• This record comes from PubMed

Combinations of Low-Frequency Genetic Variants Might Predispose to Familial Pancreatic Cancer

. 2021 Jul 02 ; 11 (7) : . [epub] 20210702

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
111092 Deutsche Krebshilfe
10001 GAUFF-Foundation

Familial pancreatic cancer (FPC) is an established but rare inherited tumor syndrome that accounts for approximately 5% of pancreatic ductal adenocarcinoma (PDAC) cases. No major causative gene defect has yet been identified, but germline mutations in predisposition genes BRCA1/2, CDKN2A and PALB2 could be detected in 10-15% of analyzed families. Thus, the genetic basis of disease susceptibility in the majority of FPC families remains unknown. In an attempt to identify new candidate genes, we performed whole-genome sequencing on affected patients from 15 FPC families, without detecting BRCA1/2, CDKN2A or PALB2 mutations, using an Illumina based platform. Annotations from CADD, PolyPhen-2, SIFT, Mutation Taster and PROVEAN were used to assess the potential impact of a variant on the function of a gene. Variants that did not segregate with pancreatic disease in respective families were excluded. Potential predisposing candidate genes ATM, SUFU, DAB1, POLQ, FGFBP3, MAP3K3 and ACAD9 were identified in 7 of 15 families. All identified gene mutations segregated with pancreatic disease, but sometimes with incomplete penetrance. An analysis of up to 46 additional FPC families revealed that the identified gene mutations appeared to be unique in most cases, despite a potentially deleterious ACAD9 Ala326Thr germline variant, which occurred in 4 (8.7%) of 46 FPC families. Notably, affected PDAC patients within a family carried identical germline mutations in up to three different genes, e.g., DAB1, POLQ and FGFBP3. These results support the hypothesis that FPC is a highly heterogeneous polygenetic disease caused by low-frequency or rare variants.

See more in PubMed

Quante A.S., Ming C., Rottmann M., Engel J., Boeck S., Heinemann V., Westphalen C.B., Strauch K. Projections of cancer incidence and cancer-related deaths in Germany by 2020 and 2030. Cancer Med. 2016;5:2649–2656. doi: 10.1002/cam4.767. PubMed DOI PMC

Bartsch D.K., Kress R., Sina-Frey M., Grützmann R., Gerdes B., Pilarsky C., Heise J.W., Schulte K.-M., Colombo-Benkmann M., Schleicher C., et al. Prevalence of familial pancreatic cancer in Germany. Int. J. Cancer. 2004;110:902–906. doi: 10.1002/ijc.20210. PubMed DOI

Bartsch D.K., Gress T., Langer P. Familial pancreatic cancer—current knowledge. Nat. Rev. Gastroenterol. Hepatol. 2012;9:445–453. doi: 10.1038/nrgastro.2012.111. PubMed DOI

Canto M.I., Harinck F., Hruban R.H., Offerhaus G.J., Poley J.-W., Kamel I., Nio Y., Schulick R.S., Bassi C., Kluijt I., et al. International Cancer of the Pancreas Screening (CAPS) Consortium summit on the management of patients with increased risk for familial pancreatic cancer. Gut. 2012;62:339–347. doi: 10.1136/gutjnl-2012-303108. PubMed DOI PMC

Bartsch D.K., Matthäi E., Mintziras I., Bauer C., Figiel J., Sina-Boemers M., Gress T.M., Langer P., Slater E.P. The German National Case Collection for Familial Pancreatic Carcinoma (FaPaCa)—knowledge gained in 20 years. Dtsch. Aerzteblatt. 2021;18:163–168. PubMed PMC

Fendrich V., Langer P., Bartsch D.K. Familial pancreatic cancer—Status quo. Int. J. Colorectal Dis. 2014;29:139–145. doi: 10.1007/s00384-013-1760-3. PubMed DOI

Abe T., Blackford A.L., Tamura K., Ford M., McCormick P., Chuidian M., Almario J.A., Borges M., Lennon A.M., Shin E.J., et al. Deleterious Germline Mutations Are a Risk Factor for Neoplastic Progression Among High-Risk Individuals Undergoing Pancreatic Surveillance. J. Clin. Oncol. 2019;37:1070–1080. doi: 10.1200/JCO.18.01512. PubMed DOI PMC

Vasen H.F.A., Ibrahim I.S., Ponce C.G., Slater E.P., Matthäi E., Carrato Mena A., Earl J., Robbers K., van Mil A.M., Potjer T.P., et al. The benefit of surveillance for pancreatic cancer in high-risk individuals: Outcome of long-term prospective follow-up studies from three European expert centres. J. Clin. Oncol. 2016;34:2010–2019. doi: 10.1200/JCO.2015.64.0730. PubMed DOI

Canto M.I., Almario J.A., Schulick R.D., Yeo C.J., Klein A., Blackford A., Shin E.J., Sanyal A., Yenokyan G., Lennon A.M., et al. Risk of Neoplastic Progression in Individuals at High Risk for Pancreatic Cancer Undergoing Long-term Surveillance. Gastroenterology. 2018;155:740–751.e2. doi: 10.1053/j.gastro.2018.05.035. PubMed DOI PMC

Roberts N., Norris A.L., Petersen G.M., Bondy M.L., Brand R., Gallinger S., Kurtz R.C., Olson S.H., Rustgi A.K., Schwartz A.G., et al. Whole Genome Sequencing Defines the Genetic Heterogeneity of Familial Pancreatic Cancer. Cancer Discov. 2016;6:166–175. doi: 10.1158/2159-8290.CD-15-0402. PubMed DOI PMC

Salo-Mullen E., O’Reilly E.M., Kelsen D.P., Ba A.M.A., Lowery M., Yu K., Reidy D.L., Epstein A., Lincoln A., Saldia A., et al. Identification of germline genetic mutations in patients with pancreatic cancer. Cancer. 2015;121:4382–4388. doi: 10.1002/cncr.29664. PubMed DOI PMC

Takai E., Yachida S., Shimizu K., Furuse J., Kubo E., Ohmoto A., Suzuki M., Hruban R.H., Okusaka T., Morizane C., et al. Germline mutations in Japanese familial pancreatic cancer patients. Oncotarget. 2016;7:74227–74235. doi: 10.18632/oncotarget.12490. PubMed DOI PMC

Bartsch D.K., Sina-Frey M., Ziegler A., Hahn S.A., Przypadlo E., Kress R., Gerdes B., Rieder H. Update of familial pan-creatic cancer in Germany. Pancreatology. 2001;1:510–516. doi: 10.1159/000055853. PubMed DOI

Bartsch D.K., Sina-Frey M., Lang S., Wild A., Gerdes B., Barth P., Kress R., Grützmann R., Colombo-Benkmann M., Ziegler A., et al. CDKN2A Germline Mutations in Familial Pancreatic Cancer. Ann. Surg. 2002;236:730–737. doi: 10.1097/00000658-200212000-00005. PubMed DOI PMC

Hahn S.A., Greenhalf B., Ellis I., Sina-Frey M., Rieder H., Korte B., Gerdes B., Kress R., Ziegler A., Raeburn J.A., et al. BRCA2 Germline Mutations in Familial Pancreatic Carcinoma. J. Natl. Cancer Inst. 2003;95:214–221. doi: 10.1093/jnci/95.3.214. PubMed DOI

Slater E.P., Langer P., Niemczyk E., Strauch K., Butler J., Habbe N., Neoptolemos J., Greenhalf W., Bartsch D.K. PALB2 mutations in European familial pancreatic cancer families. Clin. Genet. 2010;78:490–494. doi: 10.1111/j.1399-0004.2010.01425.x. PubMed DOI

Slater E.P., Langer P., Fendrich V., Habbe N., Chaloupka B., Matthäi E., Sina M., Hahn S.A., Bartsch D.K. Prevalence of BRCA2 and CDKN2a mutations in German familial pancreatic cancer families. Fam. Cancer. 2010;9:335–343. doi: 10.1007/s10689-010-9329-6. PubMed DOI

Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv. 20131303.3997

Jun G., Wing M.K., Abecasis G.R., Kang H.M. An efficient and scalable analysis framework for variant extraction and refinement from population-scale DNA sequence data. Genome Res. 2015;25:918–925. doi: 10.1101/gr.176552.114. PubMed DOI PMC

Wang K., Li M., Hakonarson H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164. doi: 10.1093/nar/gkq603. PubMed DOI PMC

Liu X., Jian X., Boerwinkle E. dbNSFP: A lightweight database of human nonsynonymous SNPs and their functional predic-tions. Hum. Mutat. 2011;32:894–899. doi: 10.1002/humu.21517. PubMed DOI PMC

Liu X., Wu C., Li C., Boerwinkle E. dbNSFP v3.0: A One-Stop Database of Functional Predictions and Annotations for Human Nonsynonymous and Splice-Site SNVs. Hum. Mutat. 2016;37:235–241. doi: 10.1002/humu.22932. PubMed DOI PMC

Genomes Project Consortium. Auton A., Brooks L.D., Durbin R.M., Garrison E.P., Kang H.M., Korbel J.O., Marchini J.L., McCarthy S., McVean G.A., et al. A global reference for human genetic variation. Nature. 2015;526:68–74. PubMed PMC

Khanna K.K. Cancer Risk and the ATM Gene: A Continuing Debate. J. Natl. Cancer Inst. 2000;92:795–802. doi: 10.1093/jnci/92.10.795. PubMed DOI

Rahman N. Realizing the promise of cancer predisposition genes. Nature. 2014;505:302–308. doi: 10.1038/nature12981. PubMed DOI PMC

Jiao X., Liu W., Mahdessian H., Bryant P., Ringdahl J., Timofeeva M., Farrington S.M., Dunlop M., Lindblom A. Recurrent, low-frequency coding variants contributing to colorectal cancer in the Swedish population. PLoS ONE. 2018;13:e0193547. doi: 10.1371/journal.pone.0193547. PubMed DOI PMC

Permuth J.B., Pirie A., Chen Y., Lin H.-Y., Reid B.M., Chen Z., Monteiro A., Dennis J., Mendoza-Fandino G., Anton-Culver H., et al. Exome genotyping arrays to identify rare and low frequency variants associated with epithelial ovarian cancer risk. Hum. Mol. Genet. 2016;25:3600–3612. doi: 10.1093/hmg/ddw196. PubMed DOI PMC

Bartsch D.K., Matthäi E., Mintziras I., Böhm L.B., Gercke N., Bauer C., Figiel J., Slater E.P. Characteristics of Pure Familial Pancreatic Cancer Families and Those with Additional Breast Cancer. Open Access J. Oncol. Med. 2020;4 doi: 10.32474/OAJOM.2020.04.000178. DOI

Couch F.J., Johnson M.R., Rabe K.G., Brune K., De Andrade M., Goggins M., Rothenmund H., Gallinger S., Klein A., Petersen G.M., et al. The Prevalence of BRCA2 Mutations in Familial Pancreatic Cancer. Cancer Epidemiol. Biomark. Prev. 2007;16:342–346. doi: 10.1158/1055-9965.EPI-06-0783. PubMed DOI

Goldstein A., Fraser M., Struewing J., Hussussian C., Ranade K., Zametkin D., Fontaine L., Organic S., Dracopoli N., Clark W.J., et al. Increased risk of pancreatic cancer in melanoma-prone kindreds with p16INK4 mutations. N. Engl. J. Med. 1995;333:970–974. doi: 10.1056/NEJM199510123331504. PubMed DOI

Roberts N., Jiao Y., Yu J., Kopelovich L., Petersen G.M., Bondy M.L., Gallinger S., Schwartz A.G., Syngal S., Cote M.L., et al. ATM Mutations in Patients with Hereditary Pancreatic Cancer. Cancer Discov. 2011;2:41–46. doi: 10.1158/2159-8290.CD-11-0194. PubMed DOI PMC

Takai E., Nakamura H., Chiku S., Kubo E., Ohmoto A., Totoki Y., Shibata T., Higuchi R., Yamamoto M., Furuse J., et al. Whole-exome Sequencing Reveals New Potential Susceptibility Genes for Japanese Familial Pancreatic Cancer. Ann. Surg. 2020 doi: 10.1097/SLA.0000000000004213. PubMed DOI

Grant R.C., Al-Sukhni W., Borgida A.E., Holter S., Kanji Z.S., McPherson T., Whelan E., Serra S., Trinh Q.M., Peltekova V., et al. Exome sequencing identifies nonsegregating nonsense ATM and PALB2 variants in familial pancreatic cancer. Hum. Genom. 2013;7:11. doi: 10.1186/1479-7364-7-11. PubMed DOI PMC

Lavin M.F. Ataxia-telangiectasia: From a rare disorder to a paradigm for cell signalling and cancer. Nat. Rev. Mol. Cell Biol. 2008;9:759–769. doi: 10.1038/nrm2514. PubMed DOI

Roger E., Gout J., Arnold F., Beutel A.K., Müller M., Abaei A., Barth T.F.E., Rasche V., Seufferlein T., Perkhofer L., et al. Maintenance Therapy for ATM-Deficient Pancreatic Cancer by Multiple DNA Damage Response Interferences after Platinum-Based Chemotherapy. Cells. 2020;9:2110. doi: 10.3390/cells9092110. PubMed DOI PMC

Wu F., Zhang Y., Sun B., McMahon A.P., Wang Y. Hedgehog Signaling: From Basic Biology to Cancer Therapy. Cell Chem. Biol. 2017;24:252–280. doi: 10.1016/j.chembiol.2017.02.010. PubMed DOI PMC

Rhim A.D., Oberstein P.E., Thomas D.H., Mirek E.T., Palermo C.F., Sastra S.A., Dekleva E.N., Saunders T., Becerra C.P., Tattersall I., et al. Stromal Elements Act to Restrain, Rather Than Support, Pancreatic Ductal Adenocarcinoma. Cancer Cell. 2014;25:735–747. doi: 10.1016/j.ccr.2014.04.021. PubMed DOI PMC

Pastorino L., Ghiorzo P., Nasti S., Battistuzzi L., Cusano R., Marzocchi C., Garrè M.L., Clementi M., Scarrà G.B. Iden-tification of a SUFU germline mutation in a family with Gorlin syndrome. Am. J. Med. Genet. Part A. 2009;149:1539–1543. doi: 10.1002/ajmg.a.32944. PubMed DOI

Bartsch D.K., Slater E.P., Carrato A., Ibrahim I.S., Ponce C.G., Vasen H., Matthäi E., Earl J., Jendryschek F.S., Figiel J., et al. Refinement of screening for familial pancreatic cancer. Gut. 2016;65:1314–1321. doi: 10.1136/gutjnl-2015-311098. PubMed DOI

Skaro M., Nanda N., Gauthier C., Felsenstein M., Jiang Z., Qiu M., Shindo K., Yu J., Hutchings D., Javed A.A., et al. Prevalence of Germline Mutations Associated with Cancer Risk in Patients with Intraductal Papillary Mucinous Neoplasms. Gastroenterology. 2019;156:1905–1913. doi: 10.1053/j.gastro.2019.01.254. PubMed DOI PMC

Waddell N., Initiative A.P.C.G., Pajic M., Patch A.-M., Chang D., Kassahn K., Bailey P., Johns A.L., Miller D., Nones K., et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature. 2015;518:495–501. doi: 10.1038/nature14169. PubMed DOI PMC

Downs B., Sherman S., Cui J., Kim Y.C., Snyder C., Christensen M., Luo J., Lynch H., Wang S.M. Common genetic variants contribute to incomplete penetrance: Evidence from cancer-free BRCA1 mutation carriers. Eur. J. Cancer. 2019;107:68–78. doi: 10.1016/j.ejca.2018.10.022. PubMed DOI

Nguyen-Dumont T., Myszka A., Karpinski P., Sasiadek M.M., Akopyan H., Hammet F., Tsimiklis H., Park D.J., Pope B.J., Slezak R., et al. FANCM and RECQL genetic variants and breast cancer susceptibility: Relevance to South Poland and West Ukraine. BMC Med Genet. 2018;19:12. doi: 10.1186/s12881-018-0524-x. PubMed DOI PMC

Sanada K., Gupta A., Tsai L.H. Disabled-1-regulated adhesion of migrating neurons to radial glial fiber contributes to neu-ronal positioning during early corticogenesis. Neuron. 2004;42:197–211. doi: 10.1016/S0896-6273(04)00222-3. PubMed DOI

Sato N., Fukushima N., Chang R., Matsubayashi H., Goggins M. Differential and Epigenetic Gene Expression Profiling Identifies Frequent Disruption of the RELN Pathway in Pancreatic Cancers. Gastroenterology. 2006;130:548–565. doi: 10.1053/j.gastro.2005.11.008. PubMed DOI

Brandalize A.P.C., Schuler-Faccini L., Hoffmann J.-S., Caleffi M., Cazaux C., Ashton-Prolla P. A DNA repair variant in POLQ (c.-1060A > G) is associated to hereditary breast cancer patients: A case-control study. BMC Cancer. 2014;14:850. doi: 10.1186/1471-2407-14-850. PubMed DOI PMC

Wang X., Szabo C., Qian C., Amadio P.G., Thibodeau S.N., Cerhan J.R., Petersen G.M., Liu W., Couch F.J. Mutational Analysis of Thirty-two Double-Strand DNA Break Repair Genes in Breast and Pancreatic Cancers. Cancer Res. 2008;68:971–975. doi: 10.1158/0008-5472.CAN-07-6272. PubMed DOI

Felicio P.S., Grasel R.S., Campacci N., de Paula A.E., Galvão H.C.R., Torrezan G.T., Sabato C.S., Fernandes G.C., Souza C.P., Michelli R.D., et al. Whole-exome sequencing of non-BRCA1/BRCA2 mutation carrier cases at high-risk for hereditary breast/ovarian cancer. Hum. Mutat. 2021;42:290–299. doi: 10.1002/humu.24158. PubMed DOI PMC

Family L., Bensen J.T., Troester M.A., Wu M.C., Anders C.K., Olshan A.F. Single-nucleotide polymorphisms in DNA bypass polymerase genes and association with breast cancer and breast cancer subtypes among African Americans and Whites. Breast Cancer Res. Treat. 2014;149:181–190. doi: 10.1007/s10549-014-3203-4. PubMed DOI PMC

Kang X., Lin Z., Xu M., Pan J., Wang Z. Deciphering role of FGFR signalling pathway in pancreatic cancer. Cell Prolif. 2019;52:e12605. doi: 10.1111/cpr.12605. PubMed DOI PMC

Tassi E., Wellstein A. Seminars in Oncology. WB Saunders; Philadelphia, PA, USA: 2006. The Angiogenic Switch Molecule, Secreted FGF-Binding Protein, an Indicator of Early Stages of Pancreatic and Colorectal Adenocarcinoma; pp. 50–56. PubMed PMC

Jia W., Dong Y., Tao L., Pang L., Ren Y., Liang W., Jiang J., Cheng G., Zhang W.J., Yuan X., et al. MAP3K3 overexpression is associated with poor survival in ovarian carcinoma. Hum. Pathol. 2016;50:162–169. doi: 10.1016/j.humpath.2015.12.011. PubMed DOI

Fan Y., Ge N., Wang X., Sun W., Mao R., Bu W., Creighton C.J., Zheng P., Vasudevan S., An L., et al. Amplification and over-expression ofMAP3K3gene in human breast cancer promotes formation and survival of breast cancer cells. J. Pathol. 2014;232:75–86. doi: 10.1002/path.4283. PubMed DOI PMC

Hasan R., Sharma R., Saraya A., Chattopadhyay T.K., Dattagupta S., Walfish P.G., Chauhan S.S., Ralhan R. Mitogen activated protein kinase kinase kinase 3 (MAP3K3/MEKK3) overexpression is an early event in esophageal tumorigenesis and is a predictor of poor disease prognosis. BMC Cancer. 2014;14:2. doi: 10.1186/1471-2407-14-2. PubMed DOI PMC

Slattery M.L., Lundgreen A., Wolff R.K. MAP kinase genes and colon and rectal cancer. Carcinogenesis. 2012;33:2398–2408. doi: 10.1093/carcin/bgs305. PubMed DOI PMC

Haack T.B., Danhauser K., Haberberger B., Hoser J., Strecker V., Boehm D., Uziel G., Lamantea E., Invernizzi F., Poulton J., et al. Exome sequencing identifies ACAD9 mutations as a cause