Transcriptome Response to Cadmium Exposure in Barley (Hordeum vulgare L.)

. 2021 ; 12 () : 629089. [epub] 20210715

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34335638

Cadmium is an environmental pollutant with high toxicity that negatively affects plant growth and development. To understand the molecular mechanisms of plant response to cadmium stress, we have performed a genome-wide transcriptome analysis on barley plants treated with an increased concentration of cadmium. Differential gene expression analysis revealed 10,282 deregulated transcripts present in the roots and 7,104 in the shoots. Among them, we identified genes related to reactive oxygen species metabolism, cell wall formation and maintenance, ion membrane transport and stress response. One of the most upregulated genes was PLANT CADMIUM RESISTACE 2 (HvPCR2) known to be responsible for heavy metal detoxification in plants. Surprisingly, in the transcriptomic data we identified four different copies of the HvPCR2 gene with a specific pattern of upregulation in individual tissues. Heterologous expression of all five barley copies in a Cd-sensitive yeast mutant restored cadmium resistance. In addition, four HvPCR2 were located in tandem arrangement in a single genomic region of the barley 5H chromosome. To our knowledge, this is the first example showing multiplication of the PCR2 gene in plants.

Zobrazit více v PubMed

Ajeesh Krishna T. P., Maharajan T., Victor Roch G., Ignacimuthu S., Antony Ceasar S. (2020). Structure, function, regulation and phylogenetic relationship of ZIP family transporters of plants. Front. Plant Sci. 11:662. 10.3389/fpls.2020.00662 PubMed DOI PMC

Astolfi S., Ortolani M. R., Catarcione G., Paolacci A. R., Cesco S., Pinton R., et al. . (2014). Cadmium exposure affects iron acquisition in barley (Hordeum vulgare) seedlings. Physiol. Plant 152, 646–659. 10.1111/ppl.12207 PubMed DOI

Atkinson N. J., Urwin P. E. (2012). The interaction of plant biotic and abiotic stresses: from genes to the field. J. Exp. Bot. 63, 3523–3544. 10.1093/jxb/ers100 PubMed DOI

Bertels J., Huybrechts M., Hendrix S., Bervoets L., Cuypers A., Beemster G. T. S. (2020). Cadmium inhibits cell cycle progression and specifically accumulates in the maize leaf meristem. J. Exp. Bot. 71, 6418–6428. 10.1093/jxb/eraa385 PubMed DOI

Blanvillain R., Kim J. H., Wu S., Lima A., Ow D. W. (2009). OXIDATIVE STRESS 3 is a chromatin-associated factor involved in tolerance to heavy metals and oxidative stress. Plant J. 57, 654–665. 10.1111/j.1365-313X.2008.03717.x PubMed DOI

Bovet L., Eggmann T., Meylan-Bettex M., Polier J., Kammer P., Marin E., et al. . (2003). Transcript levels of AtMRPs after cadmium treatment: induction of AtMRP3. Plant. Cell Environ. 26, 371–381. 10.1046/j.1365-3040.2003.00968.x DOI

Cao F., Chen F., Sun H., Zhang G., Chen Z.-H., Wu F. (2014). Genome-wide transcriptome and functional analysis of two contrasting genotypes reveals key genes for cadmium tolerance in barley. BMC Genomics 15:611. 10.1186/1471-2164-15-611 PubMed DOI PMC

Clarkson D. T., Lüttge U. (1989). Mineral nutrition: divalent cations, transport, and compartmentalization. Prog. Bot. 51, 93–112. 10.1007/978-3-642-75154-7_7 DOI

DalCorso G., Farinati S., Maistri S., Furini A. (2008). How plants cope with cadmium: staking all on metabolism and gene expression. J. Integr. Plant Biol. 50, 1268–1280. 10.1111/j.1744-7909.2008.00737.x PubMed DOI

Delhaize E., Ryan P. R. (1995). Aluminum toxicity and tolerance in plants. Plant Physiol. 107, 315–321. 10.1104/pp.107.2.315 PubMed DOI PMC

