• This record comes from PubMed

Beneficial osseointegration effect of hydroxyapatite coating on cranial implant - FEM investigation

. 2021 ; 16 (7) : e0254837. [epub] 20210719

Language English Country United States Media electronic-ecollection

Document type Journal Article, Research Support, Non-U.S. Gov't

A firm connection of the bone-implant-fixation system is of utmost importance for patients with cranial defects. In order to improve the connection reliability, the current research focuses on finding the optimal fixation method, as well as selection of the implant manufacturing methods and the used materials. For the latter, implementation of bioactive materials such as hydroxyapatite or other calcium phosphates has also been considered in the literature. The aim of this study was to investigate the effect of gradual osseointegration on the biomechanical performance of cranial Ti6Al4V implants with a deposited HA coating as the osseointegration agent. This effect was assessed by two different computational approaches using finite element method (FEM) modeling. The values of key input parameters necessary for FEM were obtained from experimental plasma spray deposition of HA layers onto Ti6Al4V samples. Immediately upon implantation, the HA layer at the bone-implant contact area brought only a slight decrease in the values of von Mises stress in the implant and the micro-screws when compared to a non-coated counterpart; importantly, this was without any negative trade-off in other important characteristics. The major benefit of the HA coatings was manifested upon the modeled osseointegration: the results of both approaches confirmed a significant reduction of investigated parameters such as the total implant displacements (reduced from 0.050 mm to 0.012 mm and 0.002 mm while using Approach I and II, respectively) and stresses (reduced from 52 MPa to 10 MPa and 1 MPa) in the implanted components in comparison to non-coated variant. This is a very promising result for potential use of thermally sprayed HA coatings for cranial implants.

See more in PubMed

Bonda D.J., Manjila S., Selman W.R., Dean D., The recent revolution in the design and manufacture of cranial implants: Modern advancements and future directions, Neurosurgery. (2015). 10.1227/NEU.0000000000000899 PubMed DOI PMC

Ridwan-Pramana A., Marcian P., Borak L., Narra N., Forouzanfar T., Wolff J., Finite element analysis of 6 large PMMA skull reconstructions: A multi-criteria evaluation approach, PLoS One. (2017). 10.1371/journal.pone.0179325 PubMed DOI PMC

Chamrad J., Marcián P., Narra N., Borák L., Evaluating different shapes of cranial fixation mini-plates using finite element method, in: IFMBE Proc., 2017. 10.1007/978-981-10-5122-7_187. DOI

Maniar R.N., Singhi T., Patient specific implants: Scope for the future, Curr. Rev. Musculoskelet. Med. (2014). 10.1007/s12178-014-9214-2 PubMed DOI PMC

El Halabi F., Rodriguez J.F., Rebolledo L., Hurtós E., Doblaré M., Mechanical characterization and numerical simulation of polyether-ether-ketone (PEEK) cranial implants, J. Mech. Behav. Biomed. Mater. (2011). 10.1016/j.jmbbm.2011.05.039 PubMed DOI

J. Chamrad, P. Marcián, L. Borák, J. Wolff, Finite element analysis of cranial implant, in: 22nd Int. Conf. Eng. Mech. 2016, Svratka, 2016: pp. 234–237.

Lewin S., Kihlström Burenstam Linder L., Birgersson U., Gallinetti S., Åberg J., Engqvist H., et al.., Monetite-based composite cranial implants demonstrate long-term clinical volumetric balance by concomitant bone formation and degradation, Acta Biomater. (2021). 10.1016/j.actbio.2021.04.015 PubMed DOI

Ridwan-Pramana A., Marcián P., Borák L., Narra N., Forouzanfar T., Wolff J., Structural and mechanical implications of PMMA implant shape and interface geometry in cranioplasty—A finite element study, J. Cranio-Maxillofacial Surg. (2016). 10.1016/j.jcms.2015.10.014 PubMed DOI

Chen Q., Thouas G.A., Metallic implant biomaterials, Mater. Sci. Eng. R Reports. (2015). 10.1016/j.mser.2014.10.001. DOI

Moiduddin K., Darwish S., Al-Ahmari A., ElWatidy S., Mohammad A., Ameen W., Structural and mechanical characterization of custom design cranial implant created using additive manufacturing, Electron. J. Biotechnol. (2017). 10.1016/j.ejbt.2017.06.005. DOI

M. Ehrenfeld, P.N. Manson, J. Prein, Principles of Internal Fixation of the Craniomaxillofacial Skeleton, Thieme/AO, New York, 2012.

