Estimating the effect of tracking tag weight on insect movement using video analysis: A case study with a flightless orthopteran
Language English Country United States Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
34293059
PubMed Central
PMC8297838
DOI
10.1371/journal.pone.0255117
PII: PONE-D-21-05023
Knihovny.cz E-resources
- MeSH
- Video Recording * MeSH
- Gryllidae physiology MeSH
- Flight, Animal physiology MeSH
- Linear Models MeSH
- Rest MeSH
- Movement physiology MeSH
- Telemetry MeSH
- Body Weight MeSH
- Temperature MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
In this study, we describe an inexpensive and rapid method of using video analysis and identity tracking to measure the effects of tag weight on insect movement. In a laboratory experiment, we assessed the tag weight and associated context-dependent effects on movement, choosing temperature as a factor known to affect insect movement and behavior. We recorded the movements of groups of flightless adult crickets Gryllus locorojo (Orthoptera:Gryllidae) as affected by no tag (control); by light, medium, or heavy tags (198.7, 549.2, and 758.6 mg, respectively); and by low, intermediate, or high temperatures (19.5, 24.0, and 28.3°C, respectively). Each individual in each group was weighed before recording and was recorded for 3 consecutive days. The mean (± SD) tag mass expressed as a percentage of body mass before the first recording was 26.8 ± 3.7% with light tags, 72 ± 11.2% with medium tags, and 101.9 ± 13.5% with heavy tags. We found that the influence of tag weight strongly depended on temperature, and that the negative effects on movement generally increased with tag weight. At the low temperature, nearly all movement properties were negatively influenced. At the intermediate and high temperatures, the light and medium tags did not affect any of the movement properties. The continuous 3-day tag load reduced the average movement speed only for crickets with heavy tags. Based on our results, we recommend that researchers consider or investigate the possible effects of tags before conducting any experiment with tags in order to avoid obtaining biased results.
Department of Biology and Ecology Faculty of Science University of Ostrava Ostrava Czechia
Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague Prague Czechia
See more in PubMed
Kissling DW, Pattemore DE, Hagen M. Challenges and prospects in the telemetry of insects. Biological Reviews. 2014;89(3):511–530. doi: 10.1111/brv.12065 PubMed DOI
Kays R, Crofoot MC, Jetz W, Wikelski M. Terrestrial animal tracking as an eye on life and planet. Science. 2015;348 (6240). doi: 10.1126/science.aaa2478 PubMed DOI
Batsleer F, Bonte D, Dekeukeleire D, Goossens S, Poelmans W, Van der Cruyssen E, et al.. The neglected impact of tracking devices on terrestrial arthropods. Methods in Ecology and Evolution. 2020;11(3):350–361. doi: 10.1111/2041-210X.13356 DOI
Minot M, Besnard A, Husté A. Habitat use and movements of a large dragonfly (Odonata: Anax imperator) in a pond network. Freshwater Biology. 2021;66(2):241–255. doi: 10.1111/fwb.13632 DOI
Hagen M, Wikelski M, Kissling WD. Space Use of Bumblebees (Bombus spp.) Revealed by Radio-Tracking. PLOS ONE. 2011;6(5):1–10. doi: 10.1371/journal.pone.0019997 PubMed DOI PMC
