An Integrative Study of Aortic mRNA/miRNA Longitudinal Changes in Long-Term LVAD Support
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
16-27630A
Ministerstvo Zdravotnictví Ceské Republiky
IN 00023001
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
34299034
PubMed Central
PMC8303892
DOI
10.3390/ijms22147414
PII: ijms22147414
Knihovny.cz E-resources
- Keywords
- aorta, left ventricular assist device, mRNA, mechanical circulatory support, microRNA,
- MeSH
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Longitudinal Studies MeSH
- RNA, Messenger genetics metabolism MeSH
- MicroRNAs genetics MeSH
- Adolescent MeSH
- Young Adult MeSH
- Aortic Valve Disease etiology metabolism pathology MeSH
- Heart-Assist Devices adverse effects MeSH
- Gene Expression Regulation * MeSH
- Aged MeSH
- Heart Failure pathology surgery MeSH
- Gene Expression Profiling MeSH
- Heart Transplantation adverse effects MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- RNA, Messenger MeSH
- MicroRNAs MeSH
Studying the long-term impact of continuous-flow left ventricular assist device (CF-LVAD) offers an opportunity for a complex understanding of the pathophysiology of vascular changes in aortic tissue in response to a nonphysiological blood flow pattern. Our study aimed to analyze aortic mRNA/miRNA expression changes in response to long-term LVAD support. Paired aortic samples obtained at the time of LVAD implantation and at the time of heart transplantation were examined for mRNA/miRNA profiling. The number of differentially expressed genes (Pcorr < 0.05) shared between samples before and after LVAD support was 277. The whole miRNome profile revealed 69 differentially expressed miRNAs (Pcorr < 0.05). Gene ontology (GO) analysis identified that LVAD predominantly influenced genes involved in the extracellular matrix and collagen fibril organization. Integrated mRNA/miRNA analysis revealed that potential targets of miRNAs dysregulated in explanted samples are mainly involved in GO biological process terms related to dendritic spine organization, neuron projection organization, and cell junction assembly and organization. We found differentially expressed genes participating in vascular tissue engineering as a consequence of LVAD duration. Changes in aortic miRNA levels demonstrated an effect on molecular processes involved in angiogenesis.
Department of Physiology 3rd Faculty of Medicine Charles University 100 00 Prague Czech Republic
Laboratory of Gene Expression Institute of Biotechnology CAS BIOCEV 252 50 Vestec Czech Republic
See more in PubMed
Saito T., Wassilew K., Gorodetski B., Stein J., Falk V., Krabatsch T., Potapov E. Aortic Valve Pathology in Patients Supported by Continuous-Flow Left Ventricular Assist Device. Circ. J. 2016;80:1371–1377. doi: 10.1253/circj.CJ-15-1188. PubMed DOI
Segura A.M., Gregoric I., Radovancevic R., Demirozu Z.T., Buja L.M., Frazier O.H. Morphologic changes in the aortic wall media after support with a continuous-flow left ventricular assist device. J. Heart Lung Transplant. 2013;32:1096–1100. doi: 10.1016/j.healun.2013.07.007. PubMed DOI
Patel A.C., Dodson R.B., Cornwell W.K., 3rd, Hunter K.S., Cleveland J.C., Jr., Brieke A., Lindenfeld J., Ambardekar A.V. Dynamic Changes in Aortic Vascular Stiffness in Patients Bridged to Transplant With Continuous-Flow Left Ventricular Assist Devices. JACC Heart Fail. 2017;5:449–459. doi: 10.1016/j.jchf.2016.12.009. PubMed DOI
