Niche partitioning among dead wood-dependent beetles
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
34312411
PubMed Central
PMC8313673
DOI
10.1038/s41598-021-94396-x
PII: 10.1038/s41598-021-94396-x
Knihovny.cz E-zdroje
- MeSH
- biodiverzita MeSH
- brouci klasifikace fyziologie MeSH
- dřevo * MeSH
- druhová specificita MeSH
- ekosystém * MeSH
- larva fyziologie MeSH
- lesy MeSH
- stromy MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
Niche partitioning among species with virtually the same requirements is a fundamental concept in ecology. Nevertheless, some authors suggest that niches have little involvement in structuring communities. This study was done in the Pardubice Region (Czech Republic) on saproxylic beetles with morphologically similar larvae and very specific requirements, which are related to their obligatory dependence on dead wood material: Cucujus cinnaberinus, Pyrochroa coccinea, and Schizotus pectinicornis. This work was performed on 232 dead wood pieces at the landscape scale over six years. Based on the factors studied, the relationships among these species indicated that their co-occurrence based on species presence and absence was low, which indicated niche partitioning. However, based on analyses of habitat requirements and species composition using observed species abundances, there was no strong evidence for niche partitioning at either studied habitat levels, the tree and the microhabitat. The most likely reasons for the lack of strong niche partitioning were that dead wood is a rich resource and co-occurrence of saproxylic community was not driven by resource competition. This might be consistent with the theory that biodiversity could be controlled by the neutral drift of species abundance. Nevertheless, niche partitioning could be ongoing, meaning that the expanding C. cinnaberinus may have an advantage over the pyrochroids and could dominate in the long term.
Zobrazit více v PubMed
Polechová J, Storch D. Ecological niche. Encycl. Ecol. 2008;2:1088–1097.
Vannette RL, Fukami T. Historical contingency in species interactions: Towards niche-based predictions. Ecol. Lett. 2014;17:115–124. doi: 10.1111/ele.12204. PubMed DOI PMC
Hubbell SP. The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press; 2011. PubMed
Clark JS. The coherence problem with the unified neutral theory of biodiversity. Trends Ecol. Evol. 2012;27:198–202. doi: 10.1016/j.tree.2012.02.001. PubMed DOI
McGill BJ. A test of the unified neutral theory of biodiversity. Nature. 2003;422:881–885. doi: 10.1038/nature01583. PubMed DOI
Bocci A, et al. Sympatric snow leopards and Tibetan wolves: Coexistence of large carnivores with human-driven potential competition. Eur. J. Wildl. Res. 2017;63:92. doi: 10.1007/s10344-017-1151-0. DOI
Dueser RD, Shuggart HH. Niche pattern in a forest-floor small-mammal fauna. Ecology. 1979;60:108–118. doi: 10.2307/1936473. DOI
Cloyed CS, Eason PK. Niche partitioning and the role of intraspecific niche variation in structuring a guild of generalist anurans. R. Soc. Open Sci. 2017;4:170060. doi: 10.1098/rsos.170060. PubMed DOI PMC
Armstrong RA, McGehee R. Coexistence of species competing for shared resources. Theor. Popul. Biol. 1976;9:317–328. doi: 10.1016/0040-5809(76)90051-4. PubMed DOI
Paillet Y, et al. The indicator side of tree microhabitats: A multi-taxon approach based on bats, birds and saproxylic beetles. J. Appl. Ecol. 2018;55:2147–2159. doi: 10.1111/1365-2664.13181. DOI
Kadowaki K. Species coexistence patterns in a mycophagous insect community inhabiting the wood-decaying bracket fungus Cryptoporus volvatus (Polyporaceae: Basidiomycota) Eur. J. Entomol. 2010;107:89. doi: 10.14411/eje.2010.012. DOI
Peter A-K. Survival in adults of the water frog Rana lessonae and its hybridogenetic associate Rana esculenta. Can. J. Zool. 2001;79:652–661. doi: 10.1139/z01-019. DOI
Borkowski A, Skrzecz I. Ecological segregation of bark beetle (Coleoptera, Curculionidae, Scolytinae) infested Scots pine. Ecol. Res. 2016;31:135–144. doi: 10.1007/s11284-015-1322-y. DOI
Bobiec A, Gutowski JM, Laudenslayer WF. The Afterlife of a Tree. WWF Poland; 2005.