Marcián P., Narra N., Borák L., Chamrad J., Wolff J., Biomechanical performance of cranial implants with different thicknesses and material properties: A finite element study, Comput. Biol. Med. 109 (2019) 43–52. 10.1016/j.compbiomed.2019.04.016 PubMed DOI

Mavrogenis A.F., Dimitriou R., Parvizi J., Babis G.C., Biology of implant osseointegration, J. Musculoskelet. Neuronal Interact. (2009). PubMed

Lewin S., Fleps I., Neuhaus D., Öhman-Mägi C., Ferguson S.J., Persson C., et al.., Implicit and explicit finite element models predict the mechanical response of calcium phosphate-titanium cranial implants, J. Mech. Behav. Biomed. Mater. (2020). 10.1016/j.jmbbm.2020.104085 PubMed DOI

Lewin S., Åberg J., Neuhaus D., Engqvist H., Ferguson S.J., Öhman-Mägi C., et al.., Mechanical behaviour of composite calcium phosphate–titanium cranial implants: Effects of loading rate and design, J. Mech. Behav. Biomed. Mater. (2020). 10.1016/j.jmbbm.2020.103701 PubMed DOI

Geesink R.G., de Groot K., Klein C.P., Bonding of bone to apatite-coated implants, J. Bone Jt. Surgery, Br. Vol. (1988). 10.1302/0301-620X.70B1.2828374 PubMed DOI

Qin W., Kolooshani A., Kolahdooz A., Saber-Samandari S., Khazaei S., Khandan A., et al.., Coating the magnesium implants with reinforced nanocomposite nanoparticles for use in orthopedic applications, Colloids Surfaces A Physicochem. Eng. Asp. 621 (2021) 126581. 10.1016/j.colsurfa.2021.126581. DOI

Khandan A., Abdellahi M., Barenji R.V., Ozada N., Karamian E., Introducing natural hydroxyapatite-diopside (NHA-Di) nano-bioceramic coating, Ceram. Int. 41 (2015) 12355–12363. 10.1016/j.ceramint.2015.06.065. DOI

Klein C.P.A.T., Patka P., Wolke J.G.C., de Blieck-Hogervorst J.M.A., de Groot K., Long-term in vivo study of plasma-sprayed coatings on titanium alloys of tetracalcium phosphate, hydroxyapatite and α-tricalcium phosphate, Biomaterials. (1994). 10.1016/0142-9612(94)90264-X PubMed DOI

Oonishi H., Yamamoto M., Ishimaru H., Tsuji E., Kushitani S., Aono M., et al.., The effect of hydroxyapatite coating on bone growth into porous titanium alloy implants, J. Bone Jt. Surg.—Ser. B. (1989). 10.1302/0301-620x.71b2.2925737. PubMed DOI

McPherson R., Gane N., Bastow T.J., Structural characterization of plasma-sprayed hydroxylapatite coatings, J. Mater. Sci. Mater. Med. (1995). 10.1007/BF00120300. DOI

Berndt C., Haddad G., Farmar A., Gross K., Thermal spraying for bioceramic applications, Mater. Forum (Rushcutters Bay). (1990).

García-Sanz F.J., Mayor M.B., Arias J.L., Pou J., León B., Pérez-Amor M., Hydroxyapatite coatings: A comparative study between plasma-spray and pulsed laser deposition techniques, in: J. Mater. Sci. Mater. Med., 1997. 10.1023/A:1018549720873 PubMed DOI

Chern Lin J.H., Liu M.L., Ju C.P., Structure and properties of hydroxyapatite-bioactive glass composites plasma sprayed on Ti6Al4V, J. Mater. Sci. Mater. Med. (1994). 10.1007/BF00122397. DOI

Koch B., Wolke J.G.C., de Groot K., X-ray diffraction studies on plasma-sprayed calcium phosphate-coated implants, J. Biomed. Mater. Res. (1990). 10.1002/jbm.820240603 PubMed DOI

Radin S.R., Ducheyne P., Plasma spraying induced changes of calcium phosphate ceramic characteristics and the effect on in vitro stability, J. Mater. Sci. Mater. Med. (1992). 10.1007/BF00702942. DOI

Filiaggi M.J., Pilliar R.M., Coombs N.A., Post-plasma-spraying heat treatment of the HA coating/Ti-6Al-4V implant system, J. Biomed. Mater. Res. (1993). 10.1002/jbm.820270208. PubMed DOI

Ji H., Marquis P.M., Effect of heat treatment on the microstructure of plasma-sprayed hydroxyapatite coating, Biomaterials. (1993). 10.1016/0142-9612(93)90077-F PubMed DOI

Cizek J., Brozek V., Chraska T., Lukac F., Medricky J., Musalek R., et al.., Silver-Doped Hydroxyapatite Coatings Deposited by Suspension Plasma Spraying, J. Therm. Spray Technol. (2018). 10.1007/s11666-018-0767-2. DOI

University of Iowa, Visible Human Project, (2012). https://mri.radiology.uiowa.edu/visible_human_datasets.html.

