Beneficial osseointegration effect of hydroxyapatite coating on cranial implant - FEM investigation
Language English Country United States Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
34280226
PubMed Central
PMC8289038
DOI
10.1371/journal.pone.0254837
PII: PONE-D-21-10481
Knihovny.cz E-resources
- MeSH
- Finite Element Analysis MeSH
- Coated Materials, Biocompatible chemistry pharmacology MeSH
- Calcium Phosphates chemistry pharmacology MeSH
- Durapatite chemistry pharmacology MeSH
- Bone Substitutes chemistry pharmacology MeSH
- Skull diagnostic imaging drug effects pathology MeSH
- Humans MeSH
- Osseointegration drug effects physiology MeSH
- Prostheses and Implants MeSH
- Alloys chemistry pharmacology MeSH
- Materials Testing MeSH
- Titanium chemistry pharmacology MeSH
- Dental Implants * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Coated Materials, Biocompatible MeSH
- Calcium Phosphates MeSH
- Durapatite MeSH
- Bone Substitutes MeSH
- Alloys MeSH
- Titanium MeSH
- titanium alloy (TiAl6V4) MeSH Browser
- Dental Implants * MeSH
A firm connection of the bone-implant-fixation system is of utmost importance for patients with cranial defects. In order to improve the connection reliability, the current research focuses on finding the optimal fixation method, as well as selection of the implant manufacturing methods and the used materials. For the latter, implementation of bioactive materials such as hydroxyapatite or other calcium phosphates has also been considered in the literature. The aim of this study was to investigate the effect of gradual osseointegration on the biomechanical performance of cranial Ti6Al4V implants with a deposited HA coating as the osseointegration agent. This effect was assessed by two different computational approaches using finite element method (FEM) modeling. The values of key input parameters necessary for FEM were obtained from experimental plasma spray deposition of HA layers onto Ti6Al4V samples. Immediately upon implantation, the HA layer at the bone-implant contact area brought only a slight decrease in the values of von Mises stress in the implant and the micro-screws when compared to a non-coated counterpart; importantly, this was without any negative trade-off in other important characteristics. The major benefit of the HA coatings was manifested upon the modeled osseointegration: the results of both approaches confirmed a significant reduction of investigated parameters such as the total implant displacements (reduced from 0.050 mm to 0.012 mm and 0.002 mm while using Approach I and II, respectively) and stresses (reduced from 52 MPa to 10 MPa and 1 MPa) in the implanted components in comparison to non-coated variant. This is a very promising result for potential use of thermally sprayed HA coatings for cranial implants.
See more in PubMed
Bonda D.J., Manjila S., Selman W.R., Dean D., The recent revolution in the design and manufacture of cranial implants: Modern advancements and future directions, Neurosurgery. (2015). 10.1227/NEU.0000000000000899 PubMed DOI PMC
Ridwan-Pramana A., Marcian P., Borak L., Narra N., Forouzanfar T., Wolff J., Finite element analysis of 6 large PMMA skull reconstructions: A multi-criteria evaluation approach, PLoS One. (2017). 10.1371/journal.pone.0179325 PubMed DOI PMC
Chamrad J., Marcián P., Narra N., Borák L., Evaluating different shapes of cranial fixation mini-plates using finite element method, in: IFMBE Proc., 2017. 10.1007/978-981-10-5122-7_187. DOI
Maniar R.N., Singhi T., Patient specific implants: Scope for the future, Curr. Rev. Musculoskelet. Med. (2014). 10.1007/s12178-014-9214-2 PubMed DOI PMC
El Halabi F., Rodriguez J.F., Rebolledo L., Hurtós E., Doblaré M., Mechanical characterization and numerical simulation of polyether-ether-ketone (PEEK) cranial implants, J. Mech. Behav. Biomed. Mater. (2011). 10.1016/j.jmbbm.2011.05.039 PubMed DOI
J. Chamrad, P. Marcián, L. Borák, J. Wolff, Finite element analysis of cranial implant, in: 22nd Int. Conf. Eng. Mech. 2016, Svratka, 2016: pp. 234–237.
Lewin S., Kihlström Burenstam Linder L., Birgersson U., Gallinetti S., Åberg J., Engqvist H., et al.., Monetite-based composite cranial implants demonstrate long-term clinical volumetric balance by concomitant bone formation and degradation, Acta Biomater. (2021). 10.1016/j.actbio.2021.04.015 PubMed DOI
Ridwan-Pramana A., Marcián P., Borák L., Narra N., Forouzanfar T., Wolff J., Structural and mechanical implications of PMMA implant shape and interface geometry in cranioplasty—A finite element study, J. Cranio-Maxillofacial Surg. (2016). 10.1016/j.jcms.2015.10.014 PubMed DOI
Chen Q., Thouas G.A., Metallic implant biomaterials, Mater. Sci. Eng. R Reports. (2015). 10.1016/j.mser.2014.10.001. DOI
Moiduddin K., Darwish S., Al-Ahmari A., ElWatidy S., Mohammad A., Ameen W., Structural and mechanical characterization of custom design cranial implant created using additive manufacturing, Electron. J. Biotechnol. (2017). 10.1016/j.ejbt.2017.06.005. DOI
M. Ehrenfeld, P.N. Manson, J. Prein, Principles of Internal Fixation of the Craniomaxillofacial Skeleton, Thieme/AO, New York, 2012.
