The Role of INAPERTURATE POLLEN1 as a Pollen Aperture Factor Is Conserved in the Basal Eudicot Eschscholzia californica (Papaveraceae)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34305989
PubMed Central
PMC8294094
DOI
10.3389/fpls.2021.701286
Knihovny.cz E-zdroje
- Klíčová slova
- Eschscholzia californica, INAPERTURATE POLLEN1, Papaveraceae, RNA-seq, VIGS, pollen, pollen aperture, transcriptome analysis,
- Publikační typ
- časopisecké články MeSH
Pollen grains show an enormous variety of aperture systems. What genes are involved in the aperture formation pathway and how conserved this pathway is in angiosperms remains largely unknown. INAPERTURATE POLLEN1 (INP1) encodes a protein of unknown function, essential for aperture formation in Arabidopsis, rice and maize. Yet, because INP1 sequences are quite divergent, it is unclear if their function is conserved across angiosperms. Here, we conducted a functional study of the INP1 ortholog from the basal eudicot Eschscholzia californica (EcINP1) using expression analyses, virus-induced gene silencing, pollen germination assay, and transcriptomics. We found that EcINP1 expression peaks at the tetrad stage of pollen development, consistent with its role in aperture formation, which occurs at that stage, and showed, via gene silencing, that the role of INP1 as an important aperture factor extends to basal eudicots. Using germination assays, we demonstrated that, in Eschscholzia, apertures are dispensable for pollen germination. Our comparative transcriptome analysis of wild-type and silenced plants identified over 900 differentially expressed genes, many of them potential candidates for the aperture pathway. Our study substantiates the importance of INP1 homologs for aperture formation across angiosperms and opens up new avenues for functional studies of other aperture candidate genes.
Department of Botany Faculty of Sciences University of Granada Granada Spain
Department of Cell Biology Faculty of Sciences University of Granada Granada Spain
Department of Experimental Plant Biology Faculty of Science Charles University Prague Czechia
Zobrazit více v PubMed
Akaike H. (1974). A new look at the statistical model identification. IEEE Trans. Automat. Contr. 19 716–723. 10.1109/TAC.1974.1100705 DOI
Albert B., Ressayre A., Dillmann C., Carlson A. L., Swanson R. J., Gouyon P. H., et al. (2018). Effect of aperture number on pollen germination, survival and reproductive success in Arabidopsis thaliana. Ann. Bot. 121 733–740. 10.1093/aob/mcx206 PubMed DOI PMC
Alvarado V. Y., Tag A., Thomas T. L. (2011). A cis regulatory element in the TAPNAC promoter directs tapetal gene expression. Plant Mol. Biol. 75 129–139. 10.1007/s11103-010-9713-5 PubMed DOI
Anisimova M., Gascuel O. (2006). Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst. Biol. 55 539–552. 10.1080/10635150600755453 PubMed DOI
Ariizumi T., Toriyama K. (2011). Genetic regulation of sporopollenin synthesis and pollen exine development. Ann. Rev. Plant Biol. 62 437–460. 10.1146/annurev-arplant-042809-112312 PubMed DOI
Ashburner M., Ball C. A., Blake J. A., Botstein D., Butler H., Cherry J. M., et al. (2000). Gene ontology: tool for the unification of biology. Nat. Genet. 25 25–29. PubMed PMC
Badouin H., Velt A., Gindraud F., Flutre T., Dumas V., Vautrin S., et al. (2020). The wild grape genome sequence provides insights into the transition from dioecy to hermaphroditism during grape domestication. Genome Biol. 21 1–24. 10.1186/s13059-020-02131-y PubMed DOI PMC
Blackmore S., Stafford P., Persson V. (1995). “Systematics and evolution of the Ranunculiflorae,” in Plant Systematics and Evolution, eds Jensen U., Kadereit J. W. (Viena: Springer; ), 71–82.
