Protein Identification of Spermatozoa and Seminal Plasma in Bottlenose Dolphin (Tursiops truncatus)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34336830
PubMed Central
PMC8323341
DOI
10.3389/fcell.2021.673961
Knihovny.cz E-zdroje
- Klíčová slova
- cetacean, proteomic analyses, semen, seminal plasma, sperm cells,
- Publikační typ
- časopisecké články MeSH
Proteins play an important role in many reproductive functions such as sperm maturation, sperm transit in the female genital tract or sperm-oocyte interaction. However, in general, little information concerning reproductive features is available in the case of aquatic animals. The present study aims to characterize the proteome of both spermatozoa and seminal plasma of bottlenose dolphins (Tursiops truncatus) as a model organism for cetaceans. Ejaculate samples were obtained from two trained dolphins housed in an aquarium. Spermatozoa and seminal plasma were analyzed by means of proteomic analyses using an LC-MS/MS, and a list with the gene symbols corresponding to each protein was submitted to the DAVID database. Of the 419 proteins identified in spermatozoa and 303 in seminal plasma, 111 proteins were shared by both. Furthermore, 70 proteins were identified as involved in reproductive processes, 39 in spermatozoa, and 31 in seminal plasma. The five most abundant proteins were also identified in these samples: AKAP3, ODF2, TUBB, GSTM3, ROPN1 for spermatozoa and CST11, LTF, ALB, HSP90B1, PIGR for seminal plasma. In conclusion, this study provides the first characterization of the proteome in cetacean sperm and seminal plasma, opening the way to future research into new biomarkers, the analysis of conservation capacity or possible additional applications in the field of assisted reproductive technologies.
Department of Biology Avanqua Oceanogràfic S L Valencia Spain
Department of Cell Biology and Histology Faculty of Medicine University of Murcia Murcia Spain
Department of Medicine and Surgery Faculty of Veterinary Science Madrid Spain
Department of Physiology Faculty of Veterinary Science University of Murcia Murcia Spain
Zobrazit více v PubMed
Amaral A., Castillo J., Ramalho-Santos J., Oliva R. (2014). The combined human sperm proteome: cellular pathways and implications for basic and clinical science. Hum. Reprod. Update 20 40–62. 10.1093/humupd/dmt046 PubMed DOI
Aquino-Cortez A., Pinheiro B. Q., Lima D. B. C., Silva H. V. R., Mota-Filho A. C., Martins J. A. M., et al. (2017). Proteomic characterization of canine seminal plasma. Theriogenology 95 178–186. 10.1016/j.theriogenology.2017.03.016 PubMed DOI
Araujo M. S., de Oliveira Henriques, Paulo O. L., Paranzini C. S., Scott C., Codognoto V. M., et al. (2020). Proteomic data of seminal plasma and spermatozoa of four purebred dogs. Data Br. 30:105498. 10.1016/j.dib.2020.105498 PubMed DOI PMC
Bajuk B. P., Zrimšek P., Pipan M. Z., Tilocca B., Soggiu A., Bonizzi L., et al. (2020). Proteomic analysis of fresh and liquid-stored boar spermatozoa. Animals 10:553. 10.3390/ani10040553 PubMed DOI PMC
Baker M. A., Hetherington L., Reeves G. M., Aitken R. J. (2008). The mouse sperm proteome characterized via IPG strip prefractionation and LC-MS/MS identification. Proteomics 8 1720–1730. 10.1002/pmic.200701020 PubMed DOI
Baker M. A., Naumovski N., Hetherington L., Weinberg A., Velkov T., Aitken R. J. (2013). Head and flagella subcompartmental proteomic analysis of human spermatozoa. Proteomics 13 61–74. 10.1002/pmic.201200350 PubMed DOI
Baltz J. M., Williams P. O., Cone R. A. (1990). Dense fibers protect mammalian sperm against damage. Biol. Reprod. 43 485–491. 10.1095/biolreprod43.3.485 PubMed DOI
Barratclough A., Wells R. S., Schwacke L. H., Rowles T. K., Gomez F. M., Fauquier D. A., et al. (2019). Health assessments of common bottlenose dolphins (Tursiops truncatus): past, present, and potential conservation applications. Front. Vet. Sci. 6:444. 10.3389/fvets.2019.00444 PubMed DOI PMC
Batruch I., Lecker I., Kagedan D., Smith C. R., Mullen B. J., Grober E., et al. (2011). Proteomic analysis of seminal plasma from normal volunteers and post-vasectomy patients identifies over 2000 proteins and candidate biomarkers of the urogenital system. J. Proteome Res. 10 941–953. 10.1021/pr100745u PubMed DOI
