Cannabinoid non-cannabidiol site modulation of TRPV2 structure and function
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 GM081340
NIGMS NIH HHS - United States
PubMed
36470868
PubMed Central
PMC9722916
DOI
10.1038/s41467-022-35163-y
PII: 10.1038/s41467-022-35163-y
Knihovny.cz E-zdroje
- MeSH
- elektronová kryomikroskopie MeSH
- kanabidiol * farmakologie MeSH
- kanabinoidy * farmakologie MeSH
- kationtové kanály TRPV metabolismus MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- ligandy MeSH
- probenecid farmakologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- kanabidiol * MeSH
- kanabinoidy * MeSH
- kationtové kanály TRPV MeSH
- ligandy MeSH
- probenecid MeSH
- TRPV2 protein, human MeSH Prohlížeč
- Trpv2 protein, rat MeSH Prohlížeč
TRPV2 is a ligand-operated temperature sensor with poorly defined pharmacology. Here, we combine calcium imaging and patch-clamp electrophysiology with cryo-electron microscopy (cryo-EM) to explore how TRPV2 activity is modulated by the phytocannabinoid Δ9-tetrahydrocannabiorcol (C16) and by probenecid. C16 and probenecid act in concert to stimulate TRPV2 responses including histamine release from rat and human mast cells. Each ligand causes distinct conformational changes in TRPV2 as revealed by cryo-EM. Although the binding for probenecid remains elusive, C16 associates within the vanilloid pocket. As such, the C16 binding location is distinct from that of cannabidiol, partially overlapping with the binding site of the TRPV2 inhibitor piperlongumine. Taken together, we discover a new cannabinoid binding site in TRPV2 that is under the influence of allosteric control by probenecid. This molecular insight into ligand modulation enhances our understanding of TRPV2 in normal and pathophysiology.
Center for Biomolecular Magnetic Resonance Goethe University Frankfurt Main Germany
Department of Biomedical and Clinical Sciences Linköping University Linköping Sweden
Department of Biomedical Sciences University of Copenhagen Copenhagen Denmark
Department of Clinical Sciences Malmö Lund University Malmö Sweden
Department of Experimental Medical Science Lund University Lund Sweden
Department of Molecular and Cellular Biology Harvard University Cambridge MA USA
Wallenberg Centre for Molecular Medicine Linköping University Linköping Sweden
Zobrazit více v PubMed
Caterina MJ, Rosen TA, Tominaga M, Brake AJ, Julius D. A capsaicin-receptor homologue with a high threshold for noxious heat. Nature. 1999;398:436–441. doi: 10.1038/18906. PubMed DOI
Caterina MJ, et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 1997;389:816–824. doi: 10.1038/39807. PubMed DOI
Axelsson HE, et al. Transient receptor potential vanilloid 1, vanilloid 2 and melastatin 8 immunoreactive nerve fibers in human skin from individuals with and without Norrbottnian congenital insensitivity to pain. Neuroscience. 2009;162:1322–1332. doi: 10.1016/j.neuroscience.2009.05.052. PubMed DOI
Park U, et al. TRP vanilloid 2 knock-out mice are susceptible to perinatal lethality but display normal thermal and mechanical nociception. J. Neurosci. 2011;31:11425–11436. doi: 10.1523/JNEUROSCI.1384-09.2011. PubMed DOI PMC
Leffler A, Linte RM, Nau C, Reeh P, Babes A. A high-threshold heat-activated channel in cultured rat dorsal root ganglion neurons resembles TRPV2 and is blocked by gadolinium. Eur. J. Neurosci. 2007;26:12–22. doi: 10.1111/j.1460-9568.2007.05643.x. PubMed DOI
Liu B, Qin F. Use Dependence of Heat Sensitivity of Vanilloid Receptor TRPV2. Biophys. J. 2016;110:1523–1537. doi: 10.1016/j.bpj.2016.03.005. PubMed DOI PMC