Fine N.M., Park S.J., Stulak J.M., Topilsky Y., Daly R.C., Joyce L.D., Pereira N.L., Schirger J.A., Edwards B.S., Lin G., et al. Proximal thoracic aorta dimensions after continuous-flow left ventricular assist device implantation: Longitudinal changes and relation to aortic valve insufficiency. J. Heart Lung Transplant. 2016;35:423–432. doi: 10.1016/j.healun.2015.10.029. PubMed DOI
Bartel D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–297. doi: 10.1016/S0092-8674(04)00045-5. PubMed DOI
Thum T. Facts and updates about cardiovascular non-coding RNAs in heart failure. ESC Heart Fail. 2015;2:108–111. doi: 10.1002/ehf2.12054. PubMed DOI PMC
Kumar S., Williams D., Sur S., Wang J.Y., Jo H. Role of flow-sensitive microRNAs and long noncoding RNAs in vascular dysfunction and atherosclerosis. Vasc. Pharm. 2019;114:76–92. doi: 10.1016/j.vph.2018.10.001. PubMed DOI PMC
Archacki S., Wang Q. Expression profiling of cardiovascular disease. Hum. Genom. 2004;1:355–370. doi: 10.1186/1479-7364-1-5-355. PubMed DOI PMC
Corley S.M., Troy N.M., Bosco A., Wilkins M.R. QuantSeq. 3′ Sequencing combined with Salmon provides a fast, reliable approach for high throughput RNA expression analysis. Sci. Rep. 2019;9:18895. doi: 10.1038/s41598-019-55434-x. PubMed DOI PMC
Junyan X., Guo-Ping S. Vascular wall extracellular matrix proteins and vascular diseases. Mol. Basis Dis. 2014;1842:2106–2119. doi: 10.1016/j.bbadis.2014.07.008. PubMed DOI PMC
Coffey S., Williams M.J., Phillips L.V., Galvin I.F., Bunton R.W., Jones G.T. Integrated microRNA and messenger RNA analysis in aortic stenosis. Sci. Rep. 2016;6:36904. doi: 10.1038/srep36904. PubMed DOI PMC
Ambardekar A.V., Hunter K.S., Babu A.N., Tuder R.M., Dodson R.B., Lindenfeld J. Changes in Aortic Wall Structure, Composition, and Stiffness With Continuous-Flow Left Ventricular Assist Devices: A Pilot Study. Circ. Heart Fail. 2015;8:944–952. doi: 10.1161/CIRCHEARTFAILURE.114.001955. PubMed DOI
Wang X., LeMaire S.A., Chen L., Shen Y.H., Gan Y., Bartsch H., Carter S.A., Utama B., Ou H., Coselli J.S., et al. Increased collagen deposition and elevated expression of connective tissue growth factor in human thoracic aortic dissection. Circulation. 2006;114:I200–I205. doi: 10.1161/CIRCULATIONAHA.105.000240. PubMed DOI PMC
D’Ambrosi N., Milani M., Apolloni S. S100A4 in the Physiology and Pathology of the Central and Peripheral Nervous System. Cells. 2021;10:798. doi: 10.3390/cells10040798. PubMed DOI PMC
Li Z., Li Y., Liu S., Qin Z. Extracellular S100A4 as a key player in fibrotic diseases. J. Cell. Mol. Med. 2020;24:5973–5983. doi: 10.1111/jcmm.15259. PubMed DOI PMC
Kostopoulos C.G., Spiroglou S.G., Varakis J.N., Apostolakis E., Papadaki H.H. Chemerin and CMKLR1 expression in human arteries and periadventitial fat: A possible role for local chemerin in atherosclerosis? BMC Cardiovasc. Disord. 2014;14:56. doi: 10.1186/1471-2261-14-56. PubMed DOI PMC
Patel C.B., Cowger J.A., Zuckermann A. A contemporary review of mechanical circulatory support. J. Heart Lung Transplant. 2014;33:667–674. doi: 10.1016/j.healun.2014.02.014. PubMed DOI
Holtz J., Teuteberg J. Management of aortic insufficiency in the continuous flow left ventricular assist device population. Curr. Heart Fail. Rep. 2014;11:103–110. doi: 10.1007/s11897-013-0172-6. PubMed DOI
Imamura T., Kim G., Nitta D., Fujino T., Smith B., Kalantari S., Nguyen A., Narang N., Holzhauser L., Grinstein J., et al. Aortic Insufficiency and Hemocompatibility-related Adverse Events in Patients with Left Ventricular Assist Devices. J. Card. Fail. 2019;25:787–794. doi: 10.1016/j.cardfail.2019.08.003. PubMed DOI PMC
