Multi-pass probing for high-sensitivity tomographic interferometry
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article
Grant support
CZ.02.1.01/0.0/0.0/16_019/0000789
European Regional Development Fund
CZ.02.1.01/0.0/0.0/15 003/0000449
European Regional Development Fund
CZ.02.1.01/0.0/0.0/16_019/0000789
European Regional Development Fund
LM2015065
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
34301982
PubMed Central
PMC8302623
DOI
10.1038/s41598-021-94436-6
PII: 10.1038/s41598-021-94436-6
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Optical probing is an indispensable tool in research and development. In fact, it has always been the most natural way for humankind to explore nature. However, objects consisting of transparent materials with a refractive index close to unity, such as low-density gas jets, are a typical example of samples that often reach the sensitivity limits of optical probing techniques. We introduce an advanced optical probing method employing multiple passes of the probe through the object to increase phase sensitivity, and relay-imaging of the object between individual passes to preserve spatial resolution. An interferometer with four-passes was set up and the concept was validated by tomographic characterization of low-density supersonic gas jets. The results show an evident increase of sensitivity, which allows for the accurate quantitation of fine features such as a shock formed by an obstacle or a barrel shock on the jet boundary in low ambient gas pressures. Despite its limitations in temporal resolution, this novel method has demonstrated an increase in phase sensitivity in transmission, however, it can also be employed to boost the absorption or polarization contrast of weakly interacting objects in both transmission and reflection setups, thus, upgrading the sensitivity of various optical characterization methods.
ELI Beamlines Center Institute of Physics ASCR 252 41 Dolní Břežany Czech Republic
FNSPE Czech Technical University Prague 115 19 Prague Czech Republic
See more in PubMed
Hariharan P. Two-Beam Interference in Optical Interferometry. 2. Elsevier; 2003. pp. 9–34.
Depresseux A, et al. Table-top femtosecond soft X-ray laser by collisional ionization gating. Nat. Photon. 2015;9:817–821. doi: 10.1038/nphoton.2015.225. DOI
Rousse A, et al. Production of a keV X-ray beam from synchrotron radiation in relativistic laser-plasma interaction. Phys. Rev. Lett. 2004;93:135005. doi: 10.1103/PhysRevLett.93.135005. PubMed DOI
Tajima T, Dawson JM. Laser electron accelerator. Phys. Rev. Lett. 1979;43:267–270. doi: 10.1103/PhysRevLett.43.267. DOI
Leemans WP, et al. Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime. Phys. Rev. Lett. 2014;113:245002. doi: 10.1103/PhysRevLett.113.245002. PubMed DOI
Esarey E, Schroeder CB, Leemans WP. Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 2009;81:1229–1285. doi: 10.1103/RevModPhys.81.1229. DOI
Gonsalves AJ, et al. Petawatt Laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide. Phys. Rev. Lett. 2019;122:084801. doi: 10.1103/PhysRevLett.122.084801. PubMed DOI
Kozlová M, et al. Hard X rays from laser-wakefield accelerators in density tailored plasmas. Phys. Rev. X. 2020;10:011061.
Geddes CGR. Plasma-density-gradient injection of low absolute-momentum-spread electron bunches. Phys. Rev. Lett. 2008;100:215004. doi: 10.1103/PhysRevLett.100.215004. PubMed DOI
Bulanov S, Naumova N, Pegoraro F, Sakai J. Particle injection into the wave acceleration phase due to nonlinear wake wave breaking. Phys. Rev. E. 1998;58:R5257–R5260. doi: 10.1103/PhysRevE.58.R5257. DOI
Schmid K, et al. Density-transition based electron injector for laser driven wakefield accelerators. Phys. Rev. ST Accel. Beams. 2010;13:091301. doi: 10.1103/PhysRevSTAB.13.091301. DOI
He Z-H, et al. High repetition-rate wakefield electron source generated by few-millijoule, 30 fs laser pulses on a density downramp. New J. Phys. 2013;15:1–11.
Brandi F, Gizzi LA. Optical diagnostics for density measurement in high-quality laser-plasma electron accelerators. High Power Laser Sci. Eng. 2019;7:1–11. doi: 10.1017/hpl.2019.11. DOI
Iwata K. Phase Imaging and Refractive Index Tomography for X-Rays and Visible Rays in Progress in Optics. Elsevier; 2005. pp. 393–432.