Boisson-Dernier A., Roy S., Kritsas K., Grobei M. A., Jaciubek M., Schroeder J. I., et al. (2009). Disruption of the pollen-expressed FERONIA homologs ANXUR1 and ANXUR2 triggers pollen tube discharge. Development 136 3279–3288. 10.1242/dev.040071 PubMed DOI PMC
Craddock C., Lavagi I., Yang Z. (2012). New insights into Rho signaling from plant ROP/Rac GTPases. Trends Cell Biol. 22 492–501. 10.1016/j.tcb.2012.05.002 PubMed DOI PMC
Dobritsa A. A., Coerper D. (2012). The novel plant protein INAPERTURATE POLLEN1 marks distinct cellular domains and controls formation of apertures in the Arabidopsis pollen exine. Plant Cell. 24 4452–4464. 10.1105/tpc.112.101220 PubMed DOI PMC
Dobritsa A. A., Geanconteri A., Shrestha J., Carlson A., Kooyers N., Coerper D., et al. (2011). A large-scale genetic screen in Arabidopsis to identify genes involved in pollen exine production. Plant Physiol. 157 947–970. 10.1104/pp.111.179523 PubMed DOI PMC
Dobritsa A. A., Kirkpatrick A. B., Reeder S. H., Li P., Owen H. A. (2018). Pollen aperture factor INP1 acts late in aperture formation by excluding specific membrane domains from exine deposition. Plant Physiol. 176 326–339. 10.1104/pp.17.00720 PubMed DOI PMC
Edlund A. F., Swanson R., Preuss D. (2004). Pollen and stigma structure and function: the role of diversity in pollination. Plant Cell 16(Suppl. 1) S84–S97. 10.1105/tpc.015800 PubMed DOI PMC
Edlund A. F., Zheng Q., Lowe N., Kuseryk S., Ainsworth K. L., Lyles R. H., et al. (2016). Pollen from Arabidopsis thaliana and other Brassicaceae are functionally omniaperturate. Am. J. Bot. 103 1006–1019. 10.3732/ajb.1600031 PubMed DOI
Fehér A., Lajkó D. B. (2015). Signals fly when kinases meet Rho-of-plants (ROP) small G-proteins. Plant Sci. 237 93–107. 10.1016/j.plantsci.2015.05.007 PubMed DOI
Fernández M. C., Romero García A. T., Rodríguez García M. I. (1992). Aperture structure, development and function in Lycopersicum esculentum Miller (Solanaceae) pollen grain. Rev. Palaeobot. Palynol. 72 41–48. 10.1016/0034-6667(92)90173-E DOI
Fisher K., Turner S. (2007). PXY, a receptor-like kinase essential for maintaining polarity during plant vascular-tissue development. Curr. Biol. 17 1061–1066. 10.1016/j.cub.2007.05.049 PubMed DOI
Furness C. A., Rudall P. J. (2004). Pollen aperture evolution – a crucial factor for eudicot success? Trends Plant Sci. 9 154–158. 10.1016/j.tplants.2004.01.001 PubMed DOI
Furness C. A. (2007). Why does some pollen lack apertures? A review of inaperturate pollen in eudicots. Bot. J. Linn. Soc. 155 29–48. 10.1111/j.1095-8339.2007.00694.x DOI
Galván-Ampudia C. S., Offringa R. (2007). Plant evolution: AGC kinases tell the auxin tale. Trends Plant Sci. 12 541–547. 10.1016/j.tplants.2007.10.004 PubMed DOI
Guindon S., Dufayard J. F., Lefort V., Anisimova M., Hordijk W., Gascuel O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59 307–321. 10.1093/sysbio/syq010 PubMed DOI
Guindon S., Gascuel O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52 696–704. 10.1080/10635150390235520 PubMed DOI
Götz S., García-Gómez J. M., Terol J., Williams T. D., Nagaraj S. H., Nueda M. J., et al. (2008). High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 36 3420–3435. 10.1093/nar/gkn176 PubMed DOI PMC
Hall T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser. 41 95–98.