Beirão J., Boulais M., Gallego V., O’Brien J. K., Peixoto S., Robeck T. R., et al. (2019). Sperm handling in aquatic animals for artificial reproduction. Theriogenology 133 161–178. 10.1016/j.theriogenology.2019.05.004 PubMed DOI
Belleannée C., Labas V., Teixeira-Gomes A. P., Gatti J. L., Dacheux J. L., Dacheux F. (2011). Identification of luminal and secreted proteins in bull epididymis. J. Proteomics 74 59–78. 10.1016/j.jprot.2010.07.013 PubMed DOI
Bezerra M. J. B., Arruda-Alencar J. M., Martins J. A. M., Viana A. G. A., Viana Neto A. M., Rêgo J. P. A., et al. (2019). Major seminal plasma proteome of rabbits and associations with sperm quality. Theriogenology 128 156–166. 10.1016/j.theriogenology.2019.01.013 PubMed DOI
Bianchi E., Doe B., Goulding D., Wright G. J. (2014). Juno is the egg Izumo receptor and is essential for mammalian fertilization. Nature 508 483–487. 10.1038/nature13203 PubMed DOI PMC
Bowen W. D. (1997). Role of marine mammals in aquatic ecosystems. Mar. Ecol. Prog. Ser. 158 267–274. 10.3354/meps158267 DOI
Bromfield J. J. (2014). Seminal fluid and reproduction: much more than previously thought. J. Assist. Reprod. Genet. 31 627–636. 10.1007/s10815-014-0243-y PubMed DOI PMC
Bromfield J. J. (2018). Review: the potential of seminal fluid mediated paternal-maternal communication to optimise pregnancy success. Animal 12 s104–s109. 10.1017/S1751731118000083 PubMed DOI
Bromfield J. J., Schjenken J. E., Chin P. Y., Care A. S., Jasper M. J., Robertson S. A. (2014). Maternal tract factors contribute to paternal seminal fluid impact on metabolic phenotype in offspring. Proc. Natl. Acad. Sci. U S A. 111 2200–2205. 10.1073/pnas.1305609111 PubMed DOI PMC
Busso D., Oñate-Alvarado M. J., Balboa E., Castro J., Lizama C., Morales G., et al. (2014). Spermatozoa from mice deficient in Niemann-Pick disease type C2 (NPC2) protein have defective cholesterol content and reduced in vitro fertilising ability. Reprod. Fertil. Dev. 26 609–621. 10.1071/RD12059 PubMed DOI
Byrne K., Leahy T., Mcculloch R., Colgrave M. L., Holland M. K. (2012). Comprehensive mapping of the bull sperm surface proteome. Proteomics 12 3559–3579. 10.1002/pmic.201200133 PubMed DOI
Cardozo J. A., Fernández-Juan M., Forcada F., Abecia A., Muiño-Blanco T., Cebrián-Pérez J. A. (2006). Monthly variations in ovine seminal plasma proteins analyzed by two-dimensional polyacrylamide gel electrophoresis. Theriogenology 66 841–850. 10.1016/j.theriogenology.2006.01.058 PubMed DOI
Carr D. W., Fujita A., Stentz C. L., Liberty G. A., Olson G. E., Narumiya S. (2001). Identification of sperm-specific proteins that interact with a-kinase anchoring proteins in a manner similar to the Type II regulatory subunit of PKA. J. Biol. Chem. 276 17332–17338. 10.1074/jbc.M011252200 PubMed DOI
Chen J., Wang Y., Wei B., Lai Y., Yan Q., Gui Y., et al. (2011). Functional expression of ropporin in human testis and ejaculated spermatozoa. J. Androl. 32 26–32. 10.2164/jandrol.109.009662 PubMed DOI
Ciereszko A., Dietrich M. A., Nynca J. (2017). Fish semen proteomics — new opportunities in fish reproductive research. Aquaculture 472 81–92. 10.1016/j.aquaculture.2016.03.005 DOI
Cock P. J. A., Antao T., Chang J. T., Chapman B. A., Cox C. J., Dalke A., et al. (2009). Biopython: freely available python tools for computational molecular biology and bioinformatics. Bioinformatics 25 1422–1423. 10.1093/bioinformatics/btp163 PubMed DOI PMC
Dacheux J. L., Belleannée C., Guyonnet B., Labas V., Teixeira-Gomes A. P., Ecroyd H., et al. (2012). The contribution of proteomics to understanding epididymal maturation of mammalian spermatozoa. Syst. Biol. Reprod. Med. 58 197–210. 10.3109/19396368.2012.663233 PubMed DOI
Davidson A. D., Boyer A. G., Kim H., Pompa-Mansilla S., Hamilton M. J., Costa D. P., et al. (2012). Drivers and hotspots of extinction risk in marine mammals. Proc. Natl. Acad. Sci. U S A. 109 3395–3400. 10.1073/pnas.1121469109 PubMed DOI PMC
De Lazari F. L., Sontag E. R., Schneider A., Araripe Moura A. A., Vasconcelos F. R., Nagano C. S., et al. (2020). Proteomic identification of boar seminal plasma proteins related to sperm resistance to cooling at 17°C. Theriogenology 147 135–145. 10.1016/j.theriogenology.2019.11.023 PubMed DOI