Derakhshani B., Jafary H., Zanjani B. M., Hasanpur K., Mishina K., Tanaka T., et al. . (2020). Combined QTL mapping and RNA-Seq profiling reveals candidate genes associated with cadmium tolerance in barley. PLoS ONE 15, 1–19. 10.1371/journal.pone.0230820 PubMed DOI PMC

Evens N. P., Buchner P., Williams L. E., Hawkesford M. J. (2017). The role of ZIP transporters and group F bZIP transcription factors in the Zn-deficiency response of wheat (Triticum aestivum). Plant J. 92, 291–304. 10.1111/tpj.13655 PubMed DOI PMC

Fusco N., Micheletto L., Dal Corso G., Borgato L., Furini A. (2005). Identification of cadmium-regulated genes by cDNA-AFLP in the heavy metal accumulator Brassica juncea L. J. Exp. Bot. 56, 3017–3027. 10.1093/jxb/eri299 PubMed DOI

Głowacka K., Zróbek-Sokolnik A., Okorski A., Najdzion J. (2019). The Effect of cadmium on the activity of stress-related enzymes and the ultrastructure of pea roots. Plants (Basel, Switzerland) 8:413. 10.3390/plants8100413 PubMed DOI PMC

Grandbastien M.-A. (1998). Activation of plant retrotransposons under stress conditions. Trends Plant Sci. 3, 181–187. 10.1016/S1360-1385(98)01232-1 DOI

Greco M., Chiappetta A., Bruno L., Bitonti M. B. (2012). In Posidonia oceanica cadmium induces changes in DNA methylation and chromatin patterning. J. Exp. Bot. 63, 695–709. 10.1093/jxb/err313 PubMed DOI PMC

Grobelak A., Swiatek J., Murtaś A., Jaskulak M. (2019). Chapter 9–cadmium-induced oxidative stress in plants, cadmium toxicity, and tolerance in plants: from physiology to remediation, in eds Hasanuzzaman M., Prasad M. N. V., Fujita P. (Cambridge, MA: Academic Press; ), 213–231.

Gutsch A., Sergeant K., Keunen E., Prinsen E., Guerriero G., Renaut J., et al. . (2019). Does long-term cadmium exposure influence the composition of pectic polysaccharides in the cell wall of Medicago sativa stems? BMC Plant Biol. 19:271. 10.1186/s12870-019-1859-y PubMed DOI PMC

Haak D. C., Fukao T., Grene R., Hua Z., Ivanov R., Perrella G., et al. . (2017). Multilevel regulation of abiotic stress responses in plants. Front. Plant Sci. 8:1564. 10.3389/fpls.2017.01564 PubMed DOI PMC

Hanikenne M., Talke I. N., Haydon M. J., Lanz C., Nolte A., Motte P. (2008). Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453, 391–395. 10.1038/nature06877 PubMed DOI

Howe K. L., Contreras-Moreira B., De Silva N., Maslen G., Akanni W., Allen J., et al. . (2020). Ensembl genomes 2020—enabling non-vertebrate genomic research. Nucleic Acids Res. 48, D689–D695. 10.1093/nar/gkz890 PubMed DOI PMC

Hsu Y. T., Kao C. H. (2005). Abscisic acid accumulation and cadmium tolerance in rice seedlings. Physiol. Plant. 124, 71–80. 10.1111/j.1399-3054.2005.00490.x DOI

Huang J., Gu M., Lai Z., Fan B., Shi K., Zhou Y.-H., et al. . (2010). Functional analysis of the arabidopsis andlt;emandgt;palandlt;/emandgt; gene family in plant growth, development, and response to environmental stress. Plant Physiol. 153, 1526 LP−1538 LP. 10.1104/pp.110.157370 PubMed DOI PMC

IBSC (2016). Positions and Classifications of Repetitive Elements in the Genome of Barley cv. Morex. Gatersleben: e!DAL–Plant Genomics and Phenomics Research Data Repository (PGP), IPK Gatersleben.