Fricke TC, et al. Oxidation of methionine residues activates the high-threshold heat-sensitive ion channel TRPV2. Proc. Natl Acad. Sci. USA. 2019;116:24359–24365. doi: 10.1073/pnas.1904332116. PubMed DOI PMC
Kanzaki M, et al. Translocation of a calcium-permeable cation channel induced by insulin-like growth factor-I. Nat. Cell Biol. 1999;1:165–170. doi: 10.1038/11086. PubMed DOI
Freichel M, Almering J, Tsvilovskyy V. The Role of TRP Proteins in Mast Cells. Front Immunol. 2012;3:150. doi: 10.3389/fimmu.2012.00150. PubMed DOI PMC
Zhang D, et al. Mast-cell degranulation induced by physical stimuli involves the activation of transient-receptor-potential channel TRPV2. Physiol. Res. 2012;61:113–124. doi: 10.33549/physiolres.932053. PubMed DOI
Juvin V, Penna A, Chemin J, Lin YL, Rassendren FA. Pharmacological characterization and molecular determinants of the activation of transient receptor potential V2 channel orthologs by 2-aminoethoxydiphenyl borate. Mol. Pharm. 2007;72:1258–1268. doi: 10.1124/mol.107.037044. PubMed DOI
Pottosin I, et al. Mechanosensitive Ca(2)(+)-permeable channels in human leukemic cells: pharmacological and molecular evidence for TRPV2. Biochim Biophys. Acta. 2015;1848:51–59. doi: 10.1016/j.bbamem.2014.09.008. PubMed DOI
Santoni, G., et al. The role of transient receptor potential vanilloid type-2 ionchannels in innate and adaptive immune. responses. Front Immunol4 (2013). PubMed PMC
Lewinter RD, Skinner K, Julius D, Basbaum AI. Immunoreactive TRPV-2 (VRL-1), a capsaicin receptor homolog, in the spinal cord of the rat. J. Comp. Neurol. 2004;470:400–408. doi: 10.1002/cne.20024. PubMed DOI
Link TM, et al. TRPV2 has a pivotal role in macrophage particle binding and phagocytosis. Nat. Immunol. 2010;11:232–239. doi: 10.1038/ni.1842. PubMed DOI PMC
Hu HZ, et al. 2-aminoethoxydiphenyl borate is a common activator of TRPV1, TRPV2, and TRPV3. J. Biol. Chem. 2004;279:35741–35748. doi: 10.1074/jbc.M404164200. PubMed DOI
Bang S, Kim KY, Yoo S, Lee SH, Hwang SW. Transient receptor potential V2 expressed in sensory neurons is activated by probenecid. Neurosci. Lett. 2007;425:120–125. doi: 10.1016/j.neulet.2007.08.035. PubMed DOI
McClenaghan C, Zeng F, Verkuyl JM. TRPA1 agonist activity of probenecid desensitizes channel responses: consequences for screening. Assay. Drug Dev. Technol. 2012;10:533–541. doi: 10.1089/adt.2012.447. PubMed DOI
Peralvarez-Marin A, Donate-Macian P, Gaudet R. What do we know about the transient receptor potential vanilloid 2 (TRPV2) ion channel? FEBS J. 2013;280:5471–5487. doi: 10.1111/febs.12302. PubMed DOI PMC
Muller C, Morales P, Reggio PH. Cannabinoid Ligands Targeting TRP Channels. Front Mol. Neurosci. 2018;11:487. doi: 10.3389/fnmol.2018.00487. PubMed DOI PMC
Pumroy RA, Fluck EC, 3rd, Ahmed T, Moiseenkova-Bell VY. Structural insights into the gating mechanisms of TRPV channels. Cell Calcium. 2020;87:102168. doi: 10.1016/j.ceca.2020.102168. PubMed DOI PMC
Cao E, Liao M, Cheng Y, Julius D. TRPV1 structures in distinct conformations reveal activation mechanisms. Nature. 2013;504:113–118. doi: 10.1038/nature12823. PubMed DOI PMC
Cao, E. Structural mechanisms of transient receptor potential ion channels. J. Gen. Physiol.152 (2020). PubMed PMC
Goretzki B, Guhl C, Tebbe F, Harder JM, Hellmich UA. Unstructural Biology of TRP Ion Channels: The Role of Intrinsically Disordered Regions in Channel Function and Regulation. J. Mol. Biol. 2021;433:166931. doi: 10.1016/j.jmb.2021.166931. PubMed DOI