De Lazari F. L., Sontag E. R., Schneider A., Moura A. A. A., Vasconcelos F. R., Nagano C. S., et al. (2019). Seminal plasma proteins and their relationship with sperm motility and morphology in boars. Andrologia 51:e13222. 10.1111/and.13222 PubMed DOI
Dietrich M. A., Irnazarow I., Ciereszko A. (2017). Proteomic identification of seminal plasma proteins related to the freezability of carp semen. J. Proteomics 162 52–61. 10.1016/j.jprot.2017.04.015 PubMed DOI
Dolman S. J., Brakes P. (2018). Sustainable fisheries management and the welfare of bycaught and entangled cetaceans. Front. Vet. Sci. 5:287. 10.3389/fvets.2018.00287 PubMed DOI PMC
Druart X., de Graaf S. (2018). Seminal plasma proteomes and sperm fertility. Anim. Reprod. Sci. 194 33–40. 10.1016/j.anireprosci.2018.04.061 PubMed DOI
Druart X., Rickard J. P., Mactier S., Kohnke P. L., Kershaw-Young C. M., Bathgate R., et al. (2013). Proteomic characterization and cross species comparison of mammalian seminal plasma. J. Proteomics. 91 13–22. 10.1016/j.jprot.2013.05.029 PubMed DOI
Druart X., Rickard J. P., Tsikis G., de Graaf S. P. (2019). Seminal plasma proteins as markers of sperm fertility. Theriogenology 137 30–35. 10.1016/j.theriogenology.2019.05.034 PubMed DOI
Elzanaty S., Erenpreiss J., Becker C. (2007). Seminal plasma albumin: origin and relation to the male reproductive parameters. Andrologia 39 60–65. 10.1111/j.1439-0272.2007.00764.x PubMed DOI
Fan K., Jiang J., Wang Z., Fan R., Yin W., Sun Y., et al. (2014). Expression and purification of soluble porcine cystatin 11 in pichia pastoris. Appl. Biochem. Biotechnol. 174 1959–1968. 10.1007/s12010-014-1148-z PubMed DOI
Fiedler S. E., Sisson J. H., Wyatt T. A., Pavlik J. A., Gambling T. M., Carson J. L., et al. (2012). Loss of ASP but not ROPN1 reduces mammalian ciliary motility. Cytoskeleton 69 22–32. 10.1002/cm.20539 PubMed DOI PMC
Fu Q., Pan L., Huang D., Wang Z., Hou Z., Zhang M. (2019). Proteomic profiles of buffalo spermatozoa and seminal plasma. Theriogenology 134 74–82. 10.1016/j.theriogenology.2019.05.013 PubMed DOI
Fujita A., Nakamura K. I., Kato T., Watanabe N., Ishizaki T., Kimura K., et al. (2000). Ropporin, a sperm-specific binding protein of rhophilin, that is localized in the fibrous sheath of sperm flagella. J. Cell Sci. 113 103–112. 10.1242/jcs.113.1.103 PubMed DOI
Gaitskell-Phillips G., Martín-Cano F. E., Ortiz-Rodríguez J. M., Silva-Rodríguez A., Gil M. C., Ortega-Ferrusola C., et al. (2021). Differences in the proteome of stallion spermatozoa explain stallion-to-stallion variability in sperm quality post thaw†. Biol. Reprod. 104 1097–1113. 10.1093/biolre/ioab003 PubMed DOI
Gervasi M. G., Visconti P. E. (2016). Chang’s meaning of capacitation: a molecular perspective. Mol. Reprod. Dev. 83 860–874. 10.1002/mrd.22663 PubMed DOI
Gopalakrishnan B., Aravinda S., Pawshe C. H., Totey S. M., Nagpal S., Salunke D. M., et al. (1998). Studies on glutathione S-transferases important for sperm function: evidence of catalytic activity-independent functions. Biochem. J. 329 231–241. 10.1042/bj3290231 PubMed DOI PMC
Graustein A. D., Misch E. A., Musvosvi M., Shey M., Shah J. A., Seshadri C., et al. (2018). Toll-like receptor chaperone HSP90B1 and the immune response to mycobacteria. PLoS One 13:e0208940. 10.1371/journal.pone.0208940 PubMed DOI PMC
Guasti P. N., Souza F. F., Scott C., Papa P. M., Camargo L. S., Schmith R. A., et al. (2020). Equine seminal plasma and sperm membrane: functional proteomic assessment. Theriogenology 156 70–81. 10.1016/j.theriogenology.2020.06.014 PubMed DOI
Hamil K. G., Liu Q., Sivashanmugam P., Yenugu S., Soundararajan R., Grossman G., et al. (2002). Cystatin 11: a new member of the cystatin type 2 family. Endocrinology 143 2787–2796. 10.1210/endo.143.7.8925 PubMed DOI
Hanlon Newell A. E., Fiedler S. E., Ruan J. M., Pan J., Wang P. J., Deininger J., et al. (2008). Protein kinase A RII-like (R2D2) proteins exhibit differential localization and AKAP interaction. Cell Motil. Cytoskeleton 65 539–552. 10.1002/cm.20279 PubMed DOI
Harrison R. J., Boice R. C., Brownell R. L. (1969). Reproduction in wild and captive dolphins. Nature 222 1143–1147. 10.1038/2221143b0 DOI