Marcián P., Narra N., Borák L., Chamrad J., Wolff J., Biomechanical performance of cranial implants with different thicknesses and material properties: A finite element study, Comput. Biol. Med. 109 (2019) 43–52. 10.1016/j.compbiomed.2019.04.016 PubMed DOI
Mavrogenis A.F., Dimitriou R., Parvizi J., Babis G.C., Biology of implant osseointegration, J. Musculoskelet. Neuronal Interact. (2009). PubMed
Lewin S., Fleps I., Neuhaus D., Öhman-Mägi C., Ferguson S.J., Persson C., et al.., Implicit and explicit finite element models predict the mechanical response of calcium phosphate-titanium cranial implants, J. Mech. Behav. Biomed. Mater. (2020). 10.1016/j.jmbbm.2020.104085 PubMed DOI
Lewin S., Åberg J., Neuhaus D., Engqvist H., Ferguson S.J., Öhman-Mägi C., et al.., Mechanical behaviour of composite calcium phosphate–titanium cranial implants: Effects of loading rate and design, J. Mech. Behav. Biomed. Mater. (2020). 10.1016/j.jmbbm.2020.103701 PubMed DOI
Geesink R.G., de Groot K., Klein C.P., Bonding of bone to apatite-coated implants, J. Bone Jt. Surgery, Br. Vol. (1988). 10.1302/0301-620X.70B1.2828374 PubMed DOI
Qin W., Kolooshani A., Kolahdooz A., Saber-Samandari S., Khazaei S., Khandan A., et al.., Coating the magnesium implants with reinforced nanocomposite nanoparticles for use in orthopedic applications, Colloids Surfaces A Physicochem. Eng. Asp. 621 (2021) 126581. 10.1016/j.colsurfa.2021.126581. DOI
Khandan A., Abdellahi M., Barenji R.V., Ozada N., Karamian E., Introducing natural hydroxyapatite-diopside (NHA-Di) nano-bioceramic coating, Ceram. Int. 41 (2015) 12355–12363. 10.1016/j.ceramint.2015.06.065. DOI
Klein C.P.A.T., Patka P., Wolke J.G.C., de Blieck-Hogervorst J.M.A., de Groot K., Long-term in vivo study of plasma-sprayed coatings on titanium alloys of tetracalcium phosphate, hydroxyapatite and α-tricalcium phosphate, Biomaterials. (1994). 10.1016/0142-9612(94)90264-X PubMed DOI
Oonishi H., Yamamoto M., Ishimaru H., Tsuji E., Kushitani S., Aono M., et al.., The effect of hydroxyapatite coating on bone growth into porous titanium alloy implants, J. Bone Jt. Surg.—Ser. B. (1989). 10.1302/0301-620x.71b2.2925737. PubMed DOI
McPherson R., Gane N., Bastow T.J., Structural characterization of plasma-sprayed hydroxylapatite coatings, J. Mater. Sci. Mater. Med. (1995). 10.1007/BF00120300. DOI
Berndt C., Haddad G., Farmar A., Gross K., Thermal spraying for bioceramic applications, Mater. Forum (Rushcutters Bay). (1990).
García-Sanz F.J., Mayor M.B., Arias J.L., Pou J., León B., Pérez-Amor M., Hydroxyapatite coatings: A comparative study between plasma-spray and pulsed laser deposition techniques, in: J. Mater. Sci. Mater. Med., 1997. 10.1023/A:1018549720873 PubMed DOI
Chern Lin J.H., Liu M.L., Ju C.P., Structure and properties of hydroxyapatite-bioactive glass composites plasma sprayed on Ti6Al4V, J. Mater. Sci. Mater. Med. (1994). 10.1007/BF00122397. DOI
Koch B., Wolke J.G.C., de Groot K., X-ray diffraction studies on plasma-sprayed calcium phosphate-coated implants, J. Biomed. Mater. Res. (1990). 10.1002/jbm.820240603 PubMed DOI
Radin S.R., Ducheyne P., Plasma spraying induced changes of calcium phosphate ceramic characteristics and the effect on in vitro stability, J. Mater. Sci. Mater. Med. (1992). 10.1007/BF00702942. DOI
Filiaggi M.J., Pilliar R.M., Coombs N.A., Post-plasma-spraying heat treatment of the HA coating/Ti-6Al-4V implant system, J. Biomed. Mater. Res. (1993). 10.1002/jbm.820270208. PubMed DOI
Ji H., Marquis P.M., Effect of heat treatment on the microstructure of plasma-sprayed hydroxyapatite coating, Biomaterials. (1993). 10.1016/0142-9612(93)90077-F PubMed DOI
Cizek J., Brozek V., Chraska T., Lukac F., Medricky J., Musalek R., et al.., Silver-Doped Hydroxyapatite Coatings Deposited by Suspension Plasma Spraying, J. Therm. Spray Technol. (2018). 10.1007/s11666-018-0767-2. DOI
University of Iowa, Visible Human Project, (2012). https://mri.radiology.uiowa.edu/visible_human_datasets.html.
