A Real-Time Clinical Decision Support System, for Mild Cognitive Impairment Detection, Based on a Hybrid Neural Architecture
Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
34257699
PubMed Central
PMC8257364
DOI
10.1155/2021/5545297
Knihovny.cz E-resources
- MeSH
- Databases, Factual statistics & numerical data MeSH
- Diagnosis, Computer-Assisted methods statistics & numerical data MeSH
- Cognitive Dysfunction diagnosis psychology MeSH
- Humans MeSH
- Neural Networks, Computer * MeSH
- Neuropsychological Tests * statistics & numerical data MeSH
- Area Under Curve MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Sensitivity and Specificity MeSH
- Case-Control Studies MeSH
- Decision Support Systems, Clinical * statistics & numerical data MeSH
- Computational Biology MeSH
- Check Tag
- Humans MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Publication type
- Journal Article MeSH
Clinical procedure for mild cognitive impairment (MCI) is mainly based on clinical records and short cognitive tests. However, low suspicion and difficulties in understanding test cut-offs make diagnostic accuracy being low, particularly in primary care. Artificial neural networks (ANNs) are suitable to design computed aided diagnostic systems because of their features of generating relationships between variables and their learning capability. The main aim pursued in that work is to explore the ability of a hybrid ANN-based system in order to provide a tool to assist in the clinical decision-making that facilitates a reliable MCI estimate. The model is designed to work with variables usually available in primary care, including Minimental Status Examination (MMSE), Functional Assessment Questionnaire (FAQ), Geriatric Depression Scale (GDS), age, and years of education. It will be useful in any clinical setting. Other important goal of our study is to compare the diagnostic rendering of ANN-based system and clinical physicians. A sample of 128 MCI subjects and 203 controls was selected from the Alzheimer's Disease Neuroimaging Initiative (ADNI). The ANN-based system found the optimal variable combination, being AUC, sensitivity, specificity, and clinical utility index (CUI) calculated. The ANN results were compared with those from medical experts which include two family physicians, a neurologist, and a geriatrician. The optimal ANN model reached an AUC of 95.2%, with a sensitivity of 90.0% and a specificity of 84.78% and was based on MMSE, FAQ, and age inputs. As a whole, physician performance achieved a sensitivity of 46.66% and a specificity of 91.3%. CUIs were also better for the ANN model. The proposed ANN system reaches excellent diagnostic accuracy although it is based only on common clinical tests. These results suggest that the system is especially suitable for primary care implementation, aiding physicians work with cognitive impairment suspicions.
Departamento de Ingeniería Informática y de Sistemas Universidad de La Laguna La Laguna Spain
Servicio de Psiquiatría Hospital Universitario Marqués de Valdecilla Santander Spain
See more in PubMed
GBD 2013 DALYs and HALE Collaborators, Murray C. J., Barber R. M., et al. Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990-2013: quantifying the epidemiological transition. The Lancet. 2015;386(10009):2145–2191. doi: 10.1016/S0140-6736(15)61340-X. PubMed DOI PMC
Petersen R. C., Smith G. E., Waring S. C., Ivnik R. J., Tangalos E. G., Kokmen E. Mild cognitive impairment. Archives of Neurology. 1999;56(3):303–308. doi: 10.1001/archneur.56.3.303. PubMed DOI
Mitchell A. J., Shiri-Feshki M. Rate of progression of mild cognitive impairment to dementia - meta-analysis of 41 robust inception cohort studies. Acta Psychiatrica Scandinavica. 2009;119(4):252–265. doi: 10.1111/j.1600-0447.2008.01326.x. PubMed DOI
Jack C. R., Knopman D. S., Jagust W. J., et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. The Lancet Neurology. 2013;12(2):207–216. doi: 10.1016/S1474-4422(12)70291-0. PubMed DOI PMC
Olazaran J., Torrero P., Cruz I., et al. Mild cognitive impairment and dementia in primary care: the value of medical history. Family Practice. 2011;28(4):385–392. doi: 10.1093/fampra/cmr005. PubMed DOI
Johnson D. K., Storandt M., Morris J. C., Galvin J. E. Longitudinal study of the transition from healthy aging to Alzheimer disease. Archives of Neurology. 2009;66(10):1254–1259. doi: 10.1001/archneurol.2009.158. PubMed DOI PMC
García Báez P., Suarez Araujo C. P., Martínez García J. M. Artificial neural networks in Alzheimer’s diagnosis: a perspective. Alzheimer’s Disease Research Journal. 2011;4:413–442.
Quintana M., Guàrdia J., Sánchez-Benavides G., et al. Using artificial neural networks in clinical neuropsychology: high performance in mild cognitive impairment and Alzheimer’s disease. Journal of Clinical and Experimental Neuropsychology. 2012;34(2):195–208. doi: 10.1080/13803395.2011.630651. PubMed DOI
Hinrichs C., Singh V., Mukherjee L., et al. Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset. NeuroImage. 2009;48(1):138–149. doi: 10.1016/j.neuroimage.2009.05.056. PubMed DOI PMC
Mantzaris D., Vrizas M., Trougkakos S., Priska E., Vadikolias K. Artificial neural networks for estimation of dementias types. Artificial Intelligence and Applications. 2014;1(1):74–82.