Holt W. V., Pickard A. R. (1999). Role of reproductive technologies and genetic resource banks in animal conservation. Rev. Reprod. 4 143–150. 10.1530/ror.0.0040143 PubMed DOI
Hopkins B. R., Sepil I., Thézénas M. L., Craig J. F., Miller T., Charles P. D., et al. (2019). Divergent allocation of sperm and the seminal proteome along a competition gradient in Drosophila melanogaster. Proc. Natl. Acad. Sci. U S A. 116 17925–17933. 10.1073/pnas.1906149116 PubMed DOI PMC
Huang D. W., Sherman B. T., Lempicki R. A. (2009). Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37 1–13. 10.1093/nar/gkn923 PubMed DOI PMC
Inoue N., Ikawa M., Isotani A., Okabe M. (2005). The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature 434 234–238. 10.1038/nature03362 PubMed DOI
Inoue N., Ikawa M., Okabe M. (2011). The mechanism of sperm-egg interaction and the involvement of IZUMO1 in fusion. Asian J. Androl. 13 81–87. 10.1038/aja.2010.70 PubMed DOI PMC
Intasqui P., Camargo M., Antoniassi M. P., Cedenho A. P., Carvalho V. M., Cardozo K. H. M., et al. (2016). Association between the seminal plasma proteome and sperm functional traits. Fertil. Steril. 105 617–628. 10.1016/j.fertnstert.2015.11.005 PubMed DOI
Ito C., Akutsu H., Yao R., Yoshida K., Yamatoya K., Mutoh T., et al. (2019). Odf2 haploinsufficiency causes a new type of decapitated and decaudated spermatozoa. Odf2-DDS, in mice. Sci. Rep. 9:14249. 10.1038/s41598-019-50516-50512 PubMed DOI PMC
Jiang X. P., Wang S. Q., Wang W., Xu Y., Xu Z., Tang J. Y., et al. (2015). Enolase1 (ENO1) and glucose-6-phosphate isomerase (GPI) are good markers to predict human sperm freezability. Cryobiology 71 141–145. 10.1016/j.cryobiol.2015.04.006 PubMed DOI
Juyena N. S., Stelletta C. (2012). Seminal plasma: an essential attribute to spermatozoa. J. Androl. 33 536–551. 10.2164/jandrol.110.012583 PubMed DOI
Kasimanickam R. K., Kasimanickam V. R., Arangasamy A., Kastelic J. P. (2019). Sperm and seminal plasma proteomics of high- versus low-fertility holstein bulls. Theriogenology 126 41–48. 10.1016/j.theriogenology.2018.11.032 PubMed DOI
Katsumata E. (2010). Study on reproduction of captive marine mammals. J. Reprod. Dev. 56 1–8. 10.1262/jrd.09-212E PubMed DOI
Kawano N., Araki N., Yoshida K., Hibino T., Ohnami N., Makino M., et al. (2014). Seminal vesicle protein SVS2 is required for sperm survival in the uterus. Proc. Natl. Acad. Sci. U S A. 111 4145–4150. 10.1073/pnas.1320715111 PubMed DOI PMC
Kierszenbaum A. L. (2002). Sperm axoneme: a tale of tubulin posttranslation diversity. Mol. Reprod. Dev. 62 1–3. 10.1002/mrd.10139 PubMed DOI
Kikuchi M., Mizoroki S., Kubo T., Ohiwa Y., Kubota M., Yamada N., et al. (2003a). Seminal plasma lactoferrin but not transferrin reflects gonadal function in dogs. J. Vet. Med. Sci. 65 679–684. 10.1292/jvms.65.679 PubMed DOI
Kikuchi M., Takao Y., Tokuda N., Ohnami Y., Orino K., Watanabe K. (2003b). Relationship between seminal plasma lactoferrin and gonadal function in horses. J. Vet. Med. Sci. 65 1273–1274. 10.1292/jvms.65.1273 PubMed DOI
Kwon W. S., Oh S. A., Kim Y. J., Rahman M. S., Park Y. J., Pang M. G. (2015a). Proteomic approaches for profiling negative fertility markers in inferior boar spermatozoa. Sci. Rep. 5:13821. 10.1038/srep13821 PubMed DOI PMC
Kwon W. S., Rahman M. S., Ryu D. Y., Park Y. J., Pang M. G. (2015b). Increased male fertility using fertility-related biomarkers. Sci. Rep. 5:15654. 10.1038/srep15654 PubMed DOI PMC
Légaré C., Thabet M., Gatti J. L., Sullivan R. (2006). HE1/NPC2 status in human reproductive tract and ejaculated spermatozoa: consequence of vasectomy. Mol. Hum. Reprod. 12 461–468. 10.1093/molehr/gal050 PubMed DOI
Li C. J., Wang D., Zhou X. (2016). Sperm proteome and reproductive technologies in mammals. Anim. Reprod. Sci. 173 1–7. 10.1016/j.anireprosci.2016.08.008 PubMed DOI
Li Y. F., He W., Jha K. N., Klotz K., Kim Y. H., Mandal A., et al. (2007). FSCB, a novel protein kinase A-phosphorylated calcium-binding protein, is a CABYR-binding partner involved in late steps of fibrous sheath biogenesis. J. Biol. Chem. 282 34104–34119. 10.1074/jbc.M702238200 PubMed DOI
Li Y. F., He W., Mandal A., Kim Y. H., Digilio L., Klotz K., et al. (2011). CABYR binds to AKAP3 and ropporin in the human sperm fibrous sheath. Asian J. Androl. 13 266–274. 10.1038/aja.2010.149 PubMed DOI PMC