Marcián P., Konečný O., Borák L., Valášek J., Řehák K., Krpalek D., et al.., On the level of computational models in biomechanics depending on gained data from CT/MRI and micro-CT, in: Mendel, 2011.

Marcián P., Borák L., Valášek J., Kaiser J., Florian Z., Wolff J., Finite element analysis of dental implant loading on atrophic and non-atrophic cancellous and cortical mandibular bone—a feasibility study, J. Biomech. (2014). 10.1016/j.jbiomech.2014.10.019 PubMed DOI

Cizek J., Matejicek J., Medicine Meets Thermal Spray Technology: A Review of Patents, J. Therm. Spray Technol. (2018). 10.1007/s11666-018-0798-8. DOI

Korabi R., Shemtov-Yona K., Dorogoy A., Rittel D., The Failure Envelope Concept Applied to the Bone-Dental Implant System, Sci. Rep. (2017). 10.1038/s41598-017-02282-2 PubMed DOI PMC

Rittel D., Dorogoy A., Shemtov-Yona K., Modeling the effect of osseointegration on dental implant pullout and torque removal tests, Clin. Implant Dent. Relat. Res. (2018). 10.1111/cid.12645 PubMed DOI

Chamrad J., Marcián P., Borák L., On the level of computational model of a human skull: A comparative study, Appl. Comput. Mech. 12 (2018). 10.24132/acm.2018.385. DOI

Rahmoun J., Auperrin A., Delille R., Naceur H., Drazetic P., Characterization and micromechanical modeling of the human cranial bone elastic properties, Mech. Res. Commun. (2014). 10.1016/j.mechrescom.2014.04.001. DOI

Motherway J.A., Verschueren P., Van der Perre G., Vander Sloten J., Gilchrist M.D., The mechanical properties of cranial bone: The effect of loading rate and cranial sampling position, J. Biomech. (2009). 10.1016/j.jbiomech.2009.05.030 PubMed DOI

Ameen W., Al-Ahmari A., Mohammed M.K., Abdulhameed O., Umer U., Moiduddin K., Design, finite element analysis (FEA), and fabrication of custom titanium alloy cranial implant using electron beam melting additive manufacturing, Adv. Prod. Eng. Manag. (2018). 10.14743/apem2018.3.289. DOI

Niinomi M., Mechanical properties of biomedical titanium alloys, Mater. Sci. Eng. A. (1998). 10.1016/S0921-5093(97)00806-X. DOI

Evans S.L., Lawes K.R., Gregson P.J., Layered, adhesively bonded hydroxyapatite coatings for orthopaedic implants, J. Mater. Sci. Mater. Med. (1994). 10.1007/BF00058990. DOI

Tsui Y.C., Doyle C., Clyne T.W., Plasma sprayed hydroxyapatite coatings on titanium substrates. Part 1: Mechanical properties and residual stress levels, Biomaterials. (1998). 10.1016/S0142-9612(98)00103-3 PubMed DOI

Berglundh T., Abrahamsson I., Lindhe J., Bone reactions to longstanding functional load at implants: An experimental study in dogs, J. Clin. Periodontol. (2005). 10.1111/j.1600-051X.2005.00747.x PubMed DOI

Czosnyka M., Monitoring and interpretation of intracranial pressure, J. Neurol. Neurosurg. Psychiatry. (2004). 10.1136/jnnp.2003.033126 PubMed DOI PMC

Carayon M.T., Lacout J.L., Study of the Ca/P atomic ratio of the amorphous phase in plasma-sprayed hydroxyapatite coatings, J. Solid State Chem. (2003). 10.1016/S0022-4596(02)00085-3. DOI

Hench L.L., Bioceramics, J. Am. Ceram. Soc. 81 (1998) 1705–1728. 10.1007/978-1-84882-664-9_3. DOI

Evins A.I., Dutton J., Imam S.S., Dadi A.O., Xu T., Cheng D., et al.., On-demand intraoperative 3-dimensional printing of custom cranioplastic prostheses, Oper. Neurosurg. (2018). 10.1093/ons/opx280 PubMed DOI PMC

Frassanito P., De Bonis P., Mattogno P.P., Mangiola A., Novello M., Brinchi D., et al.., The fate of a macroporous hydroxyapatite cranioplasty four years after implantation: Macroscopical and microscopical findings in a case of recurrent atypical meningioma, Clin. Neurol. Neurosurg. (2013). 10.1016/j.clineuro.2012.11.032. PubMed DOI

Liu Y., Li J.P., Hunziker E.B., De Groot K., Incorporation of growth factors into medical devices via biomimetic coatings, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. (2006). 10.1098/rsta.2005.1685 PubMed DOI

Choi Y.-J., Jun S.-H., Song Y.-D., Chang M.-W., Kwo J.-J., CT Scanning and Dental Implant, in: CT Scanning—Tech. Appl., 2011. 10.5772/19250. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...