Effects of Transcranial Alternating Current Stimulation and Neurofeedback on Alpha (EEG) Dynamics: A Review
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article, Review
PubMed
34305549
PubMed Central
PMC8297546
DOI
10.3389/fnhum.2021.628229
Knihovny.cz E-resources
- Keywords
- alpha activity, behavioral benefits, brain plasticity, factors influencing variability of responsiveness, mechanisms, neurofeedback, online and offline effects, transcranial alternating current stimulation,
- Publication type
- Journal Article MeSH
- Review MeSH
Transcranial alternating current stimulation (tACS) and neurofeedback (NFB) are two different types of non-invasive neuromodulation techniques, which can modulate brain activity and improve brain functioning. In this review, we compared the current state of knowledge related to the mechanisms of tACS and NFB and their effects on electroencephalogram (EEG) activity (online period/stimulation period) and on aftereffects (offline period/post/stimulation period), including the duration of their persistence and potential behavioral benefits. Since alpha bandwidth has been broadly studied in NFB and in tACS research, the studies of NFB and tACS in modulating alpha bandwidth were selected for comparing the online and offline effects of these two neuromodulation techniques. The factors responsible for variability in the responsiveness of the modulated EEG activity by tACS and NFB were analyzed and compared too. Based on the current literature related to tACS and NFB, it can be concluded that tACS and NFB differ a lot in the mechanisms responsible for their effects on an online EEG activity but they possibly share the common universal mechanisms responsible for the induction of aftereffects in the targeted stimulated EEG band, namely Hebbian and homeostatic plasticity. Many studies of both neuromodulation techniques report the aftereffects connected to the behavioral benefits. The duration of persistence of aftereffects for NFB and tACS is comparable. In relation to the factors influencing responsiveness to tACS and NFB, significantly more types of factors were analyzed in the NFB studies compared to the tACS studies. Several common factors for both tACS and NFB have been already investigated. Based on these outcomes, we propose several new research directions regarding tACS and NFB.
See more in PubMed
Abellaneda-Pérez K., Vaqué-Alcázar L., Perellón-Alfonso R., Bargalló N., Kuo M. F., Pascual-Leone A., et al. . (2020). Differential tDCS and tACS effects on working memory-related neural activity and resting-state connectivity. Front. Neurosci. 13:1440. 10.3389/fnins.2019.01440 PubMed DOI PMC
Agnoli S., Zanon M., Mastria S., Avenanti A., Corazza G. E. (2018). Enhancing creative cognition with a rapid right-parietal neurofeedback procedure. Neuropsychologia 118, 99–106. 10.1016/j.neuropsychologia.2018.02.015 PubMed DOI
Ahn S., Mellin J. M., Alagapan S., Alexander M. L., Gilmore J. H., Jarskog L. F., et al. . (2019). Targeting reduced neural oscillations in patients with schizophrenia by transcranial alternating current stimulation. Neuroimage 186, 126–136. 10.1016/j.neuroimage.2018.10.056 PubMed DOI PMC
Alagapan S., Schmidt S. L., Lefebvre J., Hadar E. (2016). Modulation of cortical oscillations by low- frequency direct cortical stimulation is state-dependent. PLoS Biol. 14:e1002424. 10.1371/journal.pbio.1002424 PubMed DOI PMC
Alexander M. L., Alagapan S., Lugo C. E., Mellin J. M., Lustenberger C., Rubinow D. R., et al. . (2019). Double-blind, randomized pilot clinical trial targeting alpha oscillations with transcranial alternating current stimulation (tACS) for the treatment of major depressive disorder (MDD). Transl. Psychiatry 9:106. 10.1038/s41398-019-0439-0 PubMed DOI PMC
Alexeeva M. V., Balios N. V., Muravlyova K. B., Sapina E. V., Bazanova O. M. (2012). Training for voluntarily increasing individual upper α power as a method for cognitive enhancement. Hum. Physiol. 38, 40–48. 10.1134/S0362119711060028 DOI
Ali M. M., Sellers K. K., Fröhlich F. (2013). Transcranial alternating current stimulation modulates large-scale cortical network activity by network resonance. J. Neurosci. 33, 11262–11275. 10.1523/JNEUROSCI.5867-12.2013 PubMed DOI PMC
Alkoby O., Abu-Rmileh A., Shriki O., Todder D. (2018). Can we predict who will respond to neurofeedback? A review of the inefficacy problem and existing predictors for successful EEG neurofeedback learning. Neuroscience 378, 155–164. 10.1016/j.neuroscience.2016.12.050 PubMed DOI
Ancoli S., Kamiya J. (1978). Methodological issues in alpha biofeedback training. Biofeedback Self. Regul. 3, 159–183. 10.1007/BF00998900 PubMed DOI
Antal A., Herrmann C. S. (2016). Transcranial alternating current and random noise stimulation: possible mechanisms. Neural Plast. 2016:3616807. 10.1155/2016/3616807 PubMed DOI PMC
Antal A., Paulus W. (2013). Transcranial alternating current stimulation (tACS). Front. Hum. Neurosci. 7:317. 10.3389/fnhum.2013.00317 PubMed DOI PMC
Bächinger M., Zerbi V., Moisa M., Polania R., Liu Q., Mantini D., et al. . (2017). Concurrent tACS-fMRI reveals causal influence of power synchronized neural activity on resting state fMRI connectivity. J. Neurosci. 37, 4766–4777. 10.1523/JNEUROSCI.1756-16.2017 PubMed DOI PMC
Bagherzadeh Y., Baldauf D., Pantazis D., Desimone R. (2020). Alpha synchrony and the neurofeedback control of spatial attention. Neuron 105, 577–587.e5. 10.1016/j.neuron.2019.11.001 PubMed DOI
Batail J. M., Bioulac S., Cabestaing F., Daudet C., Drapier D., Fouillen M., et al. . (2019). EEG neurofeedback research: A fertile ground for psychiatry? Encephale 45, 245–255. 10.1016/j.encep.2019.02.001 PubMed DOI
Battleday R. M., Muller T., Clayton M. S., Kadosh R. C. (2014). Mapping the mechanisms of transcranial alternating current stimulation: a pathway from network effects to cognition. Front. Psychiatry 5:162. 10.3389/fpsyt.2014.00162 PubMed DOI PMC