Fisher KE, Adelman JS, Bradbury SP. Employing Very High Frequency (VHF) Radio Telemetry to Recreate Monarch Butterfly Flight Paths. Environmental Entomology. 2020;49(2):312–323. doi: 10.1093/ee/nvaa019 PubMed DOI
Kennedy PJ, Ford SM, Poidatz J, Thiéry D, Osborne JL. Searching for nests of the invasive Asian hornet (Vespa velutina) using radio-telemetry. Communications biology. 2018;1(88). doi: 10.1038/s42003-018-0092-9 PubMed DOI PMC
Lorch PD, Sword GA, Gwynne DT, Anderson GL. Radiotelemetry reveals differences in individual movement patterns between outbreak and non-outbreak Mormon cricket populations. Ecological Entomology. 2005;30(5):548–555. doi: 10.1111/j.0307-6946.2005.00725.x DOI
Watts C, Thornburrow D. Habitat use, behavior and movement patterns of a threatened New Zealand giant weta, Deinacrida heteracantha (Anostostomatidae: Orthoptera). Journal of Orthoptera Research. 2011;20(1):127–135. doi: 10.1665/034.020.0112 DOI
Naef-Daenzer B, Früh D, Stalder M, Wetli P, Weise E. Miniaturization (0.2 g) and evaluation of attachment techniques of telemetry transmitters. Journal of Experimental Biology. 2005;208(21):4063–4068. doi: 10.1242/jeb.01870 PubMed DOI
Kumari M, Hasan SR. A New CMOS Implementation for Miniaturized Active RFID Insect Tag and VHF Insect Tracking. IEEE Journal of Radio Frequency Identification. 2020;4(2):124–136. doi: 10.1109/JRFID.2020.2964313 DOI
Vinatier F, Chailleux A, Duyck PF, Salmon F, Lescourret F, Tixier P. Radiotelemetry unravels movements of a walking insect species in heterogeneous environments. Animal behaviour. 2010;80(2):221–229. doi: 10.1016/j.anbehav.2010.04.022 DOI
Kissling WD. Animal telemetry: follow the insects. Science. 2015;349(6248):597. doi: 10.1126/science.349.6248.597 PubMed DOI
Crall JD, Chang JJ, Oppenheimer RL, Combes SA. Foraging in an unsteady world: bumblebee flight performance in field-realistic turbulence. Interface Focus. 2017;7(1):20160086. doi: 10.1098/rsfs.2016.0086 PubMed DOI PMC
Dubois G, Vignon V. First results of radio-tracking of Osmoderma eremita (Coleoptera: Cetoniidae) in French chestnut orchards. Revue d’écologie. 2008;.
Lee DH, Wright SE, Boiteau G, Vincent C, Leskey TC. Effectiveness of glues for harmonic radar tag attachment on Halyomorpha halys (Hemiptera: Pentatomidae) and their impact on adult survivorship and mobility. Environmental Entomology. 2013;42(3):515–523. doi: 10.1603/EN12320 PubMed DOI
De Souza P, Marendy P, Barbosa K, Budi S, Hirsch P, Nikolic N, et al.. Low-Cost Electronic Tagging System for Bee Monitoring. Sensors. 2018;18(7). doi: 10.3390/s18072124 PubMed DOI PMC
Boiteau G, Meloche F, Vincent C, Leskey TC. Effectiveness of Glues Used for Harmonic Radar Tag Attachment and Impact on Survival and Behavior of Three Insect Pests. Environmental Entomology. 2009;38(1):168–175. doi: 10.1603/022.038.0121 PubMed DOI
Portugal SJ, White CR. Miniaturization of biologgers is not alleviating the 5% rule. Methods in Ecology and Evolution. 2018;9(7):1662–1666. doi: 10.1111/2041-210X.13013 DOI
Iyer V, Nandakumar R, Wang A, Fuller SB, Gollakota S. Living IoT: A Flying Wireless Platform on Live Insects. In: The 25th Annual International Conference on Mobile Computing and Networking—MobiCom '19. No. 5 in MobiCom’19. New York, NY, USA: Association for Computing Machinery; 2019. p. 1–15. Available from: 10.1145/3300061.3300136. DOI
Iyer V, Najafi A, James J, Fuller S, Gollakota S. Wireless steerable vision for live insects and insect-scale robots. Science Robotics. 2020;5(44). doi: 10.1126/scirobotics.abb0839 PubMed DOI