Yu C.K., Xu T., Assoian R.K., Rader D.J. Mining the Stiffness-Sensitive Transcriptome in Human Vascular Smooth Muscle Cells Identifies Long Noncoding RNA Stiffness Regulators. Arterioscler. Thromb. Vasc. Biol. 2018;38:164–173. doi: 10.1161/ATVBAHA.117.310237. PubMed DOI PMC
Demirozu Z.T., Radovancevic R., Hochman L.F., Gregoric I.D., Letsou G.V., Kar B., Bogaev R.C., Frazier O.H. Arteriovenous malformation and gastrointestinal bleeding in patients with the HeartMate II left ventricular assist device. J. Heart Lung Transplant. 2011;30:849–853. doi: 10.1016/j.healun.2011.03.008. PubMed DOI
Uriel N., Pak S.W., Jorde U.P., Jude B., Susen S., Vincentelli A., Ennezat P.V., Cappleman S., Naka Y., Mancini D. Acquired von Willebrand syndrome after continuous-flow mechanical device support contributes to a high prevalence of bleeding during long-term support and at the time of transplantation. J. Am. Coll. Cardiol. 2010;56:1207–1213. doi: 10.1016/j.jacc.2010.05.016. PubMed DOI
Kato T.S., Schulze P.C., Yang J., Chan E., Shahzad K., Takayama H., Uriel N., Jorde U., Farr M., Naka Y., et al. Pre-operative and post-operative risk factors associated with neurologic complications in patients with advanced heart failure supported by a left ventricular assist device. J. Heart Lung Transplant. 2012;31:1–8. doi: 10.1016/j.healun.2011.08.014. PubMed DOI PMC
Trachtenberg B.H., Cordero-Reyes A.M., Aldeiri M., Alvarez P., Bhimaraj A., Ashrith G., Elias B., Suarez E.E., Bruckner B., Loebe M., et al. Persistent blood stream infection in patients supported with a continuous-flow left ventricular assist device is associated with an increased risk of cerebrovascular accidents. J. Card. Fail. 2015;21:119–125. doi: 10.1016/j.cardfail.2014.10.019. PubMed DOI
Najjar S.S., Slaughter M.S., Pagani F.D., Starling R.C., McGee E.C., Eckman P., Tatooles A.J., Moazami N., Kormos R.L., Hathaway D.R., et al. HVAD Bridge to Transplant ADVANCE Trial Investigators. An analysis of pump thrombus events in patients in the HeartWare ADVANCE bridge to transplant and continued access protocol trial. J. Heart Lung Transplant. 2014;33:23–34. doi: 10.1016/j.healun.2013.12.001. PubMed DOI
Starling R.C., Moazami N., Silvestry S.C., Ewald G., Rogers J.G., Milano C.A., Rame J.E., Acker M.A., Blackstone E.H., Ehrlinger J., et al. Unexpected abrupt increase in left ventricular assist device thrombosis. N. Engl. J. Med. 2014;370:33–40. doi: 10.1056/NEJMoa1313385. PubMed DOI
Cowger J., Pagani F.D., Haft J.W., Romano M.A., Aaronson K.D., Kolias T.J. The development of aortic insufficiency in left ventricular assist device-supported patients. Circ. Heart Fail. 2010;3:668–674. doi: 10.1161/CIRCHEARTFAILURE.109.917765. PubMed DOI PMC
Pak S.W., Uriel N., Takayama H., Cappleman S., Song R., Colombo P.C., Charles S., Mancini D., Gillam L., Naka Y., et al. Prevalence of de novo aortic insufficiency during long-term support with left ventricular assist devices. J. Heart Lung Transplant. 2010;29:1172–1176. doi: 10.1016/j.healun.2010.05.018. PubMed DOI
Ivak P., Netuka I., Tucanova Z., Wohlfahrt P., Konarik M., Szarszoi O., Novakova S., Kubanek M., Lanska V., Pitha J. The Effect of Artificial Pulsatility on the Peripheral Vasculature in Patients with a Continuous-Flow Ventricular Assist Device. Can. J. Cardiol. 2021 doi: 10.1016/j.cjca.2021.05.013. PubMed DOI