Marcián P., Konečný O., Borák L., Valášek J., Řehák K., Krpalek D., et al.., On the level of computational models in biomechanics depending on gained data from CT/MRI and micro-CT, in: Mendel, 2011.
Marcián P., Borák L., Valášek J., Kaiser J., Florian Z., Wolff J., Finite element analysis of dental implant loading on atrophic and non-atrophic cancellous and cortical mandibular bone—a feasibility study, J. Biomech. (2014). 10.1016/j.jbiomech.2014.10.019 PubMed DOI
Cizek J., Matejicek J., Medicine Meets Thermal Spray Technology: A Review of Patents, J. Therm. Spray Technol. (2018). 10.1007/s11666-018-0798-8. DOI
Korabi R., Shemtov-Yona K., Dorogoy A., Rittel D., The Failure Envelope Concept Applied to the Bone-Dental Implant System, Sci. Rep. (2017). 10.1038/s41598-017-02282-2 PubMed DOI PMC
Rittel D., Dorogoy A., Shemtov-Yona K., Modeling the effect of osseointegration on dental implant pullout and torque removal tests, Clin. Implant Dent. Relat. Res. (2018). 10.1111/cid.12645 PubMed DOI
Chamrad J., Marcián P., Borák L., On the level of computational model of a human skull: A comparative study, Appl. Comput. Mech. 12 (2018). 10.24132/acm.2018.385. DOI
Rahmoun J., Auperrin A., Delille R., Naceur H., Drazetic P., Characterization and micromechanical modeling of the human cranial bone elastic properties, Mech. Res. Commun. (2014). 10.1016/j.mechrescom.2014.04.001. DOI
Motherway J.A., Verschueren P., Van der Perre G., Vander Sloten J., Gilchrist M.D., The mechanical properties of cranial bone: The effect of loading rate and cranial sampling position, J. Biomech. (2009). 10.1016/j.jbiomech.2009.05.030 PubMed DOI
Ameen W., Al-Ahmari A., Mohammed M.K., Abdulhameed O., Umer U., Moiduddin K., Design, finite element analysis (FEA), and fabrication of custom titanium alloy cranial implant using electron beam melting additive manufacturing, Adv. Prod. Eng. Manag. (2018). 10.14743/apem2018.3.289. DOI
Niinomi M., Mechanical properties of biomedical titanium alloys, Mater. Sci. Eng. A. (1998). 10.1016/S0921-5093(97)00806-X. DOI
Evans S.L., Lawes K.R., Gregson P.J., Layered, adhesively bonded hydroxyapatite coatings for orthopaedic implants, J. Mater. Sci. Mater. Med. (1994). 10.1007/BF00058990. DOI
Tsui Y.C., Doyle C., Clyne T.W., Plasma sprayed hydroxyapatite coatings on titanium substrates. Part 1: Mechanical properties and residual stress levels, Biomaterials. (1998). 10.1016/S0142-9612(98)00103-3 PubMed DOI
Berglundh T., Abrahamsson I., Lindhe J., Bone reactions to longstanding functional load at implants: An experimental study in dogs, J. Clin. Periodontol. (2005). 10.1111/j.1600-051X.2005.00747.x PubMed DOI
Czosnyka M., Monitoring and interpretation of intracranial pressure, J. Neurol. Neurosurg. Psychiatry. (2004). 10.1136/jnnp.2003.033126 PubMed DOI PMC
Carayon M.T., Lacout J.L., Study of the Ca/P atomic ratio of the amorphous phase in plasma-sprayed hydroxyapatite coatings, J. Solid State Chem. (2003). 10.1016/S0022-4596(02)00085-3. DOI
Hench L.L., Bioceramics, J. Am. Ceram. Soc. 81 (1998) 1705–1728. 10.1007/978-1-84882-664-9_3. DOI
Evins A.I., Dutton J., Imam S.S., Dadi A.O., Xu T., Cheng D., et al.., On-demand intraoperative 3-dimensional printing of custom cranioplastic prostheses, Oper. Neurosurg. (2018). 10.1093/ons/opx280 PubMed DOI PMC
Frassanito P., De Bonis P., Mattogno P.P., Mangiola A., Novello M., Brinchi D., et al.., The fate of a macroporous hydroxyapatite cranioplasty four years after implantation: Macroscopical and microscopical findings in a case of recurrent atypical meningioma, Clin. Neurol. Neurosurg. (2013). 10.1016/j.clineuro.2012.11.032. PubMed DOI
Liu Y., Li J.P., Hunziker E.B., De Groot K., Incorporation of growth factors into medical devices via biomimetic coatings, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. (2006). 10.1098/rsta.2005.1685 PubMed DOI
Choi Y.-J., Jun S.-H., Song Y.-D., Chang M.-W., Kwo J.-J., CT Scanning and Dental Implant, in: CT Scanning—Tech. Appl., 2011. 10.5772/19250. DOI