Llavanera M., Delgado-Bermúdez A., Fernandez-Fuertes B., Recuero S., Mateo Y., Bonet S., et al. (2019). GSTM3, but not IZUMO1, is a cryotolerance marker of boar sperm. J. Anim. Sci. Biotechnol. 10:61. 10.1186/s40104-019-0370-375 PubMed DOI PMC
Llavanera M., Delgado-Bermúdez A., Mateo-Otero Y., Padilla L., Romeu X., Roca J., et al. (2020a). Exploring seminal plasma GSTM3 as a quality and in vivo fertility biomarker in pigs—relationship with sperm morphology. Antioxidants 9:741. 10.3390/antiox9080741 PubMed DOI PMC
Llavanera M., Delgado-bermúdez A., Olives S., Mateo-otero Y., Recuero S., Bonet S., et al. (2020b). Glutathione S-transferases play a crucial role in mitochondrial function, plasma membrane stability and oxidative regulation of mammalian sperm. Antioxidants 9:100. 10.3390/antiox9020100 PubMed DOI PMC
Luongo C., Abril-Sánchez S., Hernández J. G., García-Vázquez F. A. (2019). Seminal plasma mitigates the adverse effect of uterine fluid on boar spermatozoa. Theriogenology 136 28–35. 10.1016/j.theriogenology.2019.06.018 PubMed DOI
Luongo C., González-Brusi L., Cots-Rodríguez P., Izquierdo-Rico M. J., Avilés M., García-Vázquez F. A. (2020). Sperm proteome after interaction with reproductive fluids in porcine: from the ejaculation to the fertilization site. Int. J. Mol. Sci. 21 1–27. 10.3390/ijms21176060 PubMed DOI PMC
Magister Š, Kos J. (2013). Cystatins in immune system. J. Cancer 4 45–56. 10.7150/jca.5044 PubMed DOI PMC
Martinez C. A., Alvarez-Rodriguez M., Wright D., Rodriguez-Martinez H. (2020). Does the pre-ovulatory pig oviduct rule sperm capacitation in vivo mediating transcriptomics of catsper channels? Int. J. Mol. Sci. 21:1840. 10.3390/ijms21051840 PubMed DOI PMC
Martinez G., Kherraf Z. E., Zouari R., Mustapha S. F., Ben, Saut A., et al. (2018). Whole-exome sequencing identifies mutations in FSIP2 as a recurrent cause of multiple morphological abnormalities of the sperm flagella. Hum. Reprod. 33 1973–1984. 10.1093/humrep/dey264 PubMed DOI
Martínez-Fresneda L., Sylvester M., Shakeri F., Bunes A., Del Pozo J. C., García-Vázquez F. A., et al. (2021). Differential proteome between ejaculate and epididymal sperm represents a key factor for sperm freezability in wild small ruminants. Cryobiology 99 64–77. 10.1016/j.cryobiol.2021.01.012 PubMed DOI
Martínez-Heredia J., Estanyol J. M., Ballescà J. L., Oliva R. (2006). Proteomic identification of human sperm proteins. Proteomics 6 4356–4369. 10.1002/pmic.200600094 PubMed DOI
Martins H. S., da Silva G. C., Cortes S. F., Paes F. O., Martins Filho O. A., Araujo M. S. S., et al. (2018). Lactoferrin increases sperm membrane functionality of frozen equine semen. Reprod. Domest. Anim. 53 617–623. 10.1111/rda.13148 PubMed DOI
Mead J. G. (2018). Shepherd’s beaked whale. Encyclopedia Mar. Mamm. 2018 853–854. 10.1016/B978-0-12-804327-1.00227-222 DOI
Mogielnicka-Brzozowska M., Prochowska S., Niżański W., Bromke M. A., Wiśniewski J., Olejnik B., et al. (2020). Proteome of cat semen obtained after urethral catheterization. Theriogenology 141 68–81. 10.1016/j.theriogenology.2019.09.003 PubMed DOI
Naaby-Hansen S., Mandal A., Wolkowicz M. J., Sen B., Westbrook V. A., Shetty J., et al. (2002). CABYR, a novel calcium-binding tyrosine phosphorylation-regulated fibrous sheath protein involved in capacitation. Dev. Biol. 242 236–254. 10.1006/dbio.2001.0527 PubMed DOI
O’Brien J., Robeck T. (2010). The value of Ex situ cetacean populations in understanding reproductive physiology and developing assisted reproductive technology for Ex Situ and in Situ species management and conservation efforts. Int. J. Comp. Psychol. 23 227–248. 10.1017/cbo9781139051927.012 DOI
Panner Selvam M., Agarwal A., Baskaran S. (2019). Proteomic analysis of seminal plasma from bilateral varicocele patients indicates an oxidative state and increased inflammatory response. Asian J. Androl. 21 544–550. 10.4103/aja.aja_121_18 PubMed DOI PMC
Park Y. J., Pang W. K., Ryu D. Y., Song W. H., Rahman M. S., Pang M. G. (2019). Optimized combination of multiple biomarkers to improve diagnostic accuracy in male fertility. Theriogenology 139 106–112. 10.1016/j.theriogenology.2019.07.029 PubMed DOI
Parrilla I., Perez-Patiño C., Li J., Barranco I., Padilla L., Rodriguez-Martinez H., et al. (2019). Boar semen proteomics and sperm preservation. Theriogenology 137 23–29. 10.1016/j.theriogenology.2019.05.033 PubMed DOI
Parsons E. C. M., Favaro B., Aguirre A. A., Bauer A. L., Blight L. K., Cigliano J. A., et al. (2014). Seventy-one important questions for the conservation of marine biodiversity. Conserv. Biol. 28 1206–1214. 10.1111/cobi.12303 PubMed DOI PMC
Pearl C. A., Roser J. F. (2008). Expression of lactoferrin in the boar epididymis: effects of reduced estrogen. Domest. Anim. Endocrinol. 34 153–159. 10.1016/j.domaniend.2007.01.001 PubMed DOI
Peddinti D., Nanduri B., Kaya A., Feugang J. M., Burgess S. C., Memili E. (2008). Comprehensive proteomic analysis of bovine spermatozoa of varying fertility rates and identification of biomarkers associated with fertility. BMC Syst. Biol. 2:19. 10.1186/1752-0509-2-19 PubMed DOI PMC
Pelloni M., Paoli D., Majoli M., Pallotti F., Carlini T., Lenzi A., et al. (2018). Molecular study of human sperm RNA: ropporin and CABYR in asthenozoospermia. J. Endocrinol. Invest. 41 781–787. 10.1007/s40618-017-0804-x PubMed DOI
Perez-Patiño C., Barranco I., Parrilla I., Martinez E. A., Rodriguez-Martinez H., Roca J. (2016). Extensive dataset of boar seminal plasma proteome displaying putative reproductive functions of identified proteins. Data Br. 8 1370–1373. 10.1016/j.dib.2016.07.037 PubMed DOI PMC
Pérez-Patiño C., Parrilla I., Barranco I., Vergara-Barberán M., Simó-Alfonso E. F., Herrero-Martínez J. M., et al. (2018). New in-depth analytical approach of the porcine seminal plasma proteome reveals potential fertility biomarkers. J. Proteome Res. 17 1065–1076. 10.1021/acs.jproteome.7b00728 PubMed DOI
Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D. J., et al. (2019). The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47 D442–D450. 10.1093/nar/gky1106 PubMed DOI PMC
Peris-Frau P., Martín-Maestro A., Iniesta-Cuerda M., Sánchez-Ajofrín I., Mateos-Hernández L., Garde J. J., et al. (2019). Freezing-thawing procedures remodel the proteome of ram sperm before and after in vitro capacitation. Int. J. Mol. Sci. 20:4596. 10.3390/ijms20184596 PubMed DOI PMC
Petit F. M., Serres C., Bourgeon F., Pineau C., Auer J. (2013). Identification of sperm head proteins involved in zona pellucida binding. Hum. Reprod. 28 852–865. 10.1093/humrep/des452 PubMed DOI
Pini T., Leahy T., Soleilhavoup C., Tsikis G., Labas V., Combes-Soia L., et al. (2016). Proteomic investigation of ram spermatozoa and the proteins conferred by seminal plasma. J. Proteome Res. 15 3700–3711. 10.1021/acs.jproteome.6b00530 PubMed DOI
Pinto T. M. F., Moreira R. F., Matos M. N. C., Soares V. V. M., de Almeida Aguiar M. V., de Aragão P., et al. (2019). Evaluation of the proteomic profiles of ejaculated spermatozoa from Saanen bucks (Capra hircus). Anim. Reprod. 16 902–913. 10.21451/1984-3143-AR2019-0001 PubMed DOI PMC
Piomboni P., Gambera L., Serafini F., Campanella G., Morgante G., De Leo V. (2008). Sperm quality improvement after natural anti-oxidant treatment of asthenoteratospermic men with leukocytospermia. Asian J. Androl. 10 201–206. 10.1111/j.1745-7262.2008.00356.x PubMed DOI
Rahman M. S., Kwon W. S., Pang M. G. (2017). Prediction of male fertility using capacitation-associated proteins in spermatozoa. Mol. Reprod. Dev. 84 749–759. 10.1002/mrd.22810 PubMed DOI
Ramesha K. P., Mol P., Kannegundla U., Thota L. N., Gopalakrishnan L., Rana E., et al. (2020). Deep proteome profiling of semen of indian indigenous malnad gidda (Bos indicus) cattle. J. Proteome Res. 19 3364–3376. 10.1021/acs.jproteome.0c00237 PubMed DOI
Ramm S. A. (2014). Sperm competition and the evolution of reproductive systems. Mol. Hum. Reprod. 20 1159–1160. 10.1093/molehr/gau076 PubMed DOI
Recuero S., Fernandez-Fuertes B., Bonet S., Barranco I., Yeste M. (2019). Potential of seminal plasma to improve the fertility of frozen-thawed boar spermatozoa. Theriogenology 137 36–42. 10.1016/j.theriogenology.2019.05.035 PubMed DOI
Reeves R. R., Smith B. D., Crespo E. A., Notarbartolo di Sciara G. (2003). Dolphins, Whales and Porpoises: 2002–2010. Conservation Action Plan for the World’s Cetaceans. IUCN/SSC Cetacean Specialist Group. Gland: IUCN.
Rego J. P. A., Crisp J. M., Moura A. A., Nouwens A. S., Li Y., Venus B., et al. (2014). Seminal plasma proteome of electroejaculated Bos indicus bulls. Anim. Reprod. Sci. 148 1–17. 10.1016/j.anireprosci.2014.04.016 PubMed DOI
Rickard J. P., de Graaf S. P. (2020). Sperm surface changes and their consequences for sperm transit through the female reproductive tract. Theriogenology 150 96–105. 10.1016/j.theriogenology.2020.02.018 PubMed DOI
Robeck T. R., Montano G. A., Steinman K. J., Smolensky P., Sweeney J., Osborn S., et al. (2013). Development and evaluation of deep intra-uterine artificial insemination using cryopreserved sexed spermatozoa in bottlenose dolphins (Tursiops truncatus). Anim. Reprod. Sci. 139 168–181. 10.1016/j.anireprosci.2013.04.004 PubMed DOI
Robeck T. R., O’Brien J. K. (2004). Effect of cryopreservation methods and precryopreservation storage on bottlenose dolphin (Tursiops truncatus) spermatozoa. Biol. Reprod. 70 1340–1348. 10.1095/biolreprod.103.025304 PubMed DOI
Robeck T. R., Steinman K. J., Yoshioka M., Jensen E., O’Brien J. K., Katsumata E., et al. (2005). Estrous cycle characterisation and artificial insemination using frozen-thawed spermatozoa in the bottlenose dolphin (Tursiops truncatus). Reproduction 129 659–674. 10.1530/rep.1.00516 PubMed DOI
Rommel S., Pabst D., McLellan W. (2007). “Functional anatomy of the cetacean reproductive system, with comparisons to the domestic dog,” in Reproductive Biology and Phylogeny of Cetacea, eds B. G. M. Jamieson, and D. Miller (Boca Raton, FL: CRC Press; ), 10.1201/b11001-5 DOI
Ruiz-Díaz S., Luongo C., Fuentes-Albero M. C., Abril-Sánchez S., Sánchez-Calabuig M. J., Barros-García C., et al. (2020). Effect of temperature and cell concentration on dolphin (Tursiops truncatus) spermatozoa quality evaluated at different days of refrigeration. Anim. Reprod. Sci. 212:106248. 10.1016/j.anireprosci.2019.106248 PubMed DOI
Ryu D. Y., Song W. H., Pang W. K., Yoon S. J., Rahman M. S., Pang M. G. (2019). Freezability biomarkers in bull epididymal spermatozoa. Sci. Rep. 9:12797. 10.1038/s41598-019-49378-49375 PubMed DOI PMC
Sánchez-Calabuig M. J., de la Fuente J., Laguna-Barraza R., Beltrán-Breña P., Martínez-Nevado E., Johnston S. D., et al. (2015a). Heterologous murine and bovine IVF using bottlenose dolphin (Tursiops truncatus) spermatozoa. Theriogenology 84 983–994. 10.1016/j.theriogenology.2015.06.001 PubMed DOI
Sánchez-Calabuig M. J., López-Fernández C., Johnston S. D., Blyde D., Cooper J., Harrison K., et al. (2015b). Effect of cryopreservation on the sperm DNA fragmentation dynamics of the bottlenose dolphin (Tursiops truncatus). Reprod. Domest. Anim. 50 227–235. 10.1111/rda.12474 PubMed DOI
Sánchez-Calabuig M. J., García-Vázquez F. A., Laguna-Barraza R., Barros-García C., García-Parraga D., Rizos D., et al. (2017). Bottlenose dolphin (Tursiops truncatus) spermatozoa: collection, cryopreservation, and heterologous in vitro fertilization. J. Vis. Exp. 2017:55237. 10.3791/55237 PubMed DOI PMC
Shevchenko A., Jensen O. N., Podtelejnikov A. V., Sagliocco F., Wilm M., Vorm O., et al. (1996). Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc. Natl. Acad. Sci. U S A. 93 14440–14445. 10.1073/pnas.93.25.14440 PubMed DOI PMC
Shilov I. V., Seymourt S. L., Patel A. A., Loboda A., Tang W. H., Keating S. P., et al. (2007). The paragon algorithm, a next generation search engine that uses sequence temperature values sequence temperature values and feature probabilities to identify peptides from tandem mass spectra. Mol. Cell. Proteomics 6 1638–1655. 10.1074/mcp.T600050-MCP200 PubMed DOI
Sirigu P., Perra M. T., Turno F. (1995). Immunohistochemical study of secretory IGA in the human male reproductive tract. Andrologia 27 335–339. 10.1111/j.1439-0272.1995.tb01368.x PubMed DOI
Skerget S., Rosenow M., Polpitiya A., Petritis K., Dorus S., Karr T. L. (2013). The rhesus macaque (macaca mulatta) sperm proteome. Mol. Cell. Proteomics 12 3052–3067. 10.1074/mcp.M112.026476 PubMed DOI PMC
Soleilhavoup C., Tsikis G., Labas V., Harichaux G., Kohnke P. L., Dacheux J. L., et al. (2014). Ram seminal plasma proteome and its impact on liquid preservation of spermatozoa. J. Proteomics 109 245–260. 10.1016/j.jprot.2014.07.007 PubMed DOI