He Z. H., Cheeseman I., He D., Kohorn B. D. (1999). A cluster of five cell wall-associated receptor kinase genes, Wak1–5, are expressed in specific organs of Arabidopsis. Plant Mol. Biol. 39 1189–1196. PubMed
Heslop-Harrison J., Heslop-Harrison Y. (1985). Surfaces and secretions in the pollen–stigma interaction: a brief review. J. Cell Sci. 2 287–300. PubMed
Heslop-Harrison J. (1979). Pollen walls as adaptive systems. Ann. Missouri Bot. Gard. 66 813–829. 10.2307/2398920 DOI
Hoot S. B., Wefferling K. M., Wulff J. A. (2015). Phylogeny and character evolution of Papaveraceae sl (Ranunculales). Syst. Bot. 40 474–488. 10.1600/036364415X688718 DOI
Hori K., Yamada Y., Purwanto R., Minakuchi Y., Toyoda A., Hirakawa H., et al. (2018). Mining of the uncharacterized cytochrome P450 genes involved in alkaloid biosynthesis in California poppy using a draft genome sequence. Plant Cell Physiol. 59 222–233. 10.1093/pcp/pcx210 PubMed DOI PMC
Kanehisa M., Goto S. (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28 27–30. 10.1093/nar/28.1.27 PubMed DOI PMC
Kanehisa M., Sato Y., Morishima K. (2016). BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428 726–731. 10.1016/j.jmb.2015.11.006 PubMed DOI
Kohorn B. D. (2001). WAKs; cell wall associated kinases. Curr. Opin. Cell Biol. 13 529–533. 10.1016/S0955-0674(00)00247-7 PubMed DOI
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35 1547–1549. 10.1093/molbev/msy096 PubMed DOI PMC
Lee B. H., Weber Z. T., Zourelidou M., Hofmeister B. T., Schmitz R. J., Schwechheimer C., et al. (2018). Arabidopsis protein kinase D6PKL3 is involved in the formation of distinct plasma membrane aperture domains on the pollen surface. Plant Cell. 30 2038–2056. 10.1105/tpc.18.00442 PubMed DOI PMC
Lefort V., Longueville J. E., Gascuel O. (2017). SMS: smart model selection in PhyML. Mol. Biol. Evol. 34 2422–2424. 10.1093/molbev/msx149 PubMed DOI PMC
Li P., Ben-Menni Schuler S., Reeder S. H., Wang R., Suárez Santiago V. N., Dobritsa A. A. (2018). INP1 involvement in pollen aperture formation is evolutionarily conserved and may require species-specific partners. J. Exp. Bot. 69 983–996. 10.1093/jxb/erx407 PubMed DOI PMC
Livak K. J., Schmittgen T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods. 25 402–408. 10.1006/meth.2001.1262 PubMed DOI
Liu Y., Schiff M., Dinesh-Kumar S. P. (2002). Virus-induced gene silencing in tomato. Plant J. 31 777–786. 10.1046/j.1365-313X.2002.01394.x PubMed DOI
Marhava P., Bassukas A. E. L., Zourelidou M., Kolb M., Moret B., Fastner A., et al. (2018). A molecular rheostat adjusts auxin flux to promote root protophloem differentiation. Nature. 558 297–300. 10.1038/s41586-018-0186-z PubMed DOI
Marhava P., Fandino A. C. A., Koh S. W., Jelínková A., Kolb M., Janacek D. P., et al. (2020). Plasma membrane domain patterning and self-reinforcing polarity in Arabidopsis. Dev. Cell. 52 223–235. 10.1016/j.devcel.2019.11.015 PubMed DOI
Matamoro-Vidal A., Prieu C., Furness C. A., Albert B., Gouyon P. H. (2016). Evolutionary stasis in pollen morphogenesis due to natural selection. New Phytol. 209 376–394. 10.1111/nph.13578 PubMed DOI
Miyazaki S., Murata T., Sakurai-Ozato N., Kubo M., Demura T., Fukuda H., et al. (2009). ANXUR1 and 2, sister genes to FERONIA/SIRENE, are male factors for coordinated fertilization. Curr. Biol. 19 1327–1331. 10.1016/j.cub.2009.06.064 PubMed DOI
Pérez-Gutiérrez M. A., Suárez-Santiago V. N., Fernández M. C., Salinas-Bonillo M. J., Romero-García A. T. (2015). Pollen morphology and post-tetrad wall development in the subfamily Fumarioideae (Papaveraceae). Rev. Palaeobot. Palynol. 222 33–47. 10.1016/j.revpalbo.2015.07.009 DOI
Pérez-Gutiérrez M. A., Fernández M. C., Salinas-Bonillo M. J., Suárez-Santiago V. N., Ben-Menni Schuler S., Romero-García A. T. (2016). Comparative exine development from the post-tetrad stage in the early-divergent lineages of Ranunculales: the genera Euptelea and Pteridophyllum. J. Plant Res. 129 1085–1096. 10.1007/s10265-016-0862-8 PubMed DOI
