Kinetics of platelet adhesion to a fibrinogen-coated surface in whole blood under flow conditions

. 2021 Sep ; 35 (9) : e23939. [epub] 20210804

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34347925

Grantová podpora
21-15-00029 Russian Science Foundation

AIM: To test a novel method of assessment of platelet adhesion to a fibrinogen-coated surface in whole blood under flow conditions. METHODS: We developed a fluidic device that mimics blood flow in vessels. The method of detection of platelet adhesion is based on recording of a scattered laser light signal from a fibrinogen-covered surface. Testing was performed in platelet-rich plasma (PRP) and whole blood of healthy volunteers. Control measurements were performed, followed by tests with inhibition of platelet GPIIa/IIIb and GPIb receptors. Then, the same testing sequence was performed in whole blood of persons with autoimmune thrombocytopenia and type 3 von Willebrand disease. RESULTS: The change in intensity of scattered light was 2.7 (2.4; 4.1) times higher in whole blood (0.2 ± 0.08V, n = 7) than in PRP (0.05 ± 0.02 V, n = 7), p < 0.01. The blocking of GP IIb/IIIa receptors decreased the intensity of scattered light to 8.5 (6.5;12)%; the blocking of GPIb receptors decreased it to 34 (23;58)%, p < 0.01. In the whole blood of a person with autoimmune thrombocytopenia, the inhibition of GPIb receptors decreased platelet adhesion, but no effect was observed in type 3 von Willebrand disease. Inhibition of platelet GPIIb/IIIa receptors alone or combined inhibition of GPIb and GPIIb/IIIa receptors resulted in almost total suppression of adhesion in both cases. CONCLUSION: Our system effectively registers platelet adhesion to a fibrinogen-coated surface under controlled-flow conditions and may successfully be applied to the investigation of platelet adhesion kinetics.

Zobrazit více v PubMed

Wu H, Zhao G, Zu H, Wang JH, Wang QM. Real‐time monitoring of platelet activation using quartz thickness‐shear mode resonator sensors. Biophys J. 2016;110(3):669‐679. PubMed PMC

Gergei I, Kälsch T, März W, Krämer BK, Kälsch AI. Platelet and Monocyte activity markers and mortality in patients with end‐stage renal disease. Clin Lab. 2020;66(3). 10.7754/Clin.Lab.2019.190903 PubMed DOI

Kwak D, Wu Y, Horbett TA. Fibrinogen and von Willebrand's factor adsorption are both required for platelet adhesion from sheared suspensions to polyethylene preadsorbed with blood plasma. J Biomed Mater Res A. 2005;74(1):69‐83. PubMed

Fu Q, Ye C, Han B, et al. Designing and validating autoverification rules for hematology analysis in sysmex XN‐9000 hematology system. Clin Lab. 2020;66(4). 10.7754/Clin.Lab.2019.190726 PubMed DOI

Jamiolkowski MA, Pedersen DD, Wu WT, Antaki JF, Wagner WR. Visualization and analysis of biomaterial‐centered thrombus formation within a defined crevice under flow. Biomaterials. 2016;96:72‐83. PubMed PMC

Guha Thakurta S, Miller R, Subramanian A. Adherence of platelets to in situ albumin‐binding surfaces under flow conditions: role of surface‐adsorbed albumin. Biomed Mater. 2012;7(4): 45007. PubMed

Hisasue M, Ai T, Kimura K, et al. Modification of the algorithm used by automated hematology analyzer XN‐3000 improves specificity in the detection of schistocytes. Clin Lab. 2021;67(1). 10.7754/Clin.Lab.2020.200227 PubMed DOI

Lopez‐Alonso A, Jose B, Somers M, et al. Individual platelet adhesion assay: measuring platelet function and antiplatelet therapies in whole blood via digital quantification of cell adhesion. Anal Chem. 2013;85(13):6497‐6504. PubMed

Faxälv L, Bolin MH, Jager EW, Lindahl TL, Berggren M. Electronic control of platelet adhesion using conducting polymer microarrays. Lab Chip. 2014;14(16):3043‐3049. PubMed

Lei KF, Chen KH, Tsui PH, Tsang NM. Real‐time electrical impedimetric monitoring of blood coagulation process under temperature and hematocrit variations conducted in a microfluidic chip. PLoS One. 2013;8(10):e76243. PubMed PMC