Leeper N.J., Maegdefessel L. Non-coding RNAs: Key regulators of smooth muscle cell fate in vascular disease. Cardiovasc. Res. 2018;114:611–621. doi: 10.1093/cvr/cvx249. PubMed DOI PMC
Morgan N., Warner P., Kiernan M., Al-Quthami A., Rahban Y., Pham D.T., DeNofrio D., Karas R., Kuvin J. Arterial Stiffness and Vascular Endothelial Function in Patients with Long-Term Continuous-Flow Left Ventricular Assist Devices. J. Card. Fail. 2013;19:S18. doi: 10.1016/j.cardfail.2013.06.062. DOI
Fernández-Hernando C., Suárez Y. MicroRNAs in endothelial cell homeostasis and vascular disease. Curr. Opin. Hematol. 2018;25:227–236. doi: 10.1097/MOH.0000000000000424. PubMed DOI PMC
Kriegel A.J., Baker M.A., Liu Y., Liu P., Cowley A.W., Jr., Liang M. Endogenous microRNAs in human microvascular endothelial cells regulate mRNAs encoded by hypertension-related genes. Hypertension. 2015;66:793–799. doi: 10.1161/HYPERTENSIONAHA.115.05645. PubMed DOI PMC
Sun X., Sit A., Feinberg M.W. Role of miR-181 family in regulating vascular inflammation and immunity. Trends Cardiovasc. Med. 2014;24:105–112. doi: 10.1016/j.tcm.2013.09.002. PubMed DOI PMC
Lin Z., Ge J., Wang Z., Ren J., Wang X., Xiong H., Gao J., Zhang Y., Zhang Q. Let-7e modulates the inflammatory response in vascular endothelial cells through ceRNA crosstalk. Sci. Rep. 2017;7:42498:1–42498:12. doi: 10.1038/srep42498. PubMed DOI PMC
Pin A.L., Houle F., Guillonneau M., Paquet E.R., Simard M.J., Huot J. miR-20a represses endothelial cell migration by targeting MKK3 and inhibiting p38 MAP kinase activation in response to VEGF. Angiogenesis. 2012;15:593–608. doi: 10.1007/s10456-012-9283-z. PubMed DOI
Chamorro-Jorganes A., Araldi E., Rotllan N., Cirera-Salinas D., Suárez Y. Autoregulation of glypican-1 by intronic microRNA-149 fine tunes the angiogenic response to FGF2 in human endothelial cells. J. Cell Sci. 2014;127:1169–1178. doi: 10.1242/jcs.130518. PubMed DOI PMC
Grundmann S., Hans F.P., Kinniry S., Heinke J., Helbing T., Bluhm F., Sluijter J.P., Hoefer I., Pasterkamp G., Bode C., et al. MicroRNA-100 regulates neovascularization by suppression of mammalian target of rapamycin in endothelial and vascular smooth muscle cells. Circulation. 2011;123:999–1009. doi: 10.1161/CIRCULATIONAHA.110.000323. PubMed DOI
Kane N.M., Howard L., Descamps B., Meloni M., McClure J., Lu R., McCahill A., Breen C., Mackenzie R.M., Delles C., et al. Role of MicroRNAs 99b, 181a, and 181b in the Differentiation of Human Embryonic Stem Cells to Vascular Endothelial Cells. Stem Cells. 2012;30:643–654. doi: 10.1002/stem.1026. PubMed DOI PMC
Tang X., Yin R., Shi H., Wang X., Shen D., Wang X., Pan C. LncRNA ZFAS1 confers inflammatory responses and reduces cholesterol efflux in atherosclerosis through regulating miR-654-3p-ADAM10/RAB22A axis. Int. J. Cardiol. 2020;315:72–80. doi: 10.1016/j.ijcard.2020.03.056. PubMed DOI
Chen C., Ponnusamy M., Liu C., Gao J., Wang K., Li P. MicroRNA as a Therapeutic Target in Cardiac Remodeling. Biomed. Res. Int. 2017;2017:1278436. doi: 10.1155/2017/1278436. PubMed DOI PMC
Henn D., Abu-Halima M., Wermke D., Falkner F., Thomas B., Köpple C., Ludwig N., Schulte M., Brockmann M.A., Kim Y.J. MicroRNA-regulated pathways of flow-stimulated angiogenesis and vascular remodeling in vivo. J. Transl. Med. 2019;17:22. doi: 10.1186/s12967-019-1767-9. PubMed DOI PMC
Feng J., Zeng C., Wei M., Hong T. MicroRNA-664 regulates cell invasion and migration and epithelial-mesenchymal transition by targeting TGF-β signal in glioblastoma. Int. J. Clin. Exp. Pathol. 2016;9:12361–12370.