Alexander KN. Tree biology and saproxylic Coleoptera: issues of definitions and conservation language. Rev. Ecol. 2008;10:9–13.
Véle A, Horák J. The importance of host characteristics and canopy openness for pest management in urban forests. Urban For. Urban Green. 2018;36:84–89. doi: 10.1016/j.ufug.2018.10.012. DOI
Přikryl ZB, Turčáni M, Horák J. Sharing the same space: Foraging behaviour of saproxylic beetles in relation to dietary components of morphologically similar larvae. Ecol. Entomol. 2012;37:117–123. doi: 10.1111/j.1365-2311.2012.01343.x. DOI
Brin A, Bouget C. Biotic interactions between saproxylic insect species. In: Ulyshen MD, editor. Saproxylic insects: Diversity, ecology and conservation. Springer; 2018. pp. 471–514.
Stokland JN, Siitonen J, Jonsson BG. Biodiversity in Dead Wood. Cambridge University Press; 2012.
Radchuk V, Turlure C, Schtickzelle N. Each life stage matters: The importance of assessing the response to climate change over the complete life cycle in butterflies. J. Anim. Ecol. 2013;82:275–285. doi: 10.1111/j.1365-2656.2012.02029.x. PubMed DOI
Biedermann PH, Taborsky M. Larval helpers and age polyethism in ambrosia beetles. Proc. Natl. Acad. Sci. U.S.A. 2011;108:17064–17069. doi: 10.1073/pnas.1107758108. PubMed DOI PMC
Hanks LM. Influence of the larval host plant on reproductive strategies of cerambycid beetles. Annu. Rev. Entomol. 1999;44:483–505. doi: 10.1146/annurev.ento.44.1.483. PubMed DOI
Horak J. What is happening after an abiotic disturbance? Response of saproxylic beetles in the Primorsky Region woodlands (Far Eastern Russia) J. Insect Conserv. 2015;19:97–103. doi: 10.1007/s10841-014-9750-5. DOI
Hůrka K. Beetles of the Czech and Slovak Republics. Kabourek; 2005.
Horák J, Chobot K. Phenology and notes on the behaviour of Cucujus cinnaberinus: Points for understanding the conservation of the saproxylic beetle. North-West. J. Zool. 2011;7:352–355.
Finke DL, Snyder WE. Niche partitioning increases resource exploitation by diverse communities. Science. 2008;321:1488–1490. doi: 10.1126/science.1160854. PubMed DOI
Crowson R. Observations on Dendrophagus crenatus (Paykull)(Cucujidae) and some comparisons with piestine Staphylinidae (Coleoptera) Entomol. Mon. Mag. 1969;104:161–169.
Tarno H, et al. The behavioral role of males of platypus quercivorus murayama in their subsocial colonies. Agrivita. 2016;38:47–54.