Jain S., Muneer S., Guerriero G., Liu S., Vishwakarma K., Chauhan D. K., et al. . (2018). Tracing the role of plant proteins in the response to metal toxicity: a comprehensive review. Plant Signal. Behav. 13:e1507401. 10.1080/15592324.2018.1507401 PubMed DOI PMC

Jaskowiak J., Tkaczyk O., Slota M., Kwasniewska J., Szarejko I. (2018). Analysis of aluminum toxicity in Hordeum vulgare roots with an emphasis on DNA integrity and cell cycle. PLoS ONE 13:e0193156. 10.1371/journal.pone.0193156 PubMed DOI PMC

Katoh K., Standley D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. 10.1093/molbev/mst010 PubMed DOI PMC

Kavitha P. G., Kuruvilla S., Mathew M. K. (2015). Functional characterization of a transition metal ion transporter, OsZIP6 from rice (Oryza sativa L.). Plant Physiol. Biochem. 97, 165–174. 10.1016/j.plaphy.2015.10.005 PubMed DOI

Kintlová M., Blavet N., Cegan R., Hobza R. (2017). Transcriptome of barley under three different heavy metal stress reaction. Genomics Data 13, 15–17. 10.1016/j.gdata.2017.05.016 PubMed DOI PMC

Kumar S., Trivedi P. K. (2018). Glutathione S-transferases: role in combating abiotic stresses including arsenic detoxification in Plants. Front. Plant Sci. 9:751. 10.3389/fpls.2018.00751 PubMed DOI PMC

Lei G. J., Fujii-Kashino M., Wu D. Z., Hisano H., Saisho D., Deng F., et al. . (2020). Breeding for low cadmium barley by introgression of a Sukkula-like transposable element. Nat. Food 1, 489–499. 10.1038/s43016-020-0130-x PubMed DOI

Li S., Zhou X., Huang Y., Zhu L., Zhang S., Zhao Y., et al. . (2013). Identification and characterization of the zinc-regulated transporters, iron-regulated transporter-like protein (ZIP) gene family in maize. BMC Plant Biol. 13:114. 10.1186/1471-2229-13-114 PubMed DOI PMC

Lin C. Y., Trinh N. N., Fu S. F., Hsiung Y. C., Chia L. C., Lin C. W., et al. . (2013). Comparison of early transcriptome responses to copper and cadmium in rice roots. Plant Mol. Biol. 81, 507–522. 10.1007/s11103-013-0020-9 PubMed DOI

Ling T., Gao Q., Du H., Zhao Q., Ren J. (2017). Growing, physiological responses and Cd uptake of Corn (Zea mays L.) under different Cd supply. Chem. Speciat. Bioavailab. 29, 216–221. 10.1080/09542299.2017.1400924 DOI

Liu Q., Luo L., Zheng L. (2018). Lignins: biosynthesis and biological functions in plants. Int. J. Mol. Sci. 19:335. 10.3390/ijms19020335 PubMed DOI PMC

Liu T., Liu S., Guan H., Ma L., Chen Z., Gu H., et al. . (2009). Transcriptional profiling of Arabidopsis seedlings in response to heavy metal lead (Pb). Environ. Exp. Bot. 67, 377–386. 10.1016/j.envexpbot.2009.03.016 DOI

Liu X. S., Feng S. J., Zhang B. Q., Wang M. Q., Cao H. W., Rono J. K., et al. . (2019). OsZIP1 functions as a metal efflux transporter limiting excess zinc, copper, and cadmium accumulation in rice. BMC Plant Biol. 19:283. 10.1186/s12870-019-1899-3 PubMed DOI PMC

Logemann J., Schell J. (1989). Nucleotide sequence and regulated expression of a wound-inducible potato gene (wun1). Mol. Gen. Genet. 219, 81–88. 10.1007/BF00261161 PubMed DOI

Love M. I., Huber W., Anders S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15:550. 10.1186/s13059-014-0550-8 PubMed DOI PMC

Mascher M. (2019). Pseudomolecules and Annotation of the Second Version of the Reference Genome Sequence Assembly of Barley cv. Morex [Morex V2]. Gatersleben: e!DAL–Plant Genomics and Phenomics Research Data Repository (PGP).