Shi M.J., Xiao H.M., Xie Y.B., Jiang J.M., Zhao P.T., Cai G.S., Li Y.X., Li S., Zhang C.Z., Cao M.L., et al. Differences in MicroRNA Expression in Chronic Hepatitis B Patients with Early Liver Fibrosis Based on Traditional Chinese Medicine Syndromes. Evid. Based Complement. Alternat. Med. 2020;2020:5956940. doi: 10.1155/2020/5956940. PubMed DOI PMC
Fort A., Borel C., Migliavacca E., Antonarakis S.E., Fish R.J., Neerman-Arbez M. Regulation of fibrinogen production by microRNAs. Blood. 2010;116:2608–2615. doi: 10.1182/blood-2010-02-268011. PubMed DOI
Jin L., Zhang Y., Liang W., Lu X., Piri N., Wang W., Kaplan H.J., Dean D.C., Zhang L., Liu Y. Zeb1 promotes corneal neovascularization by regulation of vascular endothelial cell proliferation. Commun. Biol. 2020;3:349:1–349:10. doi: 10.1038/s42003-020-1069-z. PubMed DOI PMC
Singh B., Kosuru R., Lakshmikanthan S., Sorci-Thomas M.G., Zhang D.X., Sparapani R., Vasquez-Vivar J., Chrzanowska M. Endothelial Rap1 (Ras-Association Proximate 1) Restricts Inflammatory Signaling to Protect From the Progression of Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2021;41:638–650. doi: 10.1161/ATVBAHA.120.315401. PubMed DOI PMC
Witman M.A., Garten R.S., Gifford J.R., Groot H.J., Trinity J.D., Stehlik J., Nativi J.N., Selzman C.H., Drakos S.G., Richardson R.S. Further Peripheral Vascular Dysfunction in Heart Failure Patients With a Continuous-Flow Left Ventricular Assist Device: The Role of Pulsatility. JACC Heart Fail. 2015;3:703–711. doi: 10.1016/j.jchf.2015.04.012. PubMed DOI PMC
Dorland Y.L., Huveneers S. Cell–cell junctional mechanotransduction in endothelial remodeling. Cell. Mol. Life Sci. 2017;74:279–292. doi: 10.1007/s00018-016-2325-8. PubMed DOI PMC
Wallez Y., Huber P. Endothelial adherens and tight junctions in vascular homeostasis, inflammation and angiogenesis. Biochim. Biophys. Acta Biomembr. 2008;1778:794–809. doi: 10.1016/j.bbamem.2007.09.003. PubMed DOI
World Medical Association World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA. 2013;310:2191–2194. doi: 10.1001/jama.2013.281053. PubMed DOI
Moll P., Ante M., Seitz A., Reda T. QuantSeq. 3′ mRNA sequencing for RNA quantification. Nat. Methods. 2014;11:952. doi: 10.1038/nmeth.f.376. DOI
Dlouha D., Blaha M., Blaha V., Fatorova I., Hubacek J.A., Stavek P., Lanska V., Parikova A., Pitha J. Analysis of circulating miRNAs in patients with familial hypercholesterolaemia treated by LDL/Lp(a) apheresis. Atheroscler. Suppl. 2017;30:128–134. doi: 10.1016/j.atherosclerosissup.2017.05.037. PubMed DOI
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–12. doi: 10.14806/ej.17.1.200. DOI
Langmead B., Trapnell C., Pop M., Salzberg S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25. doi: 10.1186/gb-2009-10-3-r25. PubMed DOI PMC
Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC
Liao Y., Smyth G.K., Shi W. Featurecounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–930. doi: 10.1093/bioinformatics/btt656. PubMed DOI
Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Eden E., Navon R., Steinfeld I., Lipson D., Yakhini Z. GOrilla: A tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinform. 2009;10:48. doi: 10.1186/1471-2105-10-48. PubMed DOI PMC
Eden E., Lipson D., Yogev S., Yakhini Z. Discovering motifs in ranked lists of DNA sequences. PLoS Comput. Biol. 2007;3:e39. doi: 10.1371/journal.pcbi.0030039. PubMed DOI PMC
Kanehisa M., Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30. doi: 10.1093/nar/28.1.27. PubMed DOI PMC
Yu G., Wang L., Han Y., He Q. Clusterprofiler: An R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–287. doi: 10.1089/omi.2011.0118. PubMed DOI PMC