Spaulding M., O’Leary M. A., Gatesy J. (2009). Relationships of cetacea (Artiodactyla) among mammals: increased taxon sampling alters interpretations of key fossils and character evolution. PLoS One 4:e7062. 10.1371/journal.pone.0007062 PubMed DOI PMC
Suárez-Santana C. M., Fernández A., Sierra E., Arbelo M., Bernaldo, de Quirós Y., et al. (2020). Comparative morphology, histology, and cytology of odontocete cetaceans prostates. Anat. Rec. 303 2036–2053. 10.1002/ar.24285 PubMed DOI
Sun Y., Xiao S., Chen J., Wang M., Zheng Z., Song S., et al. (2015). Heat shock protein 90 mediates the apoptosis and autophage in nicotinic-mycoepoxydienetreated HeLa cells. Acta Biochim. Biophys. Sin. (Shanghai). 47 451–458. 10.1093/abbs/gmv034 PubMed DOI
Swegen A., Curry B. J., Gibb Z., Lambourne S. R., Smith N. D., Aitken R. J. (2015). Investigation of the stallion sperm proteome by mass spectrometry. Reproduction 149 235–244. 10.1530/REP-14-0500 PubMed DOI
Takenaka A., Kashiwagi N., Maezono Y., Nakao T., Wano Y., Kakizoe Y., et al. (2013). Study on the ejaculate characteristics and liquid storage of semen in the common bottlenose dolphin (Tursiops truncatus). Japanese J. Zoo Wildl. Med. 18 107–114. 10.5686/jjzwm.18.107 DOI
Thewissen J. G. M., Cooper L. N., Clementz M. T., Bajpai S., Tiwari B. N. (2007). Whales originated from aquatic artiodactyls in the Eocene epoch of India. Nature 450 1190–1194. 10.1038/nature06343 PubMed DOI
Uhen M. D. (2007). Evolution of marine mammals: back to the sea after 300 million years. Anat. Rec. 290 514–522. 10.1002/ar.20545 PubMed DOI
Valencia J., Yeste M., Quintero-Moreno A., Niño-Cardenas C., del P., Henao F. J. (2020). Relative content of Niemann-Pick C2 protein (NPC2) in seminal plasma, but not that of spermadhesin AQN-1, is related to boar sperm cryotolerance. Theriogenology 14 181–189. 10.1016/j.theriogenology.2019.10.023 PubMed DOI
van der Horst G., Medger K., Steckler D., Luther I., Bartels P. (2018). Bottlenose dolphin (Tursiops truncatus) sperm revisited: motility, morphology and ultrastructure of fresh sperm of consecutive ejaculates. Anim. Reprod. Sci. 195 309–320. 10.1016/j.anireprosci.2018.06.009 PubMed DOI
Vicens A., Borziak K., Karr T. L., Roldan E. R. S., Dorus S. (2017). Comparative sperm proteomics in mouse species with divergent mating systems. Mol. Biol. Evol. 34 1403–1416. 10.1093/molbev/msx084 PubMed DOI PMC
Vislobokova I. A. (2013). On the origin of cetartiodactyla: comparison of data on evolutionary morphology and molecular biology. Paleontol. J. 47 321–334. 10.1134/S003103011303012X DOI
Wichmann L., Vaalasti A., Vaalasti T., Tuohimaa P. (1989). Localization of lactoferrin in the male reproductive tract. Int. J. Androl. 12 179–186. 10.1111/j.1365-2605.1989.tb01302.x PubMed DOI
Xu K., Yang L., Zhang L., Qi H. (2020). Lack of AKAP3 disrupts integrity of the subcellular structure and proteome of mouse sperm and causes male sterility. Development 147:dev181057. 10.1242/dev.181057 PubMed DOI
Yang Y., Jiang C., Zhang X., Liu X., Li J., Qiao X., et al. (2020). Loss-of-function mutation in DNAH8 induces asthenoteratospermia associated with multiple morphological abnormalities of the sperm flagella. Clin. Genet. 98 396–401. 10.1111/cge.13815 PubMed DOI
Zeinali M., Hadian Amree A., Khorramdelazad H., Karami H., Abedinzadeh M. (2017). Inflammatory and anti-inflammatory cytokines in the seminal plasma of infertile men suffering from varicocele. Andrologia 49 e12685. 10.1111/and.12685 PubMed DOI
Zhang X., Chen M., Yu R., Liu B., Tian Z., Liu S. (2016). FSCB phosphorylation regulates mouse spermatozoa capacitation through suppressing SUMOylation of ROPN1/ROPN1L. Am. J. Transl. Res. 8 2776–2782. PubMed PMC
Zhao W., Li Z., Ping P., Wang G., Yuan X., Sun F. (2018). Outer dense fibers stabilize the axoneme to maintain sperm motility. J. Cell. Mol. Med. 22 1755–1768. 10.1111/jcmm.13457 PubMed DOI PMC
Zhu W., Cheng X., Ren C., Chen J., Zhang Y., Chen Y., et al. (2020). Proteomic characterization and comparison of ram (Ovis aries) and buck (Capra hircus) spermatozoa proteome using a data independent acquisition mass spectometry (DIA-MS) approach. PLoS One 15:e0228656. 10.1371/journal.pone.0228656 PubMed DOI PMC