Barron DG, Brawn JD, Weatherhead PJ. Meta-analysis of transmitter effects on avian behaviour and ecology. Methods in Ecology and Evolution. 2010;1(2):180–187. doi: 10.1111/j.2041-210X.2010.00013.x DOI
Tomotani BM, Bil W, van der Jeugd HP, Pieters RPM, Muijres FT. Carrying a logger reduces escape flight speed in a passerine bird, but relative logger mass may be a misleading measure of this flight performance detriment. Methods in Ecology and Evolution. 2019;10(1):70–79. doi: 10.1111/2041-210X.13112 DOI
Coughlin CE, van Heezik Y. Weighed down by science: do collar-mounted devices affect domestic cat behaviour and movement? Wildlife Research. 2015;41(7):606–614. doi: 10.1071/WR14160 DOI
Bowlin MS, Henningsson P, Muijres FT, Vleugels RHE, Liechti F, Hedenström A. The effects of geolocator drag and weight on the flight ranges of small migrants. Methods in Ecology and Evolution. 2010;1(4):398–402. doi: 10.1111/j.2041-210X.2010.00043.x DOI
Snijders L, Weme LEN, de Goede P, Savage JL, van Oers K, Naguib M. Context-dependent effects of radio transmitter attachment on a small passerine. Journal of Avian Biology. 2017;48(5):650–659. doi: 10.1111/jav.01148 DOI
Lachenicht MW, Clusella-Trullas S, Boardman L, Le Roux C, Terblanche JS. Effects of acclimation temperature on thermal tolerance, locomotion performance and respiratory metabolism in Acheta domesticus L. (Orthoptera: Gryllidae). Journal of insect physiology. 2010;56(7):822–830. doi: 10.1016/j.jinsphys.2010.02.010 PubMed DOI
Chown LS, Nicolson WS. Insect physiological ecology: mechanisms and patterns. Oxford University Press; 2004.
Forsman A. Temperature influence on escape behaviour in two species of pygmy grasshoppers. Ecoscience. 1999;6(1):35–40. doi: 10.1080/11956860.1999.11952202 DOI
Kirkpatrick DM, Rice KB, Ibrahim A, Morrison WR, Leskey TC. Influence of harmonic radar tag attachment on nymphal Halyomorpha halys mobility, survivorship, and detectability. Entomologia Experimentalis et Applicata. 2019;167(12):1020–1029. doi: 10.1111/eea.12861 DOI
Teeters BS, Johnson RM, Ellis MD, Siegfried BD. Using video-tracking to assess sublethal effects of pesticides on honey bees (Apis mellifera L.). Environmental Toxicology and Chemistry. 2012;31(6):1349–1354. doi: 10.1002/etc.1830 PubMed DOI
Martin JR. A portrait of locomotor behaviour in Drosophila determined by a video-tracking paradigm. Behavioural Processes. 2004;67(2):207–219. doi: 10.1016/j.beproc.2004.04.003 PubMed DOI
Guerra Rd, Aonuma H, Hosoda K, Asada M. Semi-automatic behavior analysis using robot/insect mixed society and video tracking. Journal of Neuroscience Methods. 2010;191(1):138–144. doi: 10.1016/j.jneumeth.2010.06.013 PubMed DOI
Sword GA. Local population density and the activation of movement in migratory band-forming Mormon crickets. Animal Behaviour. 2005;69(2):437–444. doi: 10.1016/j.anbehav.2004.04.016 DOI
Rossetti BJ, Dynes T, Brosi B, de Roode JC, Kong J. GRAPHITE: A graphical environment for scalable in situ video tracking of moving insects. Methods in Ecology and Evolution. 2018;9(4):956–964. doi: 10.1111/2041-210X.12944 PubMed DOI PMC
Noldus LP, Spink AJ, Tegelenbosch RA. EthoVision: a versatile video tracking system for automation of behavioral experiments. Behavior Research Methods, Instruments, & Computers. 2001;33(3):398–414. doi: 10.3758/BF03195394 PubMed DOI