Bazanova O. M., Aftanas L. I. (2010). Individual EEG alpha activity analysis for enhancement neurofeedback efficiency: two case studies. J. Neurother. 14, 244–253. 10.1080/10874208.2010.501517 DOI
Bazanova O. M., Mernaya E. M., Shtark M. B. (2009). Biofeedback in psychomotor training. Electrophysiological basis. Neurosci. Behav. Physiol. 39, 437–447. 10.1007/s11055-009-9157-z PubMed DOI
Bazanova O. M., Shtark M. B. (2007). Biofeedback in optimizing psychomotor reactivity: I. Comparison of biofeedback and common performance practice. Hum. Physiol. 33, 400–408. 10.1134/S0362119707040044 PubMed DOI
Berger A., Pixa N. H., Steinberg F., Doppelmayr M. (2018). Brain oscillatory and hemodynamic activity in a bimanual coordination task following transcranial alternating current stimulation (tACS): a combined EEG-fNIRS Study. Front. Behav. Neurosci. 12:67. 10.3389/fnbeh.2018.00067 PubMed DOI PMC
Berger A. M., Davelaar E. J. (2018). Frontal alpha oscillations and attentional control: a virtual reality neurofeedback study. Neuroscience 378, 189–197. 10.1016/j.neuroscience.2017.06.007 PubMed DOI
Bobby J. S., Prakash S. (2017). Upper alpha neurofeedback training enhances working memory performance using LabVIEW. Int. J. Biomed. Eng. Technol. 25, 120–132. 10.1504/IJBET.2017.087716 DOI
Bologna M., Guerra A., Paparella G., Colella D., Borrelli A., Suppa A., et al. . (2019). Transcranial alternating current stimulation has frequency-dependent effects on motor learning in healthy humans. Neuroscience 411, 130–139. 10.1016/j.neuroscience.2019.05.041 PubMed DOI
Bramson B., den Ouden H., Toni I., Roelofs K. (2020). Improving emotional-action control by targeting long-range phase-amplitude neuronal coupling. bioRxiv. 10.1101/2020.06.04.129569 PubMed DOI PMC
Breteler M. H. M., Arns M., Peters S., Giepmans I., Verhoeven L. (2010). Improvements in spelling after QEEG-based neurofeedback in dyslexia: A randomized controlled treatment study. Appl. Psychophysiol. Biofeedback 35, 5–11. 10.1007/s10484-009-9105-2 PubMed DOI PMC
Cabral-calderin Y., Weinrich C. A., Schmidt-samoa C., Poland E., Dechent P. (2016). Transcranial alternating current stimulation affects the BOLD signal in a frequency and task-dependent manner. Hum. Brain Mapp. 121, 94–121. 10.1002/hbm.23016 PubMed DOI PMC
Castellano M., Ibañez-Soria D., Kroupi E., Acedo J., Campolo M., Soria-Frisch A., et al. . (2020). Intermittent tACS during a visual task impacts neural oscillations and LZW complexity. Exp. Brain Res. 238, 1411–1422. 10.1007/s00221-020-05820-z PubMed DOI
Chen C., Yuan K., Chu W. C., Tong R. K. (2021). The effects of 10 Hz and 20 Hz tACS in network integration and segregation in chronic stroke: a graph theoretical fMRI study. Brain Sci. 11:377. 10.3390/brainsci11030377 PubMed DOI PMC
Cho M. K., Jang H. S., Jeong S. H., Jang I. S., Choi B. J., Lee M. G. (2008). Alpha neurofeedback improves the maintaining ability of alpha activity. Neuroreport. 19, 315–317. 10.1097/WNR.0b013e3282f4f022 PubMed DOI
Choobforoushzadeh A., Neshat-Doost H. T., Molavi H., Abedi M. R. (2015). Effect of neurofeedback training on depression and fatigue in patients with multiple sclerosis. Appl. Psychophysiol. Biofeedback 40, 1–8. 10.1007/s10484-014-9267-4 PubMed DOI
Clancy K. J., Baisley S. K., Albizu A., Kartvelishvili N., Ding M., Li W. (2018). Lasting connectivity increase and anxiety reduction via transcranial alternating current stimulation. Soc. Cogn. Affect. Neurosci. 13, 1305–1316. 10.1093/scan/nsy096 PubMed DOI PMC
Cotman C. W., Monaghan D. T., Ganong A. H. (1988). Excitatory amino acid neurotransmission: NMDA receptors and Hebb-type synaptic plasticity. Biofeedback 34, 309–318. 10.1146/annurev.ne.11.030188.000425 PubMed DOI
Cram J. R., Kohlenberg R. J., Singer M. (1977). Operant control of alpha EEG and the effects of illumination and eye closure. Psychosom. Med. 39, 11–18. 10.1097/00006842-197701000-00002 PubMed DOI
Dadashi M., Birashk B., Taremian F., Asgarnejad A. A., Momtazi S. (2015). Effects of increase in amplitude of occipital alpha & theta brain waves on global functioning level of patients with GAD. Basic Clin. Neurosci. 6, 14–20. PubMed PMC
Deiber M. P., Hasler R., Colin J., Dayer A., Aubry J. M., Baggio S., et al. . (2020). Linking alpha oscillations, attention and inhibitory control in adult ADHD with EEG neurofeedback. NeuroImage Clin. 25:102145. 10.1016/j.nicl.2019.102145 PubMed DOI PMC
Dekker M. K. J., Sitskoorn M. M., Denissen A. J. M., Van Boxtel G. J. M. (2014). The time-course of alpha neurofeedback training effects in healthy participants. Biol. Psychol. 95, 70–73. 10.1016/j.biopsycho.2013.11.014 PubMed DOI
Dempster T., Vernon D. (2009). Identifying indices of learning for alpha neurofeedback training. Appl. Psychophysiol. Biofeedback 34, 309–318. 10.1007/s10484-009-9112-3 PubMed DOI
Di Bernardi Luft C., Zioga I., Thompson N. M., Banissy M. J., Bhattacharya J. (2018). Right temporal alpha oscillations as a neural mechanism for inhibiting obvious associations. Proc. Natl. Acad. Sci. U.S.A. 115, E12144–E12152. 10.1073/pnas.1811465115 PubMed DOI PMC
Dobrakowski P., Łebecka G. (2020). Individualized neurofeedback training may help achieve long-term improvement of working memory in children with ADHD. Clin. EEG Neurosci. 51, 94–101. 10.1177/1550059419879020 PubMed DOI
Dohrmann K., Weisz N., Schlee W., Hartmann T., Elbert T. (2007). Neurofeedback for treating tinnitus. Prog. Brain Res. 166, 473–486. 10.1016/S0079-6123(07)66046-4 PubMed DOI
Dowsett J., Herrmann C. S. (2016). Transcranial alternating current stimulation with sawtooth waves: simultaneous stimulation and EEG recording. Front. Hum. Neurosci. 10:135. 10.3389/fnhum.2016.00135 PubMed DOI PMC
Egner T., Sterman M. B. (2014). Neurofeedback treatment of epilepsy : from basic rationale to practical application. Expert Rev. Neurother. 6, 247–257. 10.1586/14737175.6.2.247 PubMed DOI
Egner T., Strawson E., Gruzelier J. H. (2002). EEG signature and phenomenology of alpha/theta neurofeedback training versus mock feedback. Appl. Psychophysiol. Biofeedback 27, 261–270. 10.1023/A:1021063416558 PubMed DOI
