• This record comes from PubMed

Multi-pass probing for high-sensitivity tomographic interferometry

. 2021 Jul 23 ; 11 (1) : 15072. [epub] 20210723

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic

Document type Journal Article

Grant support
CZ.02.1.01/0.0/0.0/16_019/0000789 European Regional Development Fund
CZ.02.1.01/0.0/0.0/15 003/0000449 European Regional Development Fund
CZ.02.1.01/0.0/0.0/16_019/0000789 European Regional Development Fund
LM2015065 Ministerstvo Školství, Mládeže a Tělovýchovy

Links

PubMed 34301982
PubMed Central PMC8302623
DOI 10.1038/s41598-021-94436-6
PII: 10.1038/s41598-021-94436-6
Knihovny.cz E-resources

Optical probing is an indispensable tool in research and development. In fact, it has always been the most natural way for humankind to explore nature. However, objects consisting of transparent materials with a refractive index close to unity, such as low-density gas jets, are a typical example of samples that often reach the sensitivity limits of optical probing techniques. We introduce an advanced optical probing method employing multiple passes of the probe through the object to increase phase sensitivity, and relay-imaging of the object between individual passes to preserve spatial resolution. An interferometer with four-passes was set up and the concept was validated by tomographic characterization of low-density supersonic gas jets. The results show an evident increase of sensitivity, which allows for the accurate quantitation of fine features such as a shock formed by an obstacle or a barrel shock on the jet boundary in low ambient gas pressures. Despite its limitations in temporal resolution, this novel method has demonstrated an increase in phase sensitivity in transmission, however, it can also be employed to boost the absorption or polarization contrast of weakly interacting objects in both transmission and reflection setups, thus, upgrading the sensitivity of various optical characterization methods.

See more in PubMed

Hariharan P. Two-Beam Interference in Optical Interferometry. 2. Elsevier; 2003. pp. 9–34.

Depresseux A, et al. Table-top femtosecond soft X-ray laser by collisional ionization gating. Nat. Photon. 2015;9:817–821. doi: 10.1038/nphoton.2015.225. DOI

Rousse A, et al. Production of a keV X-ray beam from synchrotron radiation in relativistic laser-plasma interaction. Phys. Rev. Lett. 2004;93:135005. doi: 10.1103/PhysRevLett.93.135005. PubMed DOI

Tajima T, Dawson JM. Laser electron accelerator. Phys. Rev. Lett. 1979;43:267–270. doi: 10.1103/PhysRevLett.43.267. DOI

Leemans WP, et al. Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime. Phys. Rev. Lett. 2014;113:245002. doi: 10.1103/PhysRevLett.113.245002. PubMed DOI

Esarey E, Schroeder CB, Leemans WP. Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 2009;81:1229–1285. doi: 10.1103/RevModPhys.81.1229. DOI

Gonsalves AJ, et al. Petawatt Laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide. Phys. Rev. Lett. 2019;122:084801. doi: 10.1103/PhysRevLett.122.084801. PubMed DOI

Kozlová M, et al. Hard X rays from laser-wakefield accelerators in density tailored plasmas. Phys. Rev. X. 2020;10:011061.

Geddes CGR. Plasma-density-gradient injection of low absolute-momentum-spread electron bunches. Phys. Rev. Lett. 2008;100:215004. doi: 10.1103/PhysRevLett.100.215004. PubMed DOI

Bulanov S, Naumova N, Pegoraro F, Sakai J. Particle injection into the wave acceleration phase due to nonlinear wake wave breaking. Phys. Rev. E. 1998;58:R5257–R5260. doi: 10.1103/PhysRevE.58.R5257. DOI

Schmid K, et al. Density-transition based electron injector for laser driven wakefield accelerators. Phys. Rev. ST Accel. Beams. 2010;13:091301. doi: 10.1103/PhysRevSTAB.13.091301. DOI

He Z-H, et al. High repetition-rate wakefield electron source generated by few-millijoule, 30 fs laser pulses on a density downramp. New J. Phys. 2013;15:1–11.

Brandi F, Gizzi LA. Optical diagnostics for density measurement in high-quality laser-plasma electron accelerators. High Power Laser Sci. Eng. 2019;7:1–11. doi: 10.1017/hpl.2019.11. DOI

Iwata K. Phase Imaging and Refractive Index Tomography for X-Rays and Visible Rays in Progress in Optics. Elsevier; 2005. pp. 393–432.