Boiteau G, Vincent C, Meloche F, Leskey T. Harmonic radar: assessing the impact of tag weight on walking activity of Colorado potato beetle, plum curculio, and western corn rootworm. Journal of economic entomology. 2010;103(1):63–69. doi: 10.1603/EC09113 PubMed DOI
Weissman DB, Gray DA, Pham HT, Tijssen P. Billions and billions sold: pet-feeder crickets (Orthoptera: Gryllidae), commercial cricket farms, an epizootic densovirus, and government regulations make for a potential disaster. Zootaxa. 2012;3504(1):67–88. doi: 10.11646/zootaxa.3504.1.3 DOI
Weissman DB, Gray DA. Crickets of the genus Gryllus in the United States (Orthoptera: Gryllidae: Gryllinae). Zootaxa. 2019;4705(1):1–277. doi: 10.11646/zootaxa.4917.1.1 PubMed DOI
Knyazev A, Zhemchuzhnikov M. Timing of the Onset of Aggressive and Sexual Behaviors in Male Crickets Gryllus bimaculatus and Gryllus locorojo. Journal of Evolutionary Biochemistry and Physiology. 2018;54(4):342–344. doi: 10.1134/S0022093018040129 DOI
Vedenina VY, Pollack GS. Recognition of variable courtship song in the field cricket Gryllus assimilis. Journal of Experimental Biology. 2012;215(13):2210–2219. doi: 10.1242/jeb.068429 PubMed DOI
Rothbart MM, Hennig RM. The Steppengrille (Gryllus spec./assimilis): Selective Filters and Signal Mismatch on Two Time Scales. PLOS ONE. 2012;7(9):1–8. doi: 10.1371/journal.pone.0043975 PubMed DOI PMC
Booth DT, Kiddell K. Temperature and the energetics of development in the house cricket (Acheta domesticus). Journal of Insect Physiology. 2007;53(9):950–953. doi: 10.1016/j.jinsphys.2007.03.009 PubMed DOI
Branson K, Robie AA, Bender J, Perona P, Dickinson MH. High-throughput ethomics in large groups of Drosophila. Nature methods. 2009;6:451–457. doi: 10.1038/nmeth.1328 PubMed DOI PMC
Lochmatter T, Roduit P, Cianci C, Correll N, Jacot J, Martinoli A. Swistrack-a flexible open source tracking software for multi-agent systems. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE; 2008. p. 4004–4010.
Sridhar VH, Roche DG, Gingins S. Tracktor: Image-based automated tracking of animal movement and behaviour. Methods in Ecology and Evolution. 2019;10(6):815–820. doi: 10.1111/2041-210X.13166 DOI
Harmer AMT, Thomas DB. pathtrackr: An r package for video tracking and analysing animal movement. Methods in Ecology and Evolution. 2019;10(8):1196–1202. doi: 10.1111/2041-210X.13200 DOI
Hurtik P, Číž D, Kaláb O, Musiolek D, Kočárek P, Tomis M. Software for Visual Insect Tracking Based on F-transform Pattern Matching. In: 2018 IEEE Second International Conference on Data Stream Mining Processing (DSMP). IEEE; 2018. p. 528–533.
Rodriguez A, Zhang H, Klaminder J, Brodin T, Andersson PL, Andersson M. ToxTrac: A fast and robust software for tracking organisms. Methods in Ecology and Evolution. 2018;9(3):460–464. doi: 10.1111/2041-210X.12874 DOI
Walter T, Couzin ID. TRex, a fast multi-animal tracking system with markerless identification, and 2D estimation of posture and visual fields. Elife. 2021;10:e64000. doi: 10.7554/eLife.64000 PubMed DOI PMC
Yekutieli D, Benjamini Y. Resampling-based false discovery rate controlling multiple test procedures for correlated test statistics. Journal of Statistical Planning and Inference. 1999;82(1):171–196. doi: 10.1016/S0378-3758(99)00041-5 DOI
R Core Team. R: A Language and Environment for Statistical Computing; 2020. Available from: https://www.R-project.org/.