Enriquez-Geppert S., Huster R. J., Herrmann C. S. (2017). EEG-neurofeedback as a tool to modulate cognition and behavior: A review tutorial. Front. Hum. Neurosci. 11:51. 10.3389/fnhum.2017.00051 PubMed DOI PMC
Enriquez-Geppert S., Huster R. J., Scharfenort R., Mokom Z. N., Vosskuhl J., Figge C., et al. . (2013). The morphology of midcingulate cortex predicts frontal-midline theta neurofeedback success. Front. Hum. Neurosci. 7:453. 10.3389/fnhum.2013.00453 PubMed DOI PMC
Escolano C., Aguilar M., Minguez J. (2011). EEG-based upper alpha neurofeedback training improves working memory performance. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2008, 2327–2330. 10.1109/IEMBS.2011.6090651 PubMed DOI
Escolano C., Navarro-Gil M., Garcia-Campayo J., Congedo M., Minguez J. (2014). The effects of individual upper alpha neurofeedback in ADHD: an open-label pilot study. Appl. Psychophysiol. Biofeedback 39, 193–202. 10.1007/s10484-014-9257-6 PubMed DOI
Escolano C., Olivan B., Lopez-Del-Hoyo Y., Garcia-Campayo J., Minguez J. (2012). Double-blind single-session neurofeedback training in upper-alpha for cognitive enhancement of healthy subjects. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2012, 4643–4647. 10.1109/EMBC.2012.6347002 PubMed DOI
Fell J., Elfadil H., Klaver P., Röschke J., Elger C. E., Fernández G. (2002). Covariation of spectral and nonlinear EEG measures with alpha biofeedback. Int. J. Neurosci. 112, 1047–1057. 10.1080/00207450290026049 PubMed DOI
Ferkany J. W., Borosky S. A., Clissold D. B., Pontecorvo M. J. (1988). Dextromethorphan inhibits NMDA-induced convulsions. Eur. J. Pharmacol. 151, 151–154. 10.1016/0014-2999(88)90707-8 PubMed DOI
Fertonani A., Miniussi C. (2017). Transcranial electrical stimulation: what we know and do not know about mechanisms. Neuroscientist 23, 109–123. 10.1177/1073858416631966 PubMed DOI PMC
Fetz E., Baker M. A. (1973). Operantly conditioned patterns on precentral unit activity and correlated responses in adjacent cells and contralateral muscles. J. Neurophysiol. 36, 179–204. 10.1152/jn.1973.36.2.179 PubMed DOI
Feurra M., Pasqualetti P., Bianco G., Santarnecchi E., Rossi A., Rossi S. (2013). State-dependent effects of transcranial oscillatory currents on the motor system: what you think matters. J. Neurosci. 33, 17483–17489. 10.1523/JNEUROSCI.1414-13.2013 PubMed DOI PMC
Fresnoza S., Christova M., Bieler L., Körner C., Zimmer U., Gallasch E., et al. . (2020). Age-dependent effect of transcranial alternating current stimulation on motor skill consolidation. Front. Aging Neurosci. 12:25. 10.3389/fnagi.2020.00025 PubMed DOI PMC
Friedrich E. V. C., Sivanathan A., Lim T., Suttie N., Louchart S., Pillen S., et al. . (2015). An effective neurofeedback intervention to improve social interactions in children with autism spectrum disorder. J. Autism Dev. Disord. 45, 4084–4100. 10.1007/s10803-015-2523-5 PubMed DOI
Frohlich F., Townsend L. (2021). Closed-loop transcranial alternating current stimulation: towards personalized non-invasive brain stimulation for the treatment of psychiatric illnesses. Curr. Behav. Neurosci. Rep. 8, 51–57. 10.1007/s40473-021-00227-8 DOI
Garside P., Arizpe J., Lau C., Goh C., Walsh V. (2015). Brain stimulation cross-hemispheric alternating current stimulation during a nap disrupts slow wave activity and associated memory consolidation. Brain Stimul. 8, 520–527. 10.1016/j.brs.2014.12.010 PubMed DOI PMC
Ghasemian M., Taheri H., Saberi Kakhki A., Ghoshuni M. (2016). The effect of alpha neurofeedback training on motor skill acquisition. Biosci. Biotechnol. Res. Asia 13, 1651–1656. 10.13005/bbra/2313 DOI
Gruzelier J. (2009). A theory of alpha/theta neurofeedback, creative performance enhancement, long distance functional connectivity and psychological integration. Cogn. Process. 10, 101–109. 10.1007/s10339-008-0248-5 PubMed DOI
Guerra A., Asci F., Zampogna A., D'Onofrio V., Petrucci S., Ginevrino M., et al. . (2020). Gamma-transcranial alternating current stimulation and theta-burst stimulation: inter-subject variability and the role of BDNF. Clin. Neurophysiol. 131, 2691–2699. 10.1016/j.clinph.2020.08.017 PubMed DOI
Guerra A., Bologna M., Paparella G., Suppa A., Colella D., Di Lazzaro V., et al. . (2018). Effects of transcranial alternating current stimulation on repetitive finger movements in healthy humans. Neural Plast. 2018:4593095. 10.1155/2018/4593095 PubMed DOI PMC
Guerra A., Suppa A., Asci F., De Marco G., D'Onofrio V., Bologna M., et al. . (2019). LTD-like plasticity of the human primary motor cortex can be reversed by γ-tACS. Brain Stimul. 12, 1490–1499. 10.1016/j.brs.2019.06.029 PubMed DOI
Guez J., Rogel A., Getter N., Keha E., Cohen T., Amor T., et al. . (2015). Influence of electroencephalography neurofeedback training on episodic memory: A randomized, sham-controlled, double-blind study. Memory 23, 683–694. 10.1080/09658211.2014.921713 PubMed DOI
Gundlach C., Muller M. M., Hoff M., Ragert P., Nierhaus T., Villringer A., et al. . (2020). Reduction of somatosensory functional connectivity by transcranial alternating current stimulation at endogenous mu-frequency. NeuroImage 221:117175. 10.1016/j.neuroimage.2020.117175 PubMed DOI
Gundlach C., Müller M. M., Nierhaus T., Villringer A., Sehm B. (2017). Modulation of somatosensory alpha rhythm by transcranial alternating current stimulation at Mu-frequency. Front. Hum. Neurosci. 11:432. 10.3389/fnhum.2017.00432 PubMed DOI PMC
Güntensperger D., Thüring C., Kleinjung T., Neff P., Meyer M. (2019). Investigating the efficacy of an individualized alpha/delta neurofeedback protocol in the treatment of chronic tinnitus. Neural Plast. 2019:40898. 10.1155/2019/3540898 PubMed DOI PMC
Haberbosch L., Schmidt S., Jooss A., Köhn A., Kozarzewski L., Rönnefarth M., et al. . (2019). Rebound or entrainment? The influence of alternating current stimulation on individual alpha. Front. Hum. Neurosci. 13:43. 10.3389/fnhum.2019.00043 PubMed DOI PMC