Mikkelsen M. D., Pedas P., Schiller M., Vincze E., Mills R. F., Borg S., et al. . (2012). Barley HvHMA1 Is a heavy metal pump involved in mobilizing organellar Zn and Cu and plays a role in metal loading into grains. PLoS ONE 7:e49027. 10.1371/journal.pone.0049027 PubMed DOI PMC

Mumberg D., Müller R., Funk M. (1995). Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156, 119–122. 10.1016/0378-1119(95)00037-7 PubMed DOI

Nriagu J. O., Pacyna J. M. (1988). Quantitative assessment of worldwide contamination of air, water, and soils by trace metals. Nature 333, 134–139. 10.1038/333134a,0 PubMed DOI

Ó Lochlainn S., Bowen H. C., Fray R. G., Hammond J. P., King G. J., White P. J., et al. . (2011). Tandem quadruplication of HMA4 in the zinc (Zn) and cadmium (Cd) hyperaccumulator Noccaea caerulescens. PLoS ONE 6:e17814. 10.1371/journal.pone.0017814 PubMed DOI PMC

Ogawa I., Nakanishi H., Mori S., Nishizawa N. K. (2009). Time course analysis of gene regulation under cadmium stress in rice. Plant Soil 325:97. 10.1007/s11104-009-0116-9 PubMed DOI

Pandian B. A., Sathishraj R., Djanaguiraman M., Prasad P. V. V., Jugulam M. (2020). Role of cytochrome P450 enzymes in plant stress response. Antioxidants 9, 1–15. 10.3390/antiox9050454 PubMed DOI PMC

Paradiso A., Berardino R., de Pinto M. C., Sanità di Toppi L., Storelli M. M., Tommasi F., et al. . (2008). Increase in ascorbate–glutathione metabolism as local and precocious systemic responses induced by cadmium in durum wheat plants. Plant Cell Physiol. 49, 362–374. 10.1093/pcp/pcn013 PubMed DOI

Parrotta L., Guerriero G., Sergeant K., Cai G., Hausman J.-F. (2015). Target or barrier? the cell wall of early- and later-diverging plants vs cadmium toxicity: differences in the response mechanisms. Front. Plant Sci. 6:133. 10.3389/fpls.2015.00133 PubMed DOI PMC

Patro R., Duggal G., Love M. I., Irizarry R. A., Kingsford C. (2017). Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419. 10.1038/nmeth.4197 PubMed DOI PMC

Pedas P., Schjoerring J. K., Husted S. (2009). Identification and characterization of zinc-starvation-induced ZIP transporters from barley roots. Plant Physiol. Biochem. 47, 377–383. 10.1016/j.plaphy.2009.01.006 PubMed DOI

Pedas P., Ytting C. K., Fuglsang A. T., Jahn T. P., Schjoerring J. K., Husted S. (2008). Manganese efficiency in barley: identification and characterization of the metal ion transporter HvIRT1. Plant Physiol. 148, 455–466. 10.1104/pp.108.118851 PubMed DOI PMC

Pena L. B., Barcia R. A., Azpilicueta C. E., Méndez A. A. E., Gallego S. M. (2012). Oxidative post translational modifications of proteins related to cell cycle are involved in cadmium toxicity in wheat seedlings. Plant Sci. 196, 1–7. 10.1016/j.plantsci.2012.07.008 PubMed DOI

Podar D. (2013). Plant growth and cultivation, in Plant Mineral Nutrients. Methods in Molecular Biology (Methods and Protocols), Vol. 953, ed Maathuis F. J. M. (Totowa, NJ: Humana Press; ), 23–45. 10.1007/978-1-62703-152-3_2 PubMed DOI

Rizwan M., Ali S., Adrees M., Rizvi H., Zia-ur-Rehman M., Hannan F., et al. . (2016). Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review. Environ. Sci. Pollut. Res. 23, 17859–17879. 10.1007/s11356-016-6436-4 PubMed DOI

Salt D. E., Rauser W. E. (1995). MgATP-Dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol. 107, 1293–1301. 10.1104/pp.107.4.1293 PubMed DOI PMC

Sanità Di Toppi L., Gabbrielli R. (1999). Response to cadmium in higher plants. Environ. Exp. Bot. 41, 105–130. 10.1016/S0098-8472(98)00058-6 DOI