Della Rocca F, Milanesi P. Combining climate, land use change and dispersal to predict the distribution of endangered species with limited vagility. J. Biogeogr. 2020;47:1427–1438. doi: 10.1111/jbi.13804. DOI
Buse J. "Ghosts of the past": flightless saproxylic weevils (Coleoptera: Curculionidae) are relict species in ancient woodlands. J. Insect Conserv. 2012;16:93–102. doi: 10.1007/s10841-011-9396-5. DOI
Røed KH, et al. Isolation and characterization of ten microsatellite loci for the wood-living and threatened beetle Cucujus cinnaberinus (Coleoptera: Cucujidae) Conserv. Genet. Resour. 2014;6:641–643. doi: 10.1007/s12686-014-0164-1. DOI
Konvicka M, Hula V, Fric Z. Habitat of pre-hibernating larvae of the endangered butterfly Euphydryas aurinia (Lepidoptera: Nymphalidae): What can be learned from vegetation composition and architecture? Eur. J. Entomol. 2003;100:313–322. doi: 10.14411/eje.2003.050. DOI
Bonacci T, et al. Artificial feeding and laboratory rearing of endangered saproxylic beetles as a tool for insect conservation. J. Insect Sci. 2020;20:20. doi: 10.1093/jisesa/ieaa098. PubMed DOI PMC
Mazzei A, et al. Rediscovering the ‘umbrella species’ candidate Cucujus cinnaberinus (Scopoli, 1763) in Southern Italy (Coleoptera Cucujidae), and notes on bionomy. Ital. J. Zool. 2011;78:264–270. doi: 10.1080/11250003.2010.485210. DOI
Horák J, Chumanová E, Chobot K. Habitat preferences influencing populations, distribution and conservation of the endangered saproxylic beetle Cucujus cinnaberinus (Coleoptera: Cucujidae) at the landscape level. Eur. J. Entomol. 2010;107:81–88. doi: 10.14411/eje.2010.011. DOI
Hardin G. The competitive exclusion principle. Science. 1960;131:1292–1297. doi: 10.1126/science.131.3409.1292. PubMed DOI
Carmel Y, et al. Using exclusion rate to unify niche and neutral perspectives on coexistence. Oikos. 2017;126:1451–1458. doi: 10.1111/oik.04380. DOI
Horák J, Chumanová E, Hilszczański J. Saproxylic beetle thrives on the openness in management: a case study on the ecological requirements of Cucujus cinnaberinus from Central Europe. Insect Conserv. Divers. 2012;5:403–413. doi: 10.1111/j.1752-4598.2011.00173.x. DOI
Keddy P. Competiton. 2. Springer; 2001.
Bonacci T, et al. Beetles “in red”: are the endangered flat bark beetles Cucujus cinnaberinus and C. haematodes chemically protected? (Coleoptera: Cucujidae) Eur. Zool. J. 2018;85:128–136. doi: 10.1080/24750263.2018.1449906. DOI
Chararas C, Chipoulet JM, Courtois JE. Purification partielle et caracterisation d'une beta-glucosidase des larves de Pyrochroa coccinea (Coleoptere, Pyrochroidae) C. R. Séances Soc. Biol. Fil. 1983;1771:22–27.
Dettner K. Description of defensive glands from cardinal beetles (Coleoptera, Pyrochroidae)—their phylogenetic significance as compared with other heteromeran defensive glands. Entomol. Basil. 1984;9:204–215.
Nardi G, Bologna M. Cantharidin attraction in Pyrochroa (Coleoptera: Pyrochroidae) Entomol. News. 2000;111:74–75.
Hirzel A, Guisan A. Which is the optimal sampling strategy for habitat suitability modelling. Ecol. Model. 2002;157:331–341. doi: 10.1016/S0304-3800(02)00203-X. DOI
Jaworski T, et al. Saproxylic moths reveal complex within-group and group-environment patterns. J. Insect Conserv. 2016;20:677–690. doi: 10.1007/s10841-016-9898-2. DOI
Gotelli, N. J., Hart, E. M. & Ellison, A. M. EcoSimR: Null Model Analysis for Ecologicaldata. R package version 0.1.0 (Zenodo, 2015).
Heiberger, R. M. HH: Statistical Analysis and Data Display: Heiberger and Holland. https://CRAN.R-project.org/package=HH (2020).
Walsh, C. & Mac Nally, R. M. Hier.Part: Hierarchical partitioning. https://cran.r-project.org/web/packages/hier.part/index.html (2020).