Tsai WB, Grunkemeier JM, McFarland CD, Horbett TA. Platelet adhesion to polystyrene‐based surfaces preadsorbed with plasmas selectively depleted in fibrinogen, fibronectin, vitronectin, or von Willebrand's factor. J Biomed Mater Res. 2002;60(3):348‐359. PubMed

Grunkemeier JM, Tsai WB, McFarland CD, Horbett TA. The effect of adsorbed fibrinogen, fibronectin, von Willebrand factor and vitronectin on the procoagulant state of adherent platelets. Biomaterials. 2000;21(22):2243‐2252. PubMed

Brouns SLN, van Geffen JP, Heemskerk JWM. High‐throughput measurement of human platelet aggregation under flow: application in hemostasis and beyond. Platelets. 2018;29(7):662‐669. PubMed

Zhang C, Neelamegham S. Application of microfluidic devices in studies of thrombosis and hemostasis. Platelets. 2017;28(5):434‐440. PubMed PMC

Branchford BR, Ng CJ, Neeves KB, Di Paola J. Microfluidic technology as an emerging clinical tool to evaluate thrombosis and hemostasis. Thromb Res. 2015;136(1):13‐19. PubMed PMC

Gutierrez E, Petrich BG, Shattil SJ, Ginsberg MH, Groisman A, Kasirer‐Friede A. Microfluidic devices for studies of shear‐dependent platelet adhesion. Lab Chip. 2008;8(9):1486‐1495. PubMed PMC

van Rooij B. J. M., Závodszky G., Hoekstra A. G., Ku D. N.. Biorheology of occlusive thrombi formation under high shear: in vitro growth and shrinkage. Scientific Reports. 2020;10 (1). 10.1038/s41598-020-74518-7 PubMed DOI PMC

De Zanet D, Battiston M, Lombardi E, et al. Impedance biosensor for real‐time monitoring and prediction of thrombotic individual profile in flowing blood. PLoS One. 2017;12(9):e0184941. PubMed PMC

Avtaeva YN, Mel'nikov IS, Gabbasov ZA. Real‐time recording of platelet adhesion to fibrinogen‐coated surface under flow conditions. Bull Exp Biol Med. 2018;165(1):157‐160. PubMed

Berndt MC, Du XP, Booth WJ. Ristocetin‐dependent reconstitution of binding of von Willebrand factor to purified human platelet membrane glycoprotein Ib‐IX complex. Biochemistry. 1988;27(2):633‐640. PubMed

Byzova TV, Vlasik TN, Mazurov AV. Inhibition of platelet aggregation by monoclonal antibodies against glycoprotein IIb–IIIa complex. Bull Exp Biol Med. 1994;118(10):402‐405. PubMed

Kroll MH, Hellums JD, McIntire LV, Schafer AI, Moake JL. Platelets and shear stress. Blood. 1996;88(5):1525‐1541. PubMed

Neeves KB, Maloney SF, Fong KP, et al. Microfluidic focal thrombosis model for measuring murine platelet deposition and stability: PAR4 signaling enhances shear‐resistance of platelet aggregates. J Thromb Haemost. 2008;6(12):2193‐2201. PubMed

Aarts PA, van den Broek SA, Prins GW, Kuiken GD, Sixma JJ, Heethaar RM. Blood platelets are concentrated near the wall and red blood cells, in the center in flowing blood. Arteriosclerosis. 1988;8(6):819‐824. PubMed

Casa LDC, Ku DN. Thrombus Formation at High Shear Rates. Annu Rev Biomed Eng. 2017;19:415‐433. PubMed

Ikeda Y, Handa M, Kawano K, et al. The role of von Willebrand factor and fibrinogen in platelet aggregation under varying shear stress. J Clin Invest. 1991;87(4):1234‐1240. PubMed PMC

Endenburg SC, Hantgan RR, Lindeboom‐Blokzijl L, et al. On the role of von Willebrand factor in promoting platelet adhesion to fibrin in flowing blood. Blood. 1995;86(11):4158‐4165. PubMed

Schneider SW, Nuschele S, Wixforth A, et al. Shear‐induced unfolding triggers adhesion of von Willebrand factor fibers. Proc Natl Acad Sci U S A. 2007;104(19):7899‐7903. PubMed PMC

Hantgan RR, Hindriks G, Taylor RG, et al. Glycoprotein Ib, von Willebrand factor, and glycoprotein IIb:IIIa are all involved in platelet adhesion to fibrin in flowing whole blood. Blood. 1990;76(2):345‐353. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...