Hanslmayr S., Sauseng P., Doppelmayr M., Schabus M., Klimesch W. (2005). Increasing individual upper alpha power by neurofeedback improves cognitive performance in human subjects. Appl. Psychophysiol. Biofeedback 30, 1–10. 10.1007/s10484-005-2169-8 PubMed DOI
Hardt J., Kamiya J. (1978). IEALTH SCIENCES LIBRARI AEXA lJlalographic Alpha Feedback Seen Only in High Anxiety Subjects. Science 201, 79–81. PubMed
He Y., Liu S., Guo D., Liu X., Ke Y., Song X., et al. . (2019). Transcranial alternating current stimulation at individual alpha frequency enhances alpha activity in frontal areas. Int. IEEE/EMBS Conf. Neural Eng. 2019, 93–96. 10.1109/NER.2019.8717021 DOI
Helfrich R. F., Herrmann C. S., Engel A. K., Schneider T. R. (2016). Different coupling modes mediate cortical cross-frequency interactions. Neuroimage 140, 76–82. 10.1016/j.neuroimage.2015.11.035 PubMed DOI
Helfrich R. F., Knepper H., Nolte G., Strüber D., Rach S., Herrmann C. S., et al. . (2014a). Selective modulation of interhemispheric functional connectivity by HD-tACS shapes perception. PLoS Biol. 12:2031. 10.1371/journal.pbio.1002031 PubMed DOI PMC
Helfrich R. F., Schneider T. R., Rach S., Trautmann-lengsfeld S. A., Engel A. K. (2014b). Report entrainment of brain oscillations by transcranial alternating current stimulation. Curr. Biol. 24, 333–339. 10.1016/j.cub.2013.12.041 PubMed DOI
Herrera C. G., Cadavieco M. C., Jego S., Ponomarenko A., Korotkova T., Adamantidis A. (2016). Hypothalamic feedforward inhibition of thalamocortical network controls arousal and consciousness. Nat. Neurosci. 19, 290–298. 10.1038/nn.4209 PubMed DOI PMC
Herring J. D., Esterer S., Marshall T. R., Jensen O., Bergmann T. O. (2019). Low-frequency alternating current stimulation rhythmically suppresses gamma-band oscillations and impairs perceptual performance. Neuroimage 184, 440–449. 10.1016/j.neuroimage.2018.09.047 PubMed DOI
Herrmann C. S., Rach S., Neuling T., Strüber D. (2013). Transcranial alternating current stimulation: A review of the underlying mechanisms and modulation of cognitive processes. Front. Hum. Neurosci. 7:279. 10.3389/fnhum.2013.00279 PubMed DOI PMC
Hindriks R., van Putten M. J. A. M., Deco G. (2014). Intra-cortical propagation of EEG alpha oscillations. Neuroimage 103, 444–453. 10.1016/j.neuroimage.2014.08.027 PubMed DOI
Hohn V. D., May E. S., Ploner M. (2019). From correlation towards causality: modulating brain rhythms of pain using transcranial alternating current stimulation. PAIN Rep. 4:e723. 10.1097/pr9.0000000000000723 PubMed DOI PMC
Holroyd K. A., Penzien D. B., Hursey K. G., Tobin D. L., Rogers L., Holm J. E., et al. . (1984). Change mechanisms in EMG biofeedback training: cognitive changes underlying improvements in tension headache. J. Consult. Clin. Psychol. 52, 1039–1053. 10.1037/0022-006X.52.6.1039 PubMed DOI
Hong L. E., Summerfelt A., Mitchell B. D., McMahon R. P., Wonodi I., Buchanan R. W., et al. . (2008). Sensory gating endophenotype based on its neural oscillatory pattern and heritability estimate. Arch. Gen. Psychiatry 65, 1008–1016. 10.1001/archpsyc.65.9.1008 PubMed DOI PMC
Hopfinger J. B., Parsons J., Fröhlich F. (2017). Differential effects of 10-Hz and 40-Hz transcranial alternating current stimulation (tACS) on endogenous versus exogenous attention. Cogn. Neurosci. 8, 102–111. 10.1080/17588928.2016.1194261 PubMed DOI
Hsueh J. J., Chen T. S., Chen J. J., Shaw F. Z. (2016). Neurofeedback training of EEG alpha rhythm enhances episodic and working memory. Hum. Brain Mapp. 37, 2662–2675. 10.1002/hbm.23201 PubMed DOI PMC
Ibric V. L., Liviu G., Dragomirescu L. G, Hudspeth W. J. (2009). Real-time changes in connectivities during neurofeedback. J. Neurotherapy 13, 156–165. 10.1080/10874200903118378 DOI
Johnson L., Alekseichuk I., Krieg J., Doyle A., Yu Y., Vitek J., et al. . (2020). Dose-dependent effects of transcranial alternating current stimulation on spike timing in awake nonhuman primates. Sci. Adv. 6:eaaz2747. 10.1126/sciadv.aaz2747 PubMed DOI PMC
Johnston S. J., Boehm S. G., Healy D., Goebel R., Linden D. E. J. (2010). Neurofeedback: A promising tool for the self-regulation of emotion networks. Neuroimage 49, 1066–1072. 10.1016/j.neuroimage.2009.07.056 PubMed DOI
Joundi R. A., Jenkinson N., Brittain J. S., Aziz T. Z., Brown P. (2012). Driving oscillatory activity in the human cortex enhances motor performance. Curr. Biol. 22, 403–407. 10.1016/j.cub.2012.01.024 PubMed DOI PMC
Kadosh K. C., Staunton G. (2019). A systematic review of the psychological factors that influence neurofeedback learning outcomes. Neuroimage 185, 545–555. 10.1016/j.neuroimage.2018.10.021 PubMed DOI
Kanai R., Chaieb L., Antal A., Walsh V., Paulus W. (2008). Frequency-dependent electrical stimulation of the visual cortex. Curr. Biol. 18, 1839–1843. 10.1016/j.cub.2008.10.027 PubMed DOI
Kanai R., Paulus W., Walsh V. (2010). Transcranial alternating current stimulation (tACS) modulates cortical excitability as assessed by TMS-induced phosphene thresholds. Clin. Neurophysiol. 121, 1551–1554. 10.1016/j.clinph.2010.03.022 PubMed DOI
Karabanov A., Thielscher A., Siebner H. R. (2016). Transcranial brain stimulation: Closing the loop between brain and stimulation. Curr. Opin. Neurol. 29, 397–404. 10.1097/WCO.0000000000000342 PubMed DOI PMC
Kasten F. H., Dowsett J., Herrmann C. S. (2016). Sustained Aftereffect of α -tACS Lasts Up to 70 min after stimulation. Front. Hum. Neurosci. 10:245. 10.3389/fnhum.2016.00245 PubMed DOI PMC
Kasten F. H., Herrmann C. S. (2017). Transcranial alternating current stimulation (tACS) enhances mental rotation performance during and after stimulation. Front. Hum. Neurosci. 11:2. 10.3389/fnhum.2017.00002 PubMed DOI PMC
Kasten F. H., Herrmann C. S. (2019). Recovering brain dynamics during concurrent tACS-M/EEG: an overview of analysis approaches and their methodological and interpretational pitfalls. Brain Topogr. 32, 1013–1019. 10.1007/s10548-019-00727-7 PubMed DOI
Kasten F. H., Maess B, Herrmann C. S. (2018a). Facilitated event-related power modulations during transcranial alternating current stimulation (tACS) revealed by concurrent tACS-MEG. eNeuro 5:ENEURO.0069-18.2018. 10.1523/ENEURO.0069-18.2018 PubMed DOI PMC