Sasaki A., Yamaji N., Yokosho K., Ma J. F. (2012). Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 24, 2155–2167. 10.1105/tpc.112.096925 PubMed DOI PMC

Schenk G., Miti,ć N., Hanson G. R., Comba P. (2013). Purple acid phosphatase: a journey into the function and mechanism of a colorful enzyme. Coord. Chem. Rev. 257, 473–482. 10.1016/j.ccr.2012.03.020 DOI

Shakirova F. M., Allagulova C. R., Maslennikova D. R., Klyuchnikova E. O., Avalbaev A. M., Bezrukova M. V. (2016). Salicylic acid-induced protection against cadmium toxicity in wheat plants. Environ. Exp. Bot. 122, 19–28. 10.1016/j.envexpbot.2015.08.002 DOI

Shi Q., Wang J., Zou J., Jiang Z., Wu H., Wang J., et al. . (2016). Cadmium localization and its toxic effects on root tips of barley. Zemdirbyste-Agriculture 103, 151–158. 10.13080/z-a.2016.103.020 DOI

Shim D., Hwang J.-U., Lee J., Lee S., Choi Y., An G., et al. . (2009). Orthologs of the class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice. Plant Cell 21, 4031–4043. 10.1105/tpc.109.066902 PubMed DOI PMC

Song W. Y., Choi K. S., Kim D. Y., Geisler M., Park J., Vincenzetti V., et al. . (2010). Arabidopsis PCR2 is a zinc exporter involved in both zinc extrusion and long-distance zinc transport. Plant Cell 22, 2237–2252. 10.1105/tpc.109.070185 PubMed DOI PMC

Song W. Y., Martinoia E., Lee J., Kim D., Kim D. Y., Vogt E., et al. . (2004). A novel family of Cys-rich membrane proteins mediates cadmium resistance in Arabidopsis. Plant Physiol. 135, 1027–1039. 10.1104/pp.103.037739 PubMed DOI PMC

Sun H., Chen Z. H., Chen F., Xie L., Zhang G., Vincze E., et al. . (2015). DNA microarray revealed and RNAi plants confirmed key genes conferring low Cd accumulation in barley grains. BMC Plant Biol. 15:259. 10.1186/s12870-015-0648-5 PubMed DOI PMC

Sun Q., Wang X. R., Ding S. M., Yuan X. F. (2005). Effects of exogenous organic chelators on phytochelatins production and its relationship with cadmium toxicity in wheat (Triticum aestivum L.) under cadmium stress. Chemosphere 60, 22–31. 10.1016/j.chemosphere.2004.10.068 PubMed DOI

Szczypka M. S., Wemmie J. A., Moye-Rowley W. S., Thiele D. J. (1994). A yeast metal resistance protein similar to human cystic fibrosis transmembrane conductance regulator (CFTR) and multidrug resistance-associated protein. J. Biol. Chem. 269, 22853–22857. 10.1016/S0021-9258(17)31723-4 PubMed DOI

Thurman D. A., Collins J. C. L. (1983). Metal tolerance mechanism in higher plants review, in Proceedings of International Conference on Heavy Metals in the Environmental (Heidelberg), 298–300.

Tian S., Liang S., Qiao K., Wang F., Zhang Y., Chai T. (2019). Co-expression of multiple heavy metal transporters changes the translocation, accumulation, and potential oxidative stress of Cd and Zn in rice (Oryza sativa). J. Hazard. Mater. 380:120853. 10.1016/j.jhazmat.2019.120853 PubMed DOI

Tiong J., Mcdonald G., Genc Y., Shirley N., Langridge P., Huang C. Y. (2015). Increased expression of six ZIP family genes by zinc (Zn) deficiency is associated with enhanced uptake and root-to-shoot translocation of Zn in barley (Hordeum vulgare). New Phytol. 207, 1097–1109. 10.1111/nph.13413 PubMed DOI

