Ca2+-induced inactivation of transient receptor potential vanilloid 6 channels. J Biol Chem 288, 5278–5290, doi:10.1074/jbc.M112.409482 (2013). PubMed DOI PMC

Luo J, Stewart R, Berdeaux R & Hu H Tonic inhibition of TRPV3 by Mg2+ in mouse epidermal keratinocytes. J Invest Dermatol 132, 2158–2165, doi:10.1038/jid.2012.144 (2012). PubMed DOI PMC

Cao X, Yang F, Zheng J & Wang K Intracellular proton-mediated activation of TRPV3 channels accounts for the exfoliation effect of alpha-hydroxyl acids on keratinocytes. J Biol Chem 287, 25905–25916, doi:10.1074/jbc.M112.364869 (2012). PubMed DOI PMC

Wang H et al. Mechanisms of proton inhibition and sensitization of the cation channel TRPV3. J Gen Physiol 153, e202012663, doi:10.1085/jgp.202012663 (2021). PubMed DOI PMC

Choi SW et al. The novel high-frequency variant of TRPV3 p.A628T in East Asians showing faster sensitization in response to chemical agonists. Pflugers Arch 471, 1273–1289, doi:10.1007/s00424-019-02309-9 (2019). PubMed DOI

Doerner JF, Hatt H & Ramsey IS Voltage- and temperature-dependent activation of TRPV3 channels is potentiated by receptor-mediated PI(4,5)P2 hydrolysis. J Gen Physiol 137, 271–288, doi:10.1085/jgp.200910388 (2011). PubMed DOI PMC

Schrapers KT, Sponder G, Liebe F, Liebe H & Stumpff F The bovine TRPV3 as a pathway for the uptake of Na(+), Ca(2+), and NH4(+). PLoS One 13, e0193519, doi:10.1371/journal.pone.0193519 (2018). PubMed DOI PMC

Henderson R et al. Outcome of the first electron microscopy validation task force meeting. Structure 20, 205–214, doi:10.1016/j.str.2011.12.014 (2012). PubMed DOI PMC

Smart OS, Neduvelil JG, Wang X, Wallace BA & Samsom MS HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph 14, 354–360 (1996). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...