Pertea M., Kim D., Pertea G. M., Leek J. T., Salzberg S. L. (2016). Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and ballgown. Nat. Prot. 11:1650. 10.1038/nprot.2016.095 PubMed DOI PMC
Plourde S. M., Amom P., Tan M., Dawes A. T., Dobritsa A. A. (2019). Changes in morphogen kinetics and pollen grain size are potential mechanisms of aberrant pollen aperture patterning in previously observed and novel mutants of Arabidopsis thaliana. PLoS Comput. Biol. 15:e1006800. 10.1371/journal.pcbi.1006800 PubMed DOI PMC
Reeder S. H., Lee B. H., Fox R., Dobritsa A. A. (2016). A ploidy-sensitive mechanism regulates aperture formation on the Arabidopsis pollen surface and guides localization of the aperture factor INP1. PLoS Genet. 12:e1006060. 10.1371/journal.pgen.1006060 PubMed DOI PMC
Tekleyohans D. G., Lange S., Becker A. (2013). “Virus-induced gene silencing of the alkaloid-producing basal eudicot model plant Eschscholzia californica (California Poppy),”,” in Virus-Induced Gene Silencing, ed. Becker A. (Totowa, NJ: Humana Press; ), 83–98. PubMed
Untergasser A., Cutcutache I., Koressaar T., Ye J., Faircloth B. C., Remm M., et al. (2012). Primer3 – new capabilities and interfaces. Nucleic Acids Res. 40 e115–e115. 10.1093/nar/gks596 PubMed DOI PMC
Wang H., Moore M. J., Soltis P. S., Bell C. D., Brockington S. F., Alexandre R., et al. (2009). Rosid radiation and the rapid rise of angiosperm-dominated forests. Proc. Nat. Acad. Sci. U.S.A. 106 3853–3858. 10.1073/pnas.0813376106 PubMed DOI PMC
Wang N., Huang H. J., Ren S. T., Li J. J., Sun Y., Sun D. Y., et al. (2012). The rice wall-associated receptor-like kinase gene OsDEES1 plays a role in female gametophyte development. Plant Physiol. 160 696–707. 10.1104/pp.112.203943 PubMed DOI PMC
Wege S., Scholz A., Gleissberg S., Becker A. (2007). Highly efficient virus-induced gene silencing (VIGS) in California poppy (Eschscholzia californica): an evaluation of VIGS as a strategy to obtain functional data from non-model plants. Ann. Bot. 100 641–649. 10.1093/aob/mcm118 PubMed DOI PMC
Welinder C., Ekblad L. (2011). Coomassie staining as loading control in Western blot analysis. J. Proteome Res. 10 1416–1419. 10.1021/pr1011476 PubMed DOI
Wickett N. J., Mirarab S., Nguyen N., Warnow T., Carpenter E., Matasci N., et al. (2014). Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc. Nat. Acad. Sci. U.S.A. 111 E4859–E4868. 10.1073/pnas.1323926111 PubMed DOI PMC
Wodehouse R. P. (1935). Pollen Grains. Their Structure, Identification And Significance in Science And Medicine. London: Mcgraw-Hill Book Company, Inc.
Wortley A. H., Wang H., Lu L., Li D. Z., Blackmore S. (2015). Evolution of angiosperm pollen. 1. Introduction. Ann. Missouri Bot. Gard. 100 177–226.
Xiao M., Zhang Y., Chen X., Lee E. J., Barber C. J., Chakrabarty R., et al. (2013). Transcriptome analysis based on next-generation sequencing of non-model plants producing specialized metabolites of biotechnological interest. J. Biotechnol. 166 122–134. 10.1016/j.jbiotec.2013.04.004 PubMed DOI
Zhang H., Jin J., Tang L., Zhao Y., Gu X., Gao G., et al. (2011). PlantTFDB 2.0: update and improvement of the comprehensive plant transcription factor database. Nucleic Acids Res. 39 D1114–D1117. 10.1093/nar/gkq1141 PubMed DOI PMC
Zhang M. Y., Lu L., Wortley A. H., Wang H., Li D. Z., Blackmore S. (2017). Evolution of angiosperm pollen: 4. basal eudicots. Ann. Missouri Bot. Gard. 102 141–182. 10.3417/2015035 DOI
Zhang X., Zhao G., Tan Q., Yuan H., Betts N., Zhu L., et al. (2020). Rice pollen aperture formation is regulated by the interplay between OsINP1 and OsDAF1. Nat. Plants. 6 394–403. PubMed
Zhou Y., Dobritsa A. A. (2019). Formation of aperture sites on the pollen surface as a model for development of distinct cellular domains. Plant Sci. 288 110222. PubMed
Zourelidou M., Müller I., Willige B. C., Nill C., Jikumaru Y., Li H., et al. (2009). The polarly localized D6 PROTEIN KINASE is required for efficient auxin transport in Arabidopsis thaliana. Development 136 627–636. PubMed