Bates D, Mächler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software. 2015;67(1):1–48. doi: 10.18637/jss.v067.i01 DOI
Rusnok P, Hurtik P, Kaláb O, Musiolek D, Kočárek P, Tomis M. Data Analysis of Multivariate Time Series of Insect Tracking. In: 2018 Joint 10th International Conference on Soft Computing and Intelligent Systems (SCIS) and 19th International Symposium on Advanced Intelligent Systems (ISIS). IEEE; 2018. p. 771–776. Available from: 10.1109/SCIS-ISIS.2018.00128. DOI
Thomaes A, Dhont P, Dekeukeleire D, Vandekerkhove K. Dispersal behaviour of female stag beetles (Lucanus cervus) in a mosaic landscape: when should I stay and where should I go. Insect Conservation and Diversity. 2018;11(6):523–533. doi: 10.1111/icad.12325 DOI
Srygley RB, Kingsolver JG. Effects of weight loading on flight performance and survival of palatable Neotropical Anartia fatima butterflies. Biological Journal of the Linnean Society. 2000;70(4):707–725. doi: 10.1111/j.1095-8312.2000.tb00225.x DOI
Kim J, Jung M, Kim HG, Lee DH. Potential of harmonic radar system for use on five economically important insects: radar tag attachment on insects and its impact on flight capacity. Journal of Asia-Pacific Entomology. 2016;19(2):371–375. doi: 10.1016/j.aspen.2016.03.013 DOI
Heinrich B. Thermoregulation in endothermic insects. Science. 1974;185(4153):747–756. doi: 10.1126/science.185.4153.747 PubMed DOI
May ML. Insect thermoregulation. Annual review of entomology. 1979;24(1):313–349. doi: 10.1146/annurev.en.24.010179.001525 DOI
Uvarov B. Grasshoppers and locusts. A handbook of general acridology Vol. 2. Behaviour, ecology, biogeography, population dynamics. Centre for Overseas Pest Research; 1977.
Chapman RF, Joern A. Biology of grasshoppers. John Wiley & Sons; 1990.
Gibbs GW, McIntyre ME. Abundance and future options for wetapunga on Little Barrier Island. Department of Conservation Wellington; 1997.
Hein S, Gombert J, Hovestadt T, Poethke HJ. Movement patterns of the bush cricket Platycleis albopunctata in different types of habitat: matrix is not always matrix. Ecological Entomology. 2003;28(4):432–438. doi: 10.1046/j.1365-2311.2003.00531.x DOI
McCue MD. Starvation physiology: Reviewing the different strategies animals use to survive a common challenge. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2010;156(1):1–18. doi: 10.1016/j.cbpa.2010.01.002 PubMed DOI
NIEMELÄ, P. T., TISO, S., & DINGEMANSE, N. J. 2019. Density-dependent costs and benefits of male mating success in a wild insect. bioRxiv. 10.1101/733832 DOI
Hamidi R, Couzi P, Khfif K, Rochat D. Impact of active and passive radio tags on the flying and burrowing behavior of the red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Dryophthoridae). Applied entomology and zoology. 2017;52(1):165–173. doi: 10.1007/s13355-016-0464-x DOI
Srygley, Robert B. Experimental Manipulation of Dispersal Ability in A Neotropical Butterfly Anartia fatima (Lepidoptera: Nymphalidae). Insects. 2018;9(3):107. doi: 10.3390/insects9030107 PubMed DOI PMC
Rao SR, Olechnowicz SWZ, Krätschmer P, Jepson JEC, Edwards CM, Edwards JR. Small Animal Video Tracking for Activity and Path Analysis Using a Novel Open-Source Multi-Platform Application (AnimApp). Scientific Reports. 2019;9(1):12343. doi: 10.1038/s41598-019-48841-7 PubMed DOI PMC
Zhao L, Zheng N, Ma Q. Smooth 3D Trajectory Segmentation for Flying Insects. In: 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData); 2018. p. 739–745.
Kaye TG, Pittman M. Fluorescence-based detection of field targets using an autonomous unmanned aerial vehicle system. Methods in Ecology and Evolution. 2020;11(8):890–898. doi: 10.1111/2041-210X.13402 DOI
Ju C, Son HI. Autonomous Tracking of Micro-Sized Flying Insects Using UAV: A Preliminary Results. Journal of the Korean Society of Industry Convergence. 2020;23(2):125–137.
Aktakka EE, Kim H, Najafi K. Energy scavenging from insect flight. Journal of Micromechanics and Microengineering. 2011;21(9):095016. doi: 10.1088/0960-1317/21/9/095016 DOI
Gottwald J, Zeidler R, Friess N, Ludwig M, Reudenbach C, Nauss T. Introduction of an automatic and open-source radio-tracking system for small animals. Methods in Ecology and Evolution. 2019;10(12):2163–2172. doi: 10.1111/2041-210X.13294 DOI