Tombuloglu G., Tombuloglu H., Sakcali M. S., Unver T. (2015). High-throughput transcriptome analysis of barley (Hordeum vulgare) exposed to excessive boron. Gene 557, 71–81. 10.1016/j.gene.2014.12.012 PubMed DOI

van de Mortel J. E., Almar Villanueva L., Schat H., Kwekkeboom J., Coughlan S., Moerland P. D., et al. . (2006). Large Expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of arabidopsis thaliana and the related metal hyperaccumulator thlaspi caerulescens. Plant Physiol. 142, 1127 LP−1147 LP. 10.1104/pp.106.082073 PubMed DOI PMC

van de Mortel J. E., Schat H., Moerland P. D., van Themaat E. V. E. R. L., van der Ent S., Blankestijn H.„, et al. . (2008). Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspi caerulescens. Plant. Cell Environ. 31, 301–324. 10.1111/j.1365-3040.2007.01764.x PubMed DOI

Van der Does D., Boutrot F., Engelsdorf T., Rhodes J., McKenna J. F., Vernhettes S., et al. . (2017). The Arabidopsis leucine-rich repeat receptor kinase MIK2/LRR-KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses. PLoS Genet. 13:e1006832. 10.1371/journal.pgen.1006832 PubMed DOI PMC

Wang F., Tan H., Han J., Zhang Y., He X., Ding Y., et al. . (2019). A novel family of PLAC8 motif-containing/PCR genes mediates Cd tolerance and Cd accumulation in rice. Environ. Sci. Eur. 31:82. 10.1186/s12302-019-0259-0 DOI

Wu D., Sato K., Ma J. F. (2015). Genome-wide association mapping of cadmium accumulation in different organs of barley. New Phytol. 208, 817–829. 10.1111/nph.13512 PubMed DOI

Wu D., Yamaji N., Yamane M., Kashino-Fujii M., Sato K., Ma J. F. (2016). The HvNramp5 transporter mediates uptake of cadmium and manganese, but not iron. Plant Physiol. 172, 1899–1910. 10.1104/pp.16.01189 PubMed DOI PMC

Yang J., Li K., Zheng W., Zhang H., Cao X., Lan Y., et al. . (2015). Characterization of early transcriptional responses to cadmium in the root and leaf of Cd-resistant Salix matsudana Koidz. BMC Genomics 16:705. 10.1186/s12864-015-1923-4 PubMed DOI PMC

Yang M., Lin X., Yang X. (1998). Impact or Cd on growth and nutrient accumulation or different plant species. Chinese J. Appl. Ecol. 9, 89–94.

Zabka A., Winnicki K., Polit J. T., Wróblewski M., Maszewski J. (2021). Cadmium (II)-induced oxidative stress results in replication stress and epigenetic modifications in root meristem cell nuclei of vicia faba. Cells 10:640. 10.3390/cells10030640 PubMed DOI PMC

Zhan Y., Zhang C., Zheng Q., Huang Z., Yu C. (2017). Cadmium stress inhibits the growth of primary roots by interfering auxin homeostasis in Sorghum bicolor seedlings. J. Plant Biol. 60, 593–603. 10.1007/s12374-017-0024-0 DOI

Zhang Y., Liu J., Zhou Y., Gong T., Wang J., Ge Y. (2013). Enhanced phytoremediation of mixed heavy metal (mercury)-organic pollutants (trichloroethylene) with transgenic alfalfa co-expressing glutathione S-transferase and human P450 2E1. J. Hazard. Mater. 260, 1100–1107. 10.1016/j.jhazmat.2013.06.065 PubMed DOI

Zhang Y., Yang X. (1994). The toxic effects of cadmium on cell division and chromosomal morphology of Hordeum vulgare. Mutat. Res. 312, 121–126. 10.1016/0165-1161(94)90016-7 PubMed DOI

Zhao J., Yang W., Zhang S., Yang T., Liu Q., Dong J., et al. . (2018). Genome-wide association study and candidate gene analysis of rice cadmium accumulation in grain in a diverse rice collection. Rice (N. Y). 11:61. 10.1186/s12284-018-0254-x PubMed DOI PMC

Zheng X., Chen L., Li X. (2018). Arabidopsis and rice showed a distinct pattern in ZIPs genes expression profile in response to Cd stress. Bot. Stud. 59:22. 10.1186/s40529-018-0238-6 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace