• This record comes from PubMed

An Integrative Study of Aortic mRNA/miRNA Longitudinal Changes in Long-Term LVAD Support

. 2021 Jul 10 ; 22 (14) : . [epub] 20210710

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
16-27630A Ministerstvo Zdravotnictví Ceské Republiky
IN 00023001 Ministerstvo Zdravotnictví Ceské Republiky

Studying the long-term impact of continuous-flow left ventricular assist device (CF-LVAD) offers an opportunity for a complex understanding of the pathophysiology of vascular changes in aortic tissue in response to a nonphysiological blood flow pattern. Our study aimed to analyze aortic mRNA/miRNA expression changes in response to long-term LVAD support. Paired aortic samples obtained at the time of LVAD implantation and at the time of heart transplantation were examined for mRNA/miRNA profiling. The number of differentially expressed genes (Pcorr < 0.05) shared between samples before and after LVAD support was 277. The whole miRNome profile revealed 69 differentially expressed miRNAs (Pcorr < 0.05). Gene ontology (GO) analysis identified that LVAD predominantly influenced genes involved in the extracellular matrix and collagen fibril organization. Integrated mRNA/miRNA analysis revealed that potential targets of miRNAs dysregulated in explanted samples are mainly involved in GO biological process terms related to dendritic spine organization, neuron projection organization, and cell junction assembly and organization. We found differentially expressed genes participating in vascular tissue engineering as a consequence of LVAD duration. Changes in aortic miRNA levels demonstrated an effect on molecular processes involved in angiogenesis.

See more in PubMed

Saito T., Wassilew K., Gorodetski B., Stein J., Falk V., Krabatsch T., Potapov E. Aortic Valve Pathology in Patients Supported by Continuous-Flow Left Ventricular Assist Device. Circ. J. 2016;80:1371–1377. doi: 10.1253/circj.CJ-15-1188. PubMed DOI

Segura A.M., Gregoric I., Radovancevic R., Demirozu Z.T., Buja L.M., Frazier O.H. Morphologic changes in the aortic wall media after support with a continuous-flow left ventricular assist device. J. Heart Lung Transplant. 2013;32:1096–1100. doi: 10.1016/j.healun.2013.07.007. PubMed DOI

Patel A.C., Dodson R.B., Cornwell W.K., 3rd, Hunter K.S., Cleveland J.C., Jr., Brieke A., Lindenfeld J., Ambardekar A.V. Dynamic Changes in Aortic Vascular Stiffness in Patients Bridged to Transplant With Continuous-Flow Left Ventricular Assist Devices. JACC Heart Fail. 2017;5:449–459. doi: 10.1016/j.jchf.2016.12.009. PubMed DOI

Fine N.M., Park S.J., Stulak J.M., Topilsky Y., Daly R.C., Joyce L.D., Pereira N.L., Schirger J.A., Edwards B.S., Lin G., et al. Proximal thoracic aorta dimensions after continuous-flow left ventricular assist device implantation: Longitudinal changes and relation to aortic valve insufficiency. J. Heart Lung Transplant. 2016;35:423–432. doi: 10.1016/j.healun.2015.10.029. PubMed DOI

Bartel D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–297. doi: 10.1016/S0092-8674(04)00045-5. PubMed DOI

Thum T. Facts and updates about cardiovascular non-coding RNAs in heart failure. ESC Heart Fail. 2015;2:108–111. doi: 10.1002/ehf2.12054. PubMed DOI PMC

Kumar S., Williams D., Sur S., Wang J.Y., Jo H. Role of flow-sensitive microRNAs and long noncoding RNAs in vascular dysfunction and atherosclerosis. Vasc. Pharm. 2019;114:76–92. doi: 10.1016/j.vph.2018.10.001. PubMed DOI PMC

Archacki S., Wang Q. Expression profiling of cardiovascular disease. Hum. Genom. 2004;1:355–370. doi: 10.1186/1479-7364-1-5-355. PubMed DOI PMC

Corley S.M., Troy N.M., Bosco A., Wilkins M.R. QuantSeq. 3′ Sequencing combined with Salmon provides a fast, reliable approach for high throughput RNA expression analysis. Sci. Rep. 2019;9:18895. doi: 10.1038/s41598-019-55434-x. PubMed DOI PMC

Junyan X., Guo-Ping S. Vascular wall extracellular matrix proteins and vascular diseases. Mol. Basis Dis. 2014;1842:2106–2119. doi: 10.1016/j.bbadis.2014.07.008. PubMed DOI PMC

Coffey S., Williams M.J., Phillips L.V., Galvin I.F., Bunton R.W., Jones G.T. Integrated microRNA and messenger RNA analysis in aortic stenosis. Sci. Rep. 2016;6:36904. doi: 10.1038/srep36904. PubMed DOI PMC

Ambardekar A.V., Hunter K.S., Babu A.N., Tuder R.M., Dodson R.B., Lindenfeld J. Changes in Aortic Wall Structure, Composition, and Stiffness With Continuous-Flow Left Ventricular Assist Devices: A Pilot Study. Circ. Heart Fail. 2015;8:944–952. doi: 10.1161/CIRCHEARTFAILURE.114.001955. PubMed DOI

Wang X., LeMaire S.A., Chen L., Shen Y.H., Gan Y., Bartsch H., Carter S.A., Utama B., Ou H., Coselli J.S., et al. Increased collagen deposition and elevated expression of connective tissue growth factor in human thoracic aortic dissection. Circulation. 2006;114:I200–I205. doi: 10.1161/CIRCULATIONAHA.105.000240. PubMed DOI PMC

D’Ambrosi N., Milani M., Apolloni S. S100A4 in the Physiology and Pathology of the Central and Peripheral Nervous System. Cells. 2021;10:798. doi: 10.3390/cells10040798. PubMed DOI PMC

Li Z., Li Y., Liu S., Qin Z. Extracellular S100A4 as a key player in fibrotic diseases. J. Cell. Mol. Med. 2020;24:5973–5983. doi: 10.1111/jcmm.15259. PubMed DOI PMC

Kostopoulos C.G., Spiroglou S.G., Varakis J.N., Apostolakis E., Papadaki H.H. Chemerin and CMKLR1 expression in human arteries and periadventitial fat: A possible role for local chemerin in atherosclerosis? BMC Cardiovasc. Disord. 2014;14:56. doi: 10.1186/1471-2261-14-56. PubMed DOI PMC

Patel C.B., Cowger J.A., Zuckermann A. A contemporary review of mechanical circulatory support. J. Heart Lung Transplant. 2014;33:667–674. doi: 10.1016/j.healun.2014.02.014. PubMed DOI

Holtz J., Teuteberg J. Management of aortic insufficiency in the continuous flow left ventricular assist device population. Curr. Heart Fail. Rep. 2014;11:103–110. doi: 10.1007/s11897-013-0172-6. PubMed DOI

Imamura T., Kim G., Nitta D., Fujino T., Smith B., Kalantari S., Nguyen A., Narang N., Holzhauser L., Grinstein J., et al. Aortic Insufficiency and Hemocompatibility-related Adverse Events in Patients with Left Ventricular Assist Devices. J. Card. Fail. 2019;25:787–794. doi: 10.1016/j.cardfail.2019.08.003. PubMed DOI PMC

Yu C.K., Xu T., Assoian R.K., Rader D.J. Mining the Stiffness-Sensitive Transcriptome in Human Vascular Smooth Muscle Cells Identifies Long Noncoding RNA Stiffness Regulators. Arterioscler. Thromb. Vasc. Biol. 2018;38:164–173. doi: 10.1161/ATVBAHA.117.310237. PubMed DOI PMC

Demirozu Z.T., Radovancevic R., Hochman L.F., Gregoric I.D., Letsou G.V., Kar B., Bogaev R.C., Frazier O.H. Arteriovenous malformation and gastrointestinal bleeding in patients with the HeartMate II left ventricular assist device. J. Heart Lung Transplant. 2011;30:849–853. doi: 10.1016/j.healun.2011.03.008. PubMed DOI

Uriel N., Pak S.W., Jorde U.P., Jude B., Susen S., Vincentelli A., Ennezat P.V., Cappleman S., Naka Y., Mancini D. Acquired von Willebrand syndrome after continuous-flow mechanical device support contributes to a high prevalence of bleeding during long-term support and at the time of transplantation. J. Am. Coll. Cardiol. 2010;56:1207–1213. doi: 10.1016/j.jacc.2010.05.016. PubMed DOI

Kato T.S., Schulze P.C., Yang J., Chan E., Shahzad K., Takayama H., Uriel N., Jorde U., Farr M., Naka Y., et al. Pre-operative and post-operative risk factors associated with neurologic complications in patients with advanced heart failure supported by a left ventricular assist device. J. Heart Lung Transplant. 2012;31:1–8. doi: 10.1016/j.healun.2011.08.014. PubMed DOI PMC

Trachtenberg B.H., Cordero-Reyes A.M., Aldeiri M., Alvarez P., Bhimaraj A., Ashrith G., Elias B., Suarez E.E., Bruckner B., Loebe M., et al. Persistent blood stream infection in patients supported with a continuous-flow left ventricular assist device is associated with an increased risk of cerebrovascular accidents. J. Card. Fail. 2015;21:119–125. doi: 10.1016/j.cardfail.2014.10.019. PubMed DOI

Najjar S.S., Slaughter M.S., Pagani F.D., Starling R.C., McGee E.C., Eckman P., Tatooles A.J., Moazami N., Kormos R.L., Hathaway D.R., et al. HVAD Bridge to Transplant ADVANCE Trial Investigators. An analysis of pump thrombus events in patients in the HeartWare ADVANCE bridge to transplant and continued access protocol trial. J. Heart Lung Transplant. 2014;33:23–34. doi: 10.1016/j.healun.2013.12.001. PubMed DOI

Starling R.C., Moazami N., Silvestry S.C., Ewald G., Rogers J.G., Milano C.A., Rame J.E., Acker M.A., Blackstone E.H., Ehrlinger J., et al. Unexpected abrupt increase in left ventricular assist device thrombosis. N. Engl. J. Med. 2014;370:33–40. doi: 10.1056/NEJMoa1313385. PubMed DOI

Cowger J., Pagani F.D., Haft J.W., Romano M.A., Aaronson K.D., Kolias T.J. The development of aortic insufficiency in left ventricular assist device-supported patients. Circ. Heart Fail. 2010;3:668–674. doi: 10.1161/CIRCHEARTFAILURE.109.917765. PubMed DOI PMC

Pak S.W., Uriel N., Takayama H., Cappleman S., Song R., Colombo P.C., Charles S., Mancini D., Gillam L., Naka Y., et al. Prevalence of de novo aortic insufficiency during long-term support with left ventricular assist devices. J. Heart Lung Transplant. 2010;29:1172–1176. doi: 10.1016/j.healun.2010.05.018. PubMed DOI

Ivak P., Netuka I., Tucanova Z., Wohlfahrt P., Konarik M., Szarszoi O., Novakova S., Kubanek M., Lanska V., Pitha J. The Effect of Artificial Pulsatility on the Peripheral Vasculature in Patients with a Continuous-Flow Ventricular Assist Device. Can. J. Cardiol. 2021 doi: 10.1016/j.cjca.2021.05.013. PubMed DOI

Leeper N.J., Maegdefessel L. Non-coding RNAs: Key regulators of smooth muscle cell fate in vascular disease. Cardiovasc. Res. 2018;114:611–621. doi: 10.1093/cvr/cvx249. PubMed DOI PMC

Morgan N., Warner P., Kiernan M., Al-Quthami A., Rahban Y., Pham D.T., DeNofrio D., Karas R., Kuvin J. Arterial Stiffness and Vascular Endothelial Function in Patients with Long-Term Continuous-Flow Left Ventricular Assist Devices. J. Card. Fail. 2013;19:S18. doi: 10.1016/j.cardfail.2013.06.062. DOI

Fernández-Hernando C., Suárez Y. MicroRNAs in endothelial cell homeostasis and vascular disease. Curr. Opin. Hematol. 2018;25:227–236. doi: 10.1097/MOH.0000000000000424. PubMed DOI PMC

Kriegel A.J., Baker M.A., Liu Y., Liu P., Cowley A.W., Jr., Liang M. Endogenous microRNAs in human microvascular endothelial cells regulate mRNAs encoded by hypertension-related genes. Hypertension. 2015;66:793–799. doi: 10.1161/HYPERTENSIONAHA.115.05645. PubMed DOI PMC

Sun X., Sit A., Feinberg M.W. Role of miR-181 family in regulating vascular inflammation and immunity. Trends Cardiovasc. Med. 2014;24:105–112. doi: 10.1016/j.tcm.2013.09.002. PubMed DOI PMC

Lin Z., Ge J., Wang Z., Ren J., Wang X., Xiong H., Gao J., Zhang Y., Zhang Q. Let-7e modulates the inflammatory response in vascular endothelial cells through ceRNA crosstalk. Sci. Rep. 2017;7:42498:1–42498:12. doi: 10.1038/srep42498. PubMed DOI PMC

Pin A.L., Houle F., Guillonneau M., Paquet E.R., Simard M.J., Huot J. miR-20a represses endothelial cell migration by targeting MKK3 and inhibiting p38 MAP kinase activation in response to VEGF. Angiogenesis. 2012;15:593–608. doi: 10.1007/s10456-012-9283-z. PubMed DOI

Chamorro-Jorganes A., Araldi E., Rotllan N., Cirera-Salinas D., Suárez Y. Autoregulation of glypican-1 by intronic microRNA-149 fine tunes the angiogenic response to FGF2 in human endothelial cells. J. Cell Sci. 2014;127:1169–1178. doi: 10.1242/jcs.130518. PubMed DOI PMC

Grundmann S., Hans F.P., Kinniry S., Heinke J., Helbing T., Bluhm F., Sluijter J.P., Hoefer I., Pasterkamp G., Bode C., et al. MicroRNA-100 regulates neovascularization by suppression of mammalian target of rapamycin in endothelial and vascular smooth muscle cells. Circulation. 2011;123:999–1009. doi: 10.1161/CIRCULATIONAHA.110.000323. PubMed DOI

Kane N.M., Howard L., Descamps B., Meloni M., McClure J., Lu R., McCahill A., Breen C., Mackenzie R.M., Delles C., et al. Role of MicroRNAs 99b, 181a, and 181b in the Differentiation of Human Embryonic Stem Cells to Vascular Endothelial Cells. Stem Cells. 2012;30:643–654. doi: 10.1002/stem.1026. PubMed DOI PMC

Tang X., Yin R., Shi H., Wang X., Shen D., Wang X., Pan C. LncRNA ZFAS1 confers inflammatory responses and reduces cholesterol efflux in atherosclerosis through regulating miR-654-3p-ADAM10/RAB22A axis. Int. J. Cardiol. 2020;315:72–80. doi: 10.1016/j.ijcard.2020.03.056. PubMed DOI

Chen C., Ponnusamy M., Liu C., Gao J., Wang K., Li P. MicroRNA as a Therapeutic Target in Cardiac Remodeling. Biomed. Res. Int. 2017;2017:1278436. doi: 10.1155/2017/1278436. PubMed DOI PMC

Henn D., Abu-Halima M., Wermke D., Falkner F., Thomas B., Köpple C., Ludwig N., Schulte M., Brockmann M.A., Kim Y.J. MicroRNA-regulated pathways of flow-stimulated angiogenesis and vascular remodeling in vivo. J. Transl. Med. 2019;17:22. doi: 10.1186/s12967-019-1767-9. PubMed DOI PMC

Feng J., Zeng C., Wei M., Hong T. MicroRNA-664 regulates cell invasion and migration and epithelial-mesenchymal transition by targeting TGF-β signal in glioblastoma. Int. J. Clin. Exp. Pathol. 2016;9:12361–12370.

Shi M.J., Xiao H.M., Xie Y.B., Jiang J.M., Zhao P.T., Cai G.S., Li Y.X., Li S., Zhang C.Z., Cao M.L., et al. Differences in MicroRNA Expression in Chronic Hepatitis B Patients with Early Liver Fibrosis Based on Traditional Chinese Medicine Syndromes. Evid. Based Complement. Alternat. Med. 2020;2020:5956940. doi: 10.1155/2020/5956940. PubMed DOI PMC

Fort A., Borel C., Migliavacca E., Antonarakis S.E., Fish R.J., Neerman-Arbez M. Regulation of fibrinogen production by microRNAs. Blood. 2010;116:2608–2615. doi: 10.1182/blood-2010-02-268011. PubMed DOI

Jin L., Zhang Y., Liang W., Lu X., Piri N., Wang W., Kaplan H.J., Dean D.C., Zhang L., Liu Y. Zeb1 promotes corneal neovascularization by regulation of vascular endothelial cell proliferation. Commun. Biol. 2020;3:349:1–349:10. doi: 10.1038/s42003-020-1069-z. PubMed DOI PMC

Singh B., Kosuru R., Lakshmikanthan S., Sorci-Thomas M.G., Zhang D.X., Sparapani R., Vasquez-Vivar J., Chrzanowska M. Endothelial Rap1 (Ras-Association Proximate 1) Restricts Inflammatory Signaling to Protect From the Progression of Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2021;41:638–650. doi: 10.1161/ATVBAHA.120.315401. PubMed DOI PMC

Witman M.A., Garten R.S., Gifford J.R., Groot H.J., Trinity J.D., Stehlik J., Nativi J.N., Selzman C.H., Drakos S.G., Richardson R.S. Further Peripheral Vascular Dysfunction in Heart Failure Patients With a Continuous-Flow Left Ventricular Assist Device: The Role of Pulsatility. JACC Heart Fail. 2015;3:703–711. doi: 10.1016/j.jchf.2015.04.012. PubMed DOI PMC

Dorland Y.L., Huveneers S. Cell–cell junctional mechanotransduction in endothelial remodeling. Cell. Mol. Life Sci. 2017;74:279–292. doi: 10.1007/s00018-016-2325-8. PubMed DOI PMC

Wallez Y., Huber P. Endothelial adherens and tight junctions in vascular homeostasis, inflammation and angiogenesis. Biochim. Biophys. Acta Biomembr. 2008;1778:794–809. doi: 10.1016/j.bbamem.2007.09.003. PubMed DOI

World Medical Association World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA. 2013;310:2191–2194. doi: 10.1001/jama.2013.281053. PubMed DOI

Moll P., Ante M., Seitz A., Reda T. QuantSeq. 3′ mRNA sequencing for RNA quantification. Nat. Methods. 2014;11:952. doi: 10.1038/nmeth.f.376. DOI

Dlouha D., Blaha M., Blaha V., Fatorova I., Hubacek J.A., Stavek P., Lanska V., Parikova A., Pitha J. Analysis of circulating miRNAs in patients with familial hypercholesterolaemia treated by LDL/Lp(a) apheresis. Atheroscler. Suppl. 2017;30:128–134. doi: 10.1016/j.atherosclerosissup.2017.05.037. PubMed DOI

Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–12. doi: 10.14806/ej.17.1.200. DOI

Langmead B., Trapnell C., Pop M., Salzberg S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25. doi: 10.1186/gb-2009-10-3-r25. PubMed DOI PMC

Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC

Liao Y., Smyth G.K., Shi W. Featurecounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–930. doi: 10.1093/bioinformatics/btt656. PubMed DOI

Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC

Eden E., Navon R., Steinfeld I., Lipson D., Yakhini Z. GOrilla: A tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinform. 2009;10:48. doi: 10.1186/1471-2105-10-48. PubMed DOI PMC

Eden E., Lipson D., Yogev S., Yakhini Z. Discovering motifs in ranked lists of DNA sequences. PLoS Comput. Biol. 2007;3:e39. doi: 10.1371/journal.pcbi.0030039. PubMed DOI PMC

Kanehisa M., Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30. doi: 10.1093/nar/28.1.27. PubMed DOI PMC

Yu G., Wang L., Han Y., He Q. Clusterprofiler: An R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–287. doi: 10.1089/omi.2011.0118. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...