Sarkisov GS, McChesney PD, Stein SPS, Bluem H, Lednum G. High-sensitive multi-pass imaging interferometry of a gas/plasma jet. Rev. Sci. Instrum. 2019;90:023504. doi: 10.1063/1.5081830. PubMed DOI
Nejdl J, Vančura J, Boháček K, Albrecht M, Chaulagain U. Imaging Michelson interferometer for a low-density gas jet characterization. Rev. Sci. Instrum. 2019;90:065107. doi: 10.1063/1.5098084. PubMed DOI
Landgraf B, Schnell M, Sävert A, Kaluza MC, Spielmann C. High resolution 3D gas-jet characterization. Rev. Sci. Instrum. 2011;82:083106. doi: 10.1063/1.3624694. PubMed DOI
Couperus JP, et al. Tomographic characterisation of gas-jet targets for laser wakefield acceleration. Nucl. Instrum. Methods Phys. Res. A. 2016;830:504–509. doi: 10.1016/j.nima.2016.02.099. DOI
Adelmann A, et al. Real-time tomography of gas-jets with a wollaston interferometer. Appl. Sci. 2018;8:1–21. doi: 10.3390/app8030443. DOI
Lorenz S, et al. Tomographic reconstruction algorithms for structured gas density profiles of the targets for laser wakefield acceleration. Meas. Sci. Technol. 2020;31:1–10. doi: 10.1088/1361-6501/ab7cf5. DOI
Fourmaux S, Hallin E, Chaulagain U, Weber S, Kieffer JC. Laser-based synchrotron X-ray radiation experimental scaling. Opt. Express. 2020;28:3147–3158. doi: 10.1364/OE.383818. PubMed DOI
Guénot D, et al. Relativistic electron beams driven by kHz single-cycle light pulses. Nat. Photon. 2017;11:293–296. doi: 10.1038/nphoton.2017.46. DOI
Lorenz S. Characterization of supersonic and subsonic gas targets for laser wakefield electron acceleration experiments. Matter Radiat. Extremes. 2019;4:015401. doi: 10.1063/1.5081509. DOI
Muntz EP, Hamel BB, Maguire BL. Some characteristics of exhaust plume rarefaction. AIAA J. 1970;8:1651–1658. doi: 10.2514/3.49856. DOI
Yu J, Vuorinen V, Kaario O, Sarjovaara T, Larmi M. Visualization and analysis of the characteristics of transitional underexpanded jets. Int. J. Heat Fluid Flow. 2013;44:140–154. doi: 10.1016/j.ijheatfluidflow.2013.05.015. DOI
Chanteloup J-C. Multiple-wave lateral shearing interferometry for wave-front sensing. Appl. Opt. 2005;44:1559–1571. doi: 10.1364/AO.44.001559. PubMed DOI
Sarkisov GS. Shearing interferometer with an air wedge for the electron density diagnostics in a dense plasma. Instrum. Exp. Tech. 1996;39:727–731.
Kreis T. Holographic Interferometry in Handbook of Holographic Interferometry: Optical and Digital Methods. Wiley-VCH; 2005. pp. 35–21.
Cherbuliez M, Jacquot PM, Colonna de Lega X. Wavelet processing of interferometric signals and fringe patterns. Proc. SPIE. 1999;3813:692–702. doi: 10.1117/12.366825. DOI
Rao RM, Bopardikar AS. Introduction to the Discrete Wavelet Transform and Orthogonal Wavelet Decomposition in Wavelet Transforms: Introduction to Theory and Applications. Addison-Wesley; 1998. pp. 25–50.
Liu H, Cartwright AN, Basaran C. Moiré interferogram phase extraction: A ridge detection algorithm for continuous wavelet transforms. Appl. Opt. 2004;43:850–857. doi: 10.1364/AO.43.000850. PubMed DOI
Huang L, Kemao Q, Pan B, Asundi A. Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase extraction from a single fringe pattern in fringe projection profilometry. Opt. Lasers Eng. 2010;48:141–148. doi: 10.1016/j.optlaseng.2009.04.003. DOI
Small RD, Sernas VA, Page RH. Single beam schlieren interferometer using a wollaston prism. Appl. Opt. 1972;11:858–862. doi: 10.1364/AO.11.000858. PubMed DOI
Iwata K, Kikuta H. Measurement of dynamic flow field by optical computed tomography with shearing interferometers. Opt. Rev. 2000;7:415–419. doi: 10.1007/s10043-000-0415-0. DOI
Devaney AJ. A filtered backpropagation algorithm for diffraction tomography. Ultrason. Imag. 1982;4:336–350. doi: 10.1177/016173468200400404. PubMed DOI
Chowdhury S, et al. High-resolution 3D refractive index microscopy of multiple-scattering samples from intensity images. Optica. 2019;6:1211–1219. doi: 10.1364/OPTICA.6.001211. PubMed DOI PMC
Abel N. Auflosung einer mechanischen aufgabe. J. Reine Angew. Math. 1826;1:153–157.
Kak AC, Slaney M. Tomographic Imaging with Diffracting Sources in Principles of Computerized Tomographic Imaging. IEEE Press; 1999. pp. 203–274.
Radon J. On the determination of functions from their integral values along certain manifolds. IEEE Trans. Med. Imag. 1986;5:170–176. doi: 10.1109/TMI.1986.4307775. PubMed DOI