Zhao Y, McVeigh BM, Moiseenkova-Bell VY. Structural Pharmacology of TRP Channels. J. Mol. Biol. 2021;433:166914. doi: 10.1016/j.jmb.2021.166914. PubMed DOI PMC
Huynh KW, et al. Structure of the full-length TRPV2 channel by cryo-EM. Nat. Commun. 2016;7:11130. doi: 10.1038/ncomms11130. PubMed DOI PMC
Pumroy, R. A., et al. Molecular mechanism of TRPV2 channel modulation by cannabidiol. Elife8 (2019). PubMed PMC
Conde J, et al. Allosteric Antagonist Modulation of TRPV2 by Piperlongumine Impairs Glioblastoma Progression. ACS Cent. Sci. 2021;7:868–881. doi: 10.1021/acscentsci.1c00070. PubMed DOI PMC
Pumroy RA, et al. Structural insights into TRPV2 activation by small molecules. Nat. Commun. 2022;13:2334. doi: 10.1038/s41467-022-30083-3. PubMed DOI PMC
Su, N., et al. Structural mechanisms of TRPV2 modulation by endogenous and exogenous ligands. Nat. Chem. Biol. (2022). PubMed
Muller C, Reggio PH. An Analysis of the Putative CBD Binding Site in the Ionotropic Cannabinoid Receptors. Front Cell Neurosci. 2020;14:615811. doi: 10.3389/fncel.2020.615811. PubMed DOI PMC
Andersson DA, et al. TRPA1 mediates spinal antinociception induced by acetaminophen and the cannabinoid Delta(9)-tetrahydrocannabiorcol. Nat. Commun. 2011;2:551. doi: 10.1038/ncomms1559. PubMed DOI
Jordt SE, et al. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature. 2004;427:260–265. doi: 10.1038/nature02282. PubMed DOI
Zygmunt PM, Andersson DA, Högestätt ED. D9-Tetrahydrocannabinol and cannabinol activate capsaicin-sensitive sensory nerves via a CB1 and CB2 cannabinoid receptor-independent mechanism. J. Neurosci. 2002;22:4720–4727. doi: 10.1523/JNEUROSCI.22-11-04720.2002. PubMed DOI PMC
Moparthi L, et al. Human TRPA1 is intrinsically cold- and chemosensitive with and without its N-terminal ankyrin repeat domain. Proc. Natl Acad. Sci. USA. 2014;111:16901–16906. doi: 10.1073/pnas.1412689111. PubMed DOI PMC
Huffer, K. E., Aleksandrova, A. A., Jara-Oseguera, A., Forrest, L. R. & Swartz, K. J. Global alignment and assessment of TRP channel transmembrane domain structures to explore functional mechanisms. Elife9 (2020). PubMed PMC
Huynh KW, et al. Structural insight into the assembly of TRPV channels. Structure. 2014;22:260–268. doi: 10.1016/j.str.2013.11.008. PubMed DOI PMC
Solis-Lopez A, et al. Analysis of TRPV channel activation by stimulation of FCepsilonRI and MRGPR receptors in mouse peritoneal mast cells. PLoS One. 2017;12:e0171366. doi: 10.1371/journal.pone.0171366. PubMed DOI PMC
Bluhm Y, et al. Valdecoxib blocks rat TRPV2 channels. Eur. J. Pharm. 2022;915:174702. doi: 10.1016/j.ejphar.2021.174702. PubMed DOI
Zygmunt PM, Högestätt ED. Trpa1. Handb. Exp. Pharm. 2014;222:583–630. doi: 10.1007/978-3-642-54215-2_23. PubMed DOI
Talavera K, et al. Mammalian Transient Receptor Potential TRPA1 Channels: From Structure to Disease. Physiol. Rev. 2020;100:725–803. doi: 10.1152/physrev.00005.2019. PubMed DOI
Neeper MP, et al. Activation properties of heterologously expressed mammalian TRPV2: evidence for species dependence. J. Biol. Chem. 2007;282:15894–15902. doi: 10.1074/jbc.M608287200. PubMed DOI
Qin N, et al. TRPV2 is activated by cannabidiol and mediates CGRP release in cultured rat dorsal root ganglion neurons. J. Neurosci. 2008;28:6231–6238. doi: 10.1523/JNEUROSCI.0504-08.2008. PubMed DOI PMC
Zubcevic L, Le S, Yang H, Lee SY. Conformational plasticity in the selectivity filter of the TRPV2 ion channel. Nat. Struct. Mol. Biol. 2018;25:405–415. doi: 10.1038/s41594-018-0059-z. PubMed DOI PMC
Protopopova, A. D., et al. TRPV2 interaction with small molecules and lipids revealed by cryo-EM. BioRxiv (2020).