Yang S.-T., Lee J.-D., Chang T.-C., et al. Discrimination between Alzheimer’s disease and mild cognitive impairment using SOM and PSO-SVM. Computational and Mathematical Methods in Medicine. 2013;2013:10. doi: 10.1155/2013/253670.253670 PubMed DOI PMC
Cui Y., Liu B., Luo S., et al. Identification of conversion from mild cognitive impairment to Alzheimer’s disease using multivariate predictors. PLoS One. 2011;6(7, article e21896) doi: 10.1371/journal.pone.0021896. PubMed DOI PMC
Palmqvist S., Hertze J., Minthon L., et al. Comparison of brief cognitive tests and CSF biomarkers in predicting Alzheimer’s disease in mild cognitive impairment: six-year follow-up study. PLoS One. 2012;7(6, article e38639) doi: 10.1371/journal.pone.0038639. PubMed DOI PMC
Gomar J. J., Bobes-Bascaran M. T., Conejero-Goldberg C., Davies P., Goldberg T. E., Alzheimer's Disease Neuroimaging Initiative Utility of combinations of biomarkers, cognitive markers, and risk factors to predict conversion from mild cognitive impairment to Alzheimer disease in patients in the Alzheimer’s disease neuroimaging initiative. Archives of General Psychiatry. 2011;68(9):961–969. doi: 10.1001/archgenpsychiatry.2011.96. PubMed DOI
Yao X., Yan J., Ginda M., et al. Mapping longitudinal scientific progress, collaboration and impact of the Alzheimer’s disease neuroimaging initiative. PLoS One. 2017;12(11, article e0186095) doi: 10.1371/journal.pone.0186095. PubMed DOI PMC
Folstein M. F., Folstein S. E., McHugh P. R. ‘Mini-mental state’. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research. 1975;12(3):189–198. doi: 10.1016/0022-3956(75)90026-6. PubMed DOI
Pfeffer R. I., Kurosaki T. T., Harrah C. H., Chance J. M., Filos S. Measurement of functional activities in older adults in the community. Journal of Gerontology. 1982;37(3):323–329. doi: 10.1093/geronj/37.3.323. PubMed DOI
Guyon I., Elisseeff A. An introduction to variable and feature selection. Journal of Machine Learning Research. 2003;3:1157–1182. http://dl.acm.org/citation.cfm?id=944919.944968.
Rojas R. Neural Networks: A Systematic Introduction. Berlin, Heidelberg: Springer-Verlag; 1996. DOI
Hrycej T. Modular Learning in Neural Networks: A Modularized Approach to Neural Network Classification. 1st. New York, NY, USA: John Wiley & Sons, Inc.; 1992.
Hecht-Nielsen R. Counterpropagation networks. Applied Optics. 1987;26(23):4979–4983. doi: 10.1364/AO.26.004979. PubMed DOI
Bangyal W. H., Ahmad J., Shafi I., Abbas Q. A forward only counter propagation network-based approach for contraceptive method choice classification task. Journal of Experimental & Theoretical Artificial Intelligence. 2012;24(2):211–218. doi: 10.1080/0952813X.2011.639091. DOI
Grossberg S. A global prediction (or learning) theory for some nonlinear functional-differential equations. Studies in Applied Mathematics. 1969;5:64–70.
Fawcett T. An introduction to ROC analysis. Pattern Recognition Letters. 2006;27(8):861–874. doi: 10.1016/j.patrec.2005.10.010. DOI
Huang J., Ling C. X. Using AUC and accuracy in evaluating learning algorithms. IEEE Transactions on Knowledge and Data Engineering. 2005;17(3):299–310. doi: 10.1109/TKDE.2005.50. DOI
Mitchell A. J. A meta-analysis of the accuracy of the mini-mental state examination in the detection of dementia and mild cognitive impairment. Journal of Psychiatric Research. 2009;43(4):411–431. doi: 10.1016/j.jpsychires.2008.04.014. PubMed DOI
Landis J. R., Koch G. G. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159–174. doi: 10.2307/2529310. PubMed DOI
Mitchell A. J., McGlinchey J. B., Young D., Chelminski I., Zimmerman M. Accuracy of specific symptoms in the diagnosis of major depressive disorder in psychiatric out-patients: data from the MIDAS project. Psychological Medicine. 2009;39(7):1107–1116. doi: 10.1017/S0033291708004674. PubMed DOI
Steenland N. K., Auman C. M., Patel P. M., et al. Development of a rapid screening instrument for mild cognitive impairment and undiagnosed dementia. Journal of Alzheimer's Disease. 2008;15(3):419–427. doi: 10.3233/JAD-2008-15308. PubMed DOI PMC
Li F., Tran L., Thung K., Ji S., Shen D., Li J. A robust deep model for improved classification of AD/MCI patients. IEEE Journal of Biomedical and Health Informatics. 2015;19(5):1610–1616. doi: 10.1109/JBHI.2015.2429556. PubMed DOI PMC
Senanayake U., Sowmya A., Dawes L. Deep fusion pipeline for mild cognitive impairment diagnosis. 2018 IEEE 15th international symposium on biomedical imaging (isbi 2018); April 2018; Washington, DC, USA. pp. 1394–1997. DOI
Cruz-Orduna I., Bellon J. M., Torrero P., et al. Detecting MCI and dementia in primary care: efficiency of the MMS, the FAQ and the IQCODE. Family Practice. 2012;29(4):401–406. doi: 10.1093/fampra/cmr114. PubMed DOI