Kasten F. H., Negahbani E., Fröhlich F., Herrmann C. S. (2018b). Non-linear transfer characteristics of stimulation and recording hardware account for spurious low-frequency artifacts during amplitude modulated transcranial alternating current stimulation (AM-tACS). Neuroimage 179, 134–143. 10.1016/j.neuroimage.2018.05.068 PubMed DOI
Katerberg H., Lochner C., Cath D. C., De Jonge P., Bochdanovits Z., Moolman-Smook J. C., et al. . (2009). The role of the brain-derived neurotrophic factor (BDNF) val66met variant in the phenotypic expression of Obsessive-Compulsive Disorder (OCD). Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 150, 1050–1062. 10.1002/ajmg.b.30930 PubMed DOI
Kerson C., Sherman R. A., Kozlowski G. P. (2009). Alpha suppression and symmetry training for generalized anxiety symptoms. J. Neurother. 13, 146–155. 10.1080/10874200903107405 DOI
Ketz N., Jones A. P., Bryant N. B., Clark V. P., Pilly P. K. (2018). Closed-loop slow-wave tACS improves sleep-dependent long-term memory generalization by modulating endogenous oscillations. J. Neurosci. 38, 7314–7326. 10.1523/JNEUROSCI.0273-18.2018 PubMed DOI PMC
Kluetsch R. C., Ros T., Théberge J., Frewen P. A., Calhoun V. D., Schmahl C., et al. . (2014). Plastic modulation of PTSD resting-state networks and subjective wellbeing by EEG neurofeedback. Acta Psychiatr. Scand. 130, 123–136. 10.1111/acps.12229 PubMed DOI PMC
Kotchoubey B., Strehl U., Uhlmann C., Holzapfel S., König M., Fröscher W., et al. . (2001). Modification of slow cortical potentials in patients with refractory epilepsy: a controlled outcome study. Epilepsia 42, 406–416. 10.1046/j.1528-1157.2001.22200.x PubMed DOI
Krause M. R., Vieira P. G., Csorba B. A., Pilly P. K., Pack C. C. (2019). Transcranial alternating current stimulation entrains single-neuron activity in the primate brain. Proc. Natl. Acad. Sci. U.S.A. 116, 5747–5755. 10.1073/pnas.1815958116 PubMed DOI PMC
Krause V., Wach C., Südmeyer M., Ferrea S., Schnitzler A., Pollok B. (2014). Cortico-muscular coupling and motor performance are modulated by 20 Hz transcranial alternating current stimulation (tACS) in Parkinson's disease. Front. Hum. Neurosci. 7:928. 10.3389/fnhum.2013.00928 PubMed DOI PMC
Krawinkel L., Bönstrup M., Feldheim J., Schulz R., Backhaus W., Schneider T., et al. . (2019). Effects of transcranial alternating-current stimulation to secondary motor areas on cortical oscillations in stroke patients. biorxiv. 10.1101/529818 DOI
Lacroix J. M., Roberts L. E. (1978). A comparison of the mechanisms and some properties of instructed sudomotor and cardiac control. Biofeedback Self. Regul. 3, 105–132. 10.1007/BF00998897 PubMed DOI
Lara G. A., de Alekseichuk I., Turi Z., Lehr A., Antal A., Paulus W. (2018). Perturbation of theta-gamma coupling at the temporal lobe hinders verbal declarative memory. Brain Stimul. 11, 509–517. 10.1016/j.brs.2017.12.007 PubMed DOI
Lavy Y., Dwolatzky T., Kaplan Z., Guez J., Todder D. (2019). Neurofeedback improves memory and peak alpha frequency in individuals with mild cognitive impairment. Appl. Psychophysiol. Biofeedback 44, 41–49. 10.1007/s10484-018-9418-0 PubMed DOI
Lee Y. J., Lee G. W., Seo W. S., Koo B. H., Kim H. G., Cheon E. J. (2019). Neurofeedback treatment on depressive symptoms and functional recovery in treatment-resistant patients with major depressive disorder: an open-label pilot study. J. Korean Med. Sci. 34, 1–16. 10.3346/jkms.2019.34.e287 PubMed DOI PMC
Lefebvre J., Frohlich F., Hutt A. (2017). Stochastic resonance mediates the state-dependent effect of periodic stimulation on cortical alpha oscillations. bioRxiv. 10.1101/191577 PubMed DOI PMC
Legarda S. B., McMahon D., Othmer S., Othmer S. (2011). Clinical neurofeedback: Case studies, proposed mechanism, and implications for pediatric neurology practice. J. Child Neurol. 26, 1045–1051. 10.1177/0883073811405052 PubMed DOI
Legenstein R., Pecevski D., Maass W. (2008). A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback. PLoS Comput. Biol. 4:1000180. 10.1371/journal.pcbi.1000180 PubMed DOI PMC
Liu A., Vöröslakos M., Kronberg G., Henin S., Krause M. R., Huang Y., et al. . (2018). Immediate neurophysiological effects of transcranial electrical stimulation. Nat. Commun. 9:5092. 10.1038/s41467-018-07233-7 PubMed DOI PMC
López-Larraz E., Escolano C., Minguez J. (2012). Upper alpha neurofeedback training over the motor cortex increases SMR desynchronization in motor tasks. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2012, 4635–4638. 10.1109/EMBC.2012.6347000 PubMed DOI
Lubar J. F. (1997). Neocortical dynamics: implications for understanding the role of neurofeedback and related techniques for the enhancement of attention. Appl. Psychophysiol. Biofeedback 22, 111–126. 10.1023/A:1026276228832 PubMed DOI
Lubianiker N., Goldway N., Fruchtman-Steinbok T., Paret C., Keynan J. N., Singer N., et al. . (2019). Process-based framework for precise neuromodulation. Nat. Hum. Behav. 3, 436–445. 10.1038/s41562-019-0573-y PubMed DOI
Manzo N., Guerra A., Giangrosso M., Belvisi D., Leodori G., Berardelli A., et al. . (2020). Investigating the effects of transcranial alternating current stimulation on primary somatosensory cortex. Sci Rep. 10:17129. 10.1038/s41598-020-74072-2 PubMed DOI PMC
Markiewicz R., Dobrowolska B. (2020). Cognitive and social rehabilitation in schizophrenia—from neurophysiology to neuromodulation. Pilot study. Int. J. Environ. Res. Public Health 17, 7–10. 10.3390/ijerph17114034 PubMed DOI PMC
Markiewicz R., Kozioł M., Olajossy M., Masiak J. (2017). Can brain-derived neurotrophic factor (BDNF) be an indicator of effective rehabilitation interventions in schizophrenia. Psychiatr. Pol. 52, 1–16. 10.12740/PP/OnlineFirst/76040 PubMed DOI
Melnikov M. Y. (2021). The current evidence levels for biofeedback and neurofeedback interventions in treating depression: a narrative review. Neural Plast. 2021, 1–31. 10.1155/2021/8878857 PubMed DOI PMC