Dosey TL, et al. Structures of TRPV2 in distinct conformations provide insight into role of the pore turret. Nat. Struct. Mol. Biol. 2019;26:40–49. doi: 10.1038/s41594-018-0168-8. PubMed DOI PMC
Gao Y, Cao E, Julius D, Cheng Y. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature. 2016;534:347–351. doi: 10.1038/nature17964. PubMed DOI PMC
Kwon DH, et al. Heat-dependent opening of TRPV1 in the presence of capsaicin. Nat. Struct. Mol. Biol. 2021;28:554–563. doi: 10.1038/s41594-021-00616-3. PubMed DOI PMC
Nadezhdin KD, et al. Extracellular cap domain is an essential component of the TRPV1 gating mechanism. Nat. Commun. 2021;12:2154. doi: 10.1038/s41467-021-22507-3. PubMed DOI PMC
Yang F, et al. Structural mechanism underlying capsaicin binding and activation of the TRPV1 ion channel. Nat. Chem. Biol. 2015;11:518–524. doi: 10.1038/nchembio.1835. PubMed DOI PMC
Elokely K, et al. Understanding TRPV1 activation by ligands: Insights from the binding modes of capsaicin and resiniferatoxin. Proc. Natl Acad. Sci. USA. 2016;113:E137–E145. doi: 10.1073/pnas.1517288113. PubMed DOI PMC
Liu C, et al. A Non-covalent Ligand Reveals Biased Agonism of the TRPA1 Ion Channel. Neuron. 2021;109:273–284 e274. doi: 10.1016/j.neuron.2020.10.014. PubMed DOI PMC
Shimada H, et al. The structure of lipid nanodisc-reconstituted TRPV3 reveals the gating mechanism. Nat. Struct. Mol. Biol. 2020;27:645–652. doi: 10.1038/s41594-020-0439-z. PubMed DOI
Nadezhdin KD, et al. Structural mechanism of heat-induced opening of a temperature-sensitive TRP channel. Nat. Struct. Mol. Biol. 2021;28:564–572. doi: 10.1038/s41594-021-00615-4. PubMed DOI PMC
Zhang K, Julius D, Cheng Y. Structural snapshots of TRPV1 reveal mechanism of polymodal functionality. Cell. 2021;184:5138–5150 e5112. doi: 10.1016/j.cell.2021.08.012. PubMed DOI PMC
Yelshanskaya MV, Nadezhdin KD, Kurnikova MG, Sobolevsky AI. Structure and function of the calcium-selective TRP channel TRPV6. J. Physiol. 2021;599:2673–2697. doi: 10.1113/JP279024. PubMed DOI PMC
de Ghellinck A, et al. Production and analysis of perdeuterated lipids from Pichia pastoris cells. PLoS One. 2014;9:e92999. doi: 10.1371/journal.pone.0092999. PubMed DOI PMC
Neuberger A, Nadezhdin KD, Sobolevsky AI. Structural mechanisms of TRPV6 inhibition by ruthenium red and econazole. Nat. Commun. 2021;12:6284. doi: 10.1038/s41467-021-26608-x. PubMed DOI PMC
Yang F, Vu S, Yarov-Yarovoy V, Zheng J. Rational design and validation of a vanilloid-sensitive TRPV2 ion channel. Proc. Natl Acad. Sci. USA. 2016;113:E3657–E3666. PubMed PMC
Zhang, F., et al. Engineering vanilloid-sensitivity into the rat TRPV2 channel. Elife5 (2016). PubMed PMC
Zubcevic, L., Hsu, A. L., Borgnia, M. J. & Lee, S. Y. Symmetry transitions during gating of the TRPV2 ion channel in lipid membranes. Elife8 (2019). PubMed PMC
Dittert I, et al. Improved superfusion technique for rapid cooling or heating of cultured cells under patch-clamp conditions. J. Neurosci. Methods. 2006;151:178–185. doi: 10.1016/j.jneumeth.2005.07.005. PubMed DOI
Gela A, et al. Eotaxin-3 (CCL26) exerts innate host defense activities that are modulated by mast cell proteases. Allergy. 2015;70:161–170. doi: 10.1111/all.12542. PubMed DOI
Xiang Z, Moller C, Nilsson G. IgE-receptor activation induces survival and Bfl-1 expression in human mast cells but not basophils. Allergy. 2006;61:1040–1046. doi: 10.1111/j.1398-9995.2006.01024.x. PubMed DOI
Punjani A, Rubinstein JL, Fleet DJ, Brubaker MA. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods. 2017;14:290–296. doi: 10.1038/nmeth.4169. PubMed DOI
Pettersen EF, et al. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI
Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr. D. Biol. Crystallogr. 2010;66:486–501. doi: 10.1107/S0907444910007493. PubMed DOI PMC
Afonine PV, et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D. Struct. Biol. 2018;74:531–544. doi: 10.1107/S2059798318006551. PubMed DOI PMC
Chen VB, et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D. Biol. Crystallogr. 2010;66:12–21. doi: 10.1107/S0907444909042073. PubMed DOI PMC