Sarkisov GS, McChesney PD, Stein SPS, Bluem H, Lednum G. High-sensitive multi-pass imaging interferometry of a gas/plasma jet. Rev. Sci. Instrum. 2019;90:023504. doi: 10.1063/1.5081830. PubMed DOI

Nejdl J, Vančura J, Boháček K, Albrecht M, Chaulagain U. Imaging Michelson interferometer for a low-density gas jet characterization. Rev. Sci. Instrum. 2019;90:065107. doi: 10.1063/1.5098084. PubMed DOI

Landgraf B, Schnell M, Sävert A, Kaluza MC, Spielmann C. High resolution 3D gas-jet characterization. Rev. Sci. Instrum. 2011;82:083106. doi: 10.1063/1.3624694. PubMed DOI

Couperus JP, et al. Tomographic characterisation of gas-jet targets for laser wakefield acceleration. Nucl. Instrum. Methods Phys. Res. A. 2016;830:504–509. doi: 10.1016/j.nima.2016.02.099. DOI

Adelmann A, et al. Real-time tomography of gas-jets with a wollaston interferometer. Appl. Sci. 2018;8:1–21. doi: 10.3390/app8030443. DOI

Lorenz S, et al. Tomographic reconstruction algorithms for structured gas density profiles of the targets for laser wakefield acceleration. Meas. Sci. Technol. 2020;31:1–10. doi: 10.1088/1361-6501/ab7cf5. DOI

Fourmaux S, Hallin E, Chaulagain U, Weber S, Kieffer JC. Laser-based synchrotron X-ray radiation experimental scaling. Opt. Express. 2020;28:3147–3158. doi: 10.1364/OE.383818. PubMed DOI

Guénot D, et al. Relativistic electron beams driven by kHz single-cycle light pulses. Nat. Photon. 2017;11:293–296. doi: 10.1038/nphoton.2017.46. DOI

Lorenz S. Characterization of supersonic and subsonic gas targets for laser wakefield electron acceleration experiments. Matter Radiat. Extremes. 2019;4:015401. doi: 10.1063/1.5081509. DOI

Muntz EP, Hamel BB, Maguire BL. Some characteristics of exhaust plume rarefaction. AIAA J. 1970;8:1651–1658. doi: 10.2514/3.49856. DOI

Yu J, Vuorinen V, Kaario O, Sarjovaara T, Larmi M. Visualization and analysis of the characteristics of transitional underexpanded jets. Int. J. Heat Fluid Flow. 2013;44:140–154. doi: 10.1016/j.ijheatfluidflow.2013.05.015. DOI

Chanteloup J-C. Multiple-wave lateral shearing interferometry for wave-front sensing. Appl. Opt. 2005;44:1559–1571. doi: 10.1364/AO.44.001559. PubMed DOI

Sarkisov GS. Shearing interferometer with an air wedge for the electron density diagnostics in a dense plasma. Instrum. Exp. Tech. 1996;39:727–731.

Kreis T. Holographic Interferometry in Handbook of Holographic Interferometry: Optical and Digital Methods. Wiley-VCH; 2005. pp. 35–21.

Cherbuliez M, Jacquot PM, Colonna de Lega X. Wavelet processing of interferometric signals and fringe patterns. Proc. SPIE. 1999;3813:692–702. doi: 10.1117/12.366825. DOI

Rao RM, Bopardikar AS. Introduction to the Discrete Wavelet Transform and Orthogonal Wavelet Decomposition in Wavelet Transforms: Introduction to Theory and Applications. Addison-Wesley; 1998. pp. 25–50.

Liu H, Cartwright AN, Basaran C. Moiré interferogram phase extraction: A ridge detection algorithm for continuous wavelet transforms. Appl. Opt. 2004;43:850–857. doi: 10.1364/AO.43.000850. PubMed DOI

Huang L, Kemao Q, Pan B, Asundi A. Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase extraction from a single fringe pattern in fringe projection profilometry. Opt. Lasers Eng. 2010;48:141–148. doi: 10.1016/j.optlaseng.2009.04.003. DOI

Small RD, Sernas VA, Page RH. Single beam schlieren interferometer using a wollaston prism. Appl. Opt. 1972;11:858–862. doi: 10.1364/AO.11.000858. PubMed DOI

Iwata K, Kikuta H. Measurement of dynamic flow field by optical computed tomography with shearing interferometers. Opt. Rev. 2000;7:415–419. doi: 10.1007/s10043-000-0415-0. DOI

Devaney AJ. A filtered backpropagation algorithm for diffraction tomography. Ultrason. Imag. 1982;4:336–350. doi: 10.1177/016173468200400404. PubMed DOI

Chowdhury S, et al. High-resolution 3D refractive index microscopy of multiple-scattering samples from intensity images. Optica. 2019;6:1211–1219. doi: 10.1364/OPTICA.6.001211. PubMed DOI PMC

Abel N. Auflosung einer mechanischen aufgabe. J. Reine Angew. Math. 1826;1:153–157.

Kak AC, Slaney M. Tomographic Imaging with Diffracting Sources in Principles of Computerized Tomographic Imaging. IEEE Press; 1999. pp. 203–274.

Radon J. On the determination of functions from their integral values along certain manifolds. IEEE Trans. Med. Imag. 1986;5:170–176. doi: 10.1109/TMI.1986.4307775. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...