Minami S and Amano K. (2017). Illusory jitter perceived at the frequency of alpha oscillations. Curr. Biol. 27, 2344–2351. 10.1016/j.cub.2017.06.033 PubMed DOI
Moisa M., Polania R., Grueschow M., Ruff C. C. (2016). Brain network mechanisms underlying motor enhancement by transcranial entrainment of gamma oscillations. J. Neurosci. 36, 12053–12065. 10.1523/JNEUROSCI.2044-16.2016 PubMed DOI PMC
Mondino M., Ghumman S., Gane C., Renauld E., Whittingstall K., Fecteau S. (2020). Effects of transcranial stimulation with direct and alternating current on resting-state functional connectivity: An exploratory study simultaneously combining stimulation and multiband functional magnetic resonance imaging. Front. Hum. Neurosci. 13:474. 10.3389/fnhum.2019.00474 PubMed DOI PMC
Mottaz A., Solcà M., Magnin C., Corbet T., Schnider A., Guggisberg A. G. (2015). Clinical Neurophysiology Neurofeedback training of alpha-band coherence enhances motor performance. Clin. Neurophysiol. 126, 1754–1760. 10.1016/j.clinph.2014.11.023 PubMed DOI
Mullinix J. M., Norton B. J., Hack S., Fishman M. A. (1978). Skin temperature biofeedback and migraine. Headache J. Head Face Pain 17, 242–244. 10.1111/j.1526-4610.1978.hed1706242.x PubMed DOI
Muñoz-Moldes S., Cleeremans A. (2020). Delineating implicit and explicit processes in neurofeedback learning. Neurosci. Biobehav. Rev. 118, 681–688. 10.1016/j.neubiorev.2020.09.003 PubMed DOI PMC
Naas A., Rodrigues J., Knirsch J. P., Sonderegger A. (2019). Neurofeedback training with a low-priced EEG device leads to faster alpha enhancement but shows no effect on cognitive performance: A single-blind, sham-feedback study. PLoS ONE 14:211668. 10.1371/journal.pone.0211668 PubMed DOI PMC
Nan W., Rodrigues J. P., Ma J., Qu X., Wan F., Mak P. I., et al. . (2012). Individual alpha neurofeedback training effect on short term memory. Int. J. Psychophysiol. 86, 83–87. 10.1016/j.ijpsycho.2012.07.182 PubMed DOI
Nan W., Wan F., Lou C. I., Vai M. I., Rosa A. (2013). Peripheral visual performance enhancement by neurofeedback training. Appl. Psychophysiol. Biofeedback 38, 285–291. 10.1007/s10484-013-9233-6 PubMed DOI
Nan W., Wan F., Tang Q., Wong C. M., Wang B., Rosa A. (2018). Eyes-closed resting EEG predicts the learning of alpha down-regulation in neurofeedback training. Front. Psychol. 9:1607. 10.3389/fpsyg.2018.01607 PubMed DOI PMC
Nan W., Yang L., Wan F., Zhu F., Hu Y. (2020). Alpha down-regulation neurofeedback training effects on implicit motor learning and consolidation. J. Neural Eng. 17:026014. 10.1088/1741-2552/ab7c1b PubMed DOI
Neuling T., Rach S., Herrmann C. S. (2013). Orchestrating neuronal networks: Sustained after-effects of transcranial alternating current stimulation depend upon brain states. Front. Hum. Neurosci. 7:161. 10.3389/fnhum.2013.00161 PubMed DOI PMC
Neuling T., Ruhnau P., Weisz N., Herrmann C. S., Demarchi G. (2017). Faith and oscillations recovered: on analyzing EEG/MEG signals during tACS. Neuroimage 147, 960–963. 10.1016/j.neuroimage.2016.11.022 PubMed DOI
Neuling T., Wagner S., Wolters C. H., Zaehle T., Herrmann C. S. (2012). Finite-element model predicts current density distribution for clinical applications of tDCS and tACS. Front. Psychiatry 3:83. 10.3389/fpsyt.2012.00083 PubMed DOI PMC
Nicholson A. A., Ros T., Frewen P. A., Densmore M., Théberge J., Kluetsch R. C., et al. . (2016). Alpha oscillation neurofeedback modulates amygdala complex connectivity and arousal in posttraumatic stress disorder. NeuroImage Clin. 12, 506–516. 10.1016/j.nicl.2016.07.006 PubMed DOI PMC
Nitsche M. A., Bikson M., Bestmann S. (2015). On the use of meta-analysis in neuromodulatory non-invasive brain stimulation. Brain Stimul. 8, 666–667. 10.1016/j.brs.2015.03.008 PubMed DOI
Noury N., Hipp J. F., Siegel M. (2016). Physiological processes non-linearly affect electrophysiological recordings during transcranial electric stimulation. Neuroimage 140, 99–109. 10.1016/j.neuroimage.2016.03.065 PubMed DOI
Nowak M., Hinson E., van Ede F., Pogosyan A., Guerra A., Quinn A., et al. . (2017). Driving human motor cortical oscillations leads to behaviorally relevant changes in local GABAA inhibition: a tACS-TMS study. J. Neurosci. 37, 4481–4492. 10.1523/JNEUROSCI.0098-17.20 PubMed DOI PMC
Olson J. A., Lifshitz M., Raz A., Veissière S. P. L. (2021). Super placebos: a feasibility study combining contextual factors to promote placebo effects. Front. Psychiatry 12:644825. 10.3389/fpsyt.2021.644825 PubMed DOI PMC
Omori M., Koshino Y., Murata T., Murata I., Nishio M., Sakamoto K., et al. . (1995). Quantitative EEG in never-treated schizophrenic patients. Biol. Psychiatry 38, 303–309. 10.1016/0006-3223(95)00300-6 PubMed DOI
Othmer S. (2019). Milestones in Development of the Othmer Method. Neurofeedback: The First Fifty Years. 10.1016/B978-0-12-817659-7.00042-7 DOI
Othmer S., Othmer S. F. (2017). Toward a Frequency-Based Theory of Neurofeedback. The EEG Institute, Woodland Hills, CA. 10.1016/B978-0-12-803726-3.00008-0 DOI
Paskewitz D. A., Orne M. T. (1973). Visual effects on alpha feedback training. Science 181, 360–363. 10.1126/science.181.4097.360 PubMed DOI
Paulus W., Rothwell J. C. (2016). Membrane resistance and shunting inhibition: Where biophysics meets state-dependent human neurophysiology. J. Physiol. 594, 2719–2728. 10.1113/JP271452 PubMed DOI PMC
Peciuliene I., Perminas A., Gustainiene L., Jarasiunaite G. (2015). Effectiveness of progressive muscle relaxation and biofeedback relaxation in lowering physiological arousal among students with regard to personality features. Proc. Soc. Behav. Sci. 205, 228–235. 10.1016/j.sbspro.2015.09.064 DOI
Peeters F., Ronner J., Bodar L., van Os J., Lousberg R. (2014). Validation of a neurofeedback paradigm: Manipulating frontal EEG alpha-activity and its impact on mood. Int. J. Psychophysiol. 93, 116–120. 10.1016/j.ijpsycho.2013.06.010 PubMed DOI
Peniston E. G., Kulkosky P. J. (1991). Alpha-theta brainwave neuro-feedback for vietnam veterans with combat- related post-traumatic stress disorder. Med. Psyc-OIherapy 4, 7–60.
Pikovsky A., Rosenblum M., Kurths J. (2002). Synchronization: a universal concept in nonlinear science. Am J Phys. 70:655. 10.1119/1.1475332 DOI
Pimenta M. G., van Run C., de Fockert J. W., Gruzelier J. H. (2018). Neurofeedback of SMR and Beta1 frequencies: an investigation of learning indices and frequency-specific effects. Neuroscience 378, 211–224. 10.1016/j.neuroscience.2017.07.056 PubMed DOI
Plotkin W. B. (1978). Long?term eyes closed alpha?enhancement training: effects on alpha amplitudes and on experiential state. Psychophysiology 15, 40–52. 10.1111/j.1469-8986.1978.tb01332.x PubMed DOI
Plotkin W. B., Rice K. M. (1981). Biofeedback as a placebo: anxiety reduction facilitated by training in either suppression or enhancement of alpha brainwaves. J. Consult. Clin. Psychol. 49, 590–596. 10.1037/0022-006X.49.4.590 PubMed DOI
Polanía R., Nitsche M. A., Korman C., Batsikadze G., Paulus W. (2012). The importance of timing in segregated theta phase-coupling for cognitive performance. Curr. Biol. 22, 1314–1318. 10.1016/j.cub.2012.05.021 PubMed DOI
Pozdniakov I., Nunez Vorobiova A., Galli G., Rossi S., Feurra M. (2021). Online and offline effects of transcranial alternating current stimulation of the primary motor cortex. Sci. Rep. 11:3854. 10.1038/s41598-021-83449-w PubMed DOI PMC
Prim J. H., Ahn S., Davila M. I., Alexander M. L., McCulloch K. L., Fröhlich F. (2019). Targeting the autonomic nervous system balance in patients with chronic low back pain using transcranial alternating current stimulation: A randomized, crossover, double-blind, placebo-controlled pilot study. J. Pain Res. 12, 3265–3277. 10.2147/JPR.S208030 PubMed DOI PMC
Rauschecker J. P. (1991). Mechanisms of visual plasticity: Hebb synapses, NMDA receptors, and beyond. Physiol. Rev. 71.2, 587–615. 10.1152/physrev.1991.71.2.587 PubMed DOI
Reato D., Rahman A., Bikson M., Parra L. C. (2013). Effects of weak transcranial alternating current stimulation on brain activity-a review of known mechanisms from animal studies. Front. Hum. Neurosci. 7:687. 10.3389/fnhum.2013.00687 PubMed DOI PMC
Riddle J., McPherson T., Atkins A. K., Walker C. P., Ahn S., Frohlich F. (2020a). Brain-derived neurotrophic factor (BDNF) polymorphism may influence the efficacy of tACS to modulate neural oscillations. Brain Stimul. 13, 998–999. 10.1016/j.brs.2020.04.012 PubMed DOI PMC
Riddle J., Rubinow D. R., Frohlich F. (2020b). A case study of weekly tACS for the treatment of major depressive disorder. Brain Stimul. 13, 576–577. 10.1016/j.brs.2019.12.016 PubMed DOI PMC
Ronconi L., Melcher D., Junghöfer M., Wolters C. H., Busch N. A. (2020). Testing the effect of tACS over parietal cortex in modulating endogenous alpha rhythm and temporal integration windows in visual perception. Eur. J. Neurosci. 53, 2234–2253. 10.1111/ejn.15017 PubMed DOI PMC
Ros T., Baars B. J., Lanius R. A., Vuilleumier P. (2014a). Tuning pathological brain oscillations with neurofeedback: A systems neuroscience framework. Front. Hum. Neurosci. 8:1008. 10.3389/fnhum.2014.01008 PubMed DOI PMC
Ros T., Enriquez-Geppert S., Zotev V., Young K. D., Wood G., Whitfield-Gabrieli S., et al. . (2020). Consensus on the reporting and experimental design of clinical and cognitive-behavioural neurofeedback studies (CRED-nf checklist). Brain 143, 1674–1685. 10.1093/brain/awaa009 PubMed DOI PMC
Ros T., Frewen P., Théberge J., Michela A., Kluetsch R., Mueller A., et al. . (2017a). Neurofeedback tunes scale-free dynamics in spontaneous brain activity. Cereb. Cortex 27, 4911–4922. 10.1093/cercor/bhw285 PubMed DOI
Ros T., Gruzelier J. H. (2011). The immediate effects of EEG neurofeedback on cortical excitability and synchronization. Neurofeedback Neuromodul. Tech. Appl. 2011, 381–402. 10.1016/B978-0-12-382235-2.00014-7 DOI
Ros T., Michela A., Bellman A., Vuadens P., Saj A., Vuilleumier P. (2017b). Increased alpha-rhythm dynamic range promotes recovery from visuospatial neglect: a neurofeedback study. Neural Plast. 2017:7407241. 10.1155/2017/7407241 PubMed DOI PMC
Ros T., Munneke M. A. M., Parkinson L. A., Gruzelier J. H. (2014b). Neurofeedback facilitation of implicit motor learning. Biol. Psychol. 95, 54–58. 10.1016/j.biopsycho.2013.04.013 PubMed DOI
Ros T., Munneke M. A. M., Ruge D., Gruzelier J. H., Rothwell J. C. (2010). Endogenous control of waking brain rhythms induces neuroplasticity in humans. Eur. J. Neurosci. 31, 770–778. 10.1111/j.1460-9568.2010.07100.x PubMed DOI
Ros T., Théberge J., Frewen P. A., Kluetsch R., Densmore M., Calhoun V. D., et al. . (2013). NeuroImage Mind over chatter : Plastic up-regulation of the fMRI salience network directly after EEG neurofeedback. Neuroimage 65, 324–335. 10.1016/j.neuroimage.2012.09.046 PubMed DOI PMC
Ruhnau P., Neuling T., Fuscá M., Herrmann C. S., Demarchi G., Weisz N. (2016). Eyes wide shut: Transcranial alternating current stimulation drives alpha rhythm in a state dependent manner. Sci. Rep. 6, 1–6. 10.1038/srep27138 PubMed DOI PMC
Scharnowski F., Veit R., Zopf R., Studer P., Bock S., Diedrichsen J., et al. . (2015). Manipulating motor performance and memory through real-time fMRI neurofeedback. Biol. Psychol. 108, 85–97. 10.1016/j.biopsycho.2015.03.009 PubMed DOI PMC
Schmidt S., Mante A., Rönnefarth M., Fleischmann R., Gall C., Brandt S. A. (2013). Progressive enhancement of alpha activity and visual function in patients with optic neuropathy: A two-week repeated session alternating current stimulation study. Brain Stimul. 6, 87–93. 10.1016/j.brs.2012.03.008 PubMed DOI
Schmidt S. L., Iyengar A. K., Foulser A. A., Boyle M. R., Fröhlich F. (2014). Endogenous cortical oscillations constrain neuromodulation by weak electric fields. Brain Stimul. 7, 878–889. 10.1016/j.brs.2014.07.033 PubMed DOI PMC
Schubert C., Dabbagh A., Classen J., Krämer U. M., Tzvi E. (2020). The role of alpha oscillations in a premotor-cerebellar loop in modulation of motor learning: insights from transcranial alternating current stimulation. bioRxiv. 10.1101/2020.07.27.209148 PubMed DOI
Sepulveda P., Sitaram R., Rana M., Montalba C., Tejos C., Ruiz S. (2016). How feedback, motor imagery, and reward influence brain self-regulation using real-time fMRI. Hum. Brain Mapp. 37, 3153–3171. 10.1002/hbm.23228 PubMed DOI PMC
Shibata K., Lisi G., Cortese A., Watanabe T., Sasaki Y., Kawato M. (2019). Toward a comprehensive understanding of the neural mechanisms of decoded neurofeedback. Neuroimage 188, 539–556. 10.1016/j.neuroimage.2018.12.022 PubMed DOI PMC
Silvanto J., Pascual-Leone A. (2008). State-dependency of transcranial magnetic stimulation. Brain Topogr. 21, 1–10. 10.1007/s10548-008-0067-0 PubMed DOI PMC
Sitaram R., Ros T., Stoeckel L., Haller S., Scharnowski F., Lewis-Peacock J., et al. . (2017). Closed-loop brain training: the science of neurofeedback. Nat. Rev. Neurosci. 18, 86–100. 10.1038/nrn.2016.164 PubMed DOI
Spaak E., Bonnefond M., Maier A., Leopold D. A., Jensen O. (2012). Layer-specific entrainment of gamma-band neural activity by the alpha rhythm in monkey visual cortex. Curr. Biol. 22, 2313–2318. 10.1016/j.cub.2012.10.020 PubMed DOI PMC
Staufenbiel S. M., Brouwer A. M., Keizer A. W., van Wouwe N. C. (2014). Effect of beta and gamma neurofeedback on memory and intelligence in the elderly. Biol. Psychol. 95, 74–85. 10.1016/j.biopsycho.2013.05.020 PubMed DOI
Stecher H. I., Pollok T. M., Strüber D., Sobotka F., Herrmann C. S. (2017). Ten minutes of α-tACS and ambient illumination independently modulate eeg α-power. Front. Hum. Neurosci. 11:257. 10.3389/fnhum.2017.00257 PubMed DOI PMC
Stonkus R., Braun V., Kerlin J. R., Volberg G., Hanslmayr S. (2016). Probing the causal role of prestimulus interregional synchrony for perceptual integration via tACS. Sci. Rep. 6, 1–13. 10.1038/srep32065 PubMed DOI PMC
Strüber D., Rach S., Neuling T., Herrmann C. S. (2015). On the possible role of stimulation duration for after-effects of transcranial alternating current stimulation. Front. Cell. Neurosci. 9:311. 10.3389/fncel.2015.00311 PubMed DOI PMC
Tavakoli A. V., Yun K. (2017). Transcranial alternating current stimulation (tACS) mechanisms and protocols. Front. Cell. Neurosci. 11:214. 10.3389/fncel.2017.00214 PubMed DOI PMC
Thibault R. T., Raz A. (2017). The psychology of neurofeedback: clinical intervention even if applied placebo. Am. Psychol. 72, 679–688. 10.1037/amp0000118 PubMed DOI
Travis T. A., Kondo C. Y., Knott J. R. (1974). Parameters of eyes-closed alpha enhancement. Psychophysiology 11, 674–681. 10.1111/j.1469-8986.1974.tb01136.x PubMed DOI
Tseng P., Iu K. C., Juan C. H. (2018). The critical role of phase difference in theta oscillation between bilateral parietal cortices for visuospatial working memory. Sci. Rep. 8, 1–9. 10.1038/s41598-017-18449-w PubMed DOI PMC
Turi Z., Mittner M., Lehr A., Bürger H., Antal A., Paulus W. (2020). Θ-γ Cross-frequency transcranial alternating current stimulation over the trough impairs cognitive control. eNeuro 7, 1–12. 10.1523/ENEURO.0126-20.2020 PubMed DOI PMC
Turrigiano G. G., Nelson S. B. (2000). Hebb and homeostasis in neuronal plasticity. Curr. Opin. Neurobiol. 10, 358–364. 10.1016/S0959-4388(00)00091-X PubMed DOI
Vallence A. M., Dansie K., Goldsworthy M. R., McAllister S. M., Yang R., Rothwell J. C., et al. . (2021). Examining motor evoked potential amplitude and short-interval intracortical inhibition on the up-going and down-going phases of a transcranial alternating current stimulation (tacs) imposed alpha oscillation. Eur. J. Neurosci. 53, 2755–2762. 10.1111/ejn.15124 PubMed DOI
Van Boxtel G. J. M., Denissen A. J. M., Jäger M., Vernon D., Dekker M. K. J., Mihajlovi,ć V., et al. . (2012). A novel self-guided approach to alpha activity training. Int. J. Psychophysiol. 83, 282–294. 10.1016/j.ijpsycho.2011.11.004 PubMed DOI
van Schouwenburg M. R., Sörensen L. K. A., de Klerk R., Reteig L. C., Slagter H. A. (2018). No differential effects of two different alpha-band electrical stimulation protocols over fronto-parietal regions on spatial attention. Front. Neurosci. 12:433. 10.3389/fnins.2018.00433 PubMed DOI PMC
Vanneste S., Joos K., Ost J., De Ridder D. (2016). Influencing connectivity and cross-frequency coupling by real-time source localized neurofeedback of the posterior cingulate cortex reduces tinnitus related distress. Neurobiol. Stress 8, 211–224. 10.1016/j.ynstr.2016.11.003 PubMed DOI PMC
Veniero D., Vossen A., Gross J., Thut G. (2015). Lasting EEG/MEG aftereffects of rhythmic transcranial brain stimulation: level of control over oscillatory network activity. Front. Cell. Neurosci. 9:477. 10.3389/fncel.2015.00477 PubMed DOI PMC
Violante I. R., Li L. M., Carmichael D. W., Lorenz R., Leech R., Hampshire A., et al. . (2017). Externally induced frontoparietal synchronization modulates network dynamics and enhances working memory performance. Elife 6, 1–22. 10.7554/eLife.22001 PubMed DOI PMC
Vöröslakos M., Takeuchi Y., Brinyiczki K., Zombori T., Oliva A., Fernández-Ruiz A., et al. . (2018). Direct effects of transcranial electric stimulation on brain circuits in rats and humans. Nat. Commun. 9:483. 10.1038/s41467-018-02928-3 PubMed DOI PMC
Vossen A., Gross J., Thut G. (2015). Alpha power increase after transcranial alternating current stimulation at alpha frequency (a-tACS) reflects plastic changes rather than entrainment. Brain Stimul. 8, 499–508. 10.1016/j.brs.2014.12.004 PubMed DOI PMC
Vosskuhl J., Strüber D., Herrmann C. S. (2018). Non-invasive brain stimulation: a paradigm shift in understanding brain oscillations. Front. Hum. Neurosci. 12:211. 10.3389/fnhum.2018.00211 PubMed DOI PMC
Wach C., Krause V., Moliadze V., Paulus W., Schnitzler A., Pollok B. (2013). Effects of 10 Hz and 20 Hz transcranial alternating current stimulation (tACS) on motor functions and motor cortical excitability. Behav. Brain Res. 241, 1–6. 10.1016/j.bbr.2012.11.038 PubMed DOI
Wan F., Da Cruz J. N., Nan W., Wong C. M., Vai M. I., Rosa A. (2016). Alpha neurofeedback training improves SSVEP-based BCI performance. J. Neural Eng. 13:036019. 10.1088/1741-2560/13/3/036019 PubMed DOI
Wan F., Nan W., Vai M. I., Rosa A. (2014). Resting alpha activity predicts learning ability in alpha neurofeedback. Front. Hum. Neurosci. 8:500. 10.3389/fnhum.2014.00500 PubMed DOI PMC
Wang C., Rajagovindan R., Han S. M., Ding M. (2016). Top-down control of visual alpha oscillations: Sources of control signals and their mechanisms of action. Front. Hum. Neurosci. 10:15. 10.3389/fnhum.2016.00015 PubMed DOI PMC
Weber E., Köberl A., Frank S., Doppelmayr M. (2011). Predicting successful learning of SMR neurofeedback in healthy participants: methodological considerations. Appl. Psychophysiol. Biofeedback 36, 37–45. 10.1007/s10484-010-9142-x PubMed DOI
Wischnewski M., Engelhardt M., Salehinejad M. A., Schutter D. J. L. G., Kuo M. F., Nitsche M. A. (2019). NMDA receptor-mediated motor cortex plasticity after 20 Hz transcranial alternating current stimulation. Cereb. Cortex 29, 2924–2931. 10.1093/cercor/bhy160 PubMed DOI
Wischnewski M., Schutter D. J. L. G. (2017). After-effects of transcranial alternating current stimulation on evoked delta and theta power. Clin. Neurophysiol. 128, 2227–2232. 10.1016/j.clinph.2017.08.029 PubMed DOI
Witkowski M., Garcia-Cossio E., Chander B. S., Braun C., Birbaumer N., Robinson S. E., et al. . (2016). Mapping entrained brain oscillations during transcranial alternating current stimulation (tACS). Neuroimage 140, 89–98. 10.1016/j.neuroimage.2015.10.024 PubMed DOI
Zaehle T., Rach S., Herrmann C. S. (2010). Transcranial Alternating Current Stimulation Enhances Individual Alpha Activity in Human EEG. PLoS ONE 5:13766. 10.1371/journal.pone.0013766 PubMed DOI PMC
Zarubin G., Gundlach C., Nikulin V., Villringer A., Bogdan M. (2020). Transient amplitude modulation of alpha-band oscillations by short-time intermittent closed-loop tACS. Front. Hum. Neurosci. 14:366. 10.3389/fnhum.2020.00366 PubMed DOI PMC
Zoefel B., Huster R. J., Herrmann C. S. (2011). Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance. Neuroimage 54, 1427–1431. 10.1016/j.neuroimage.2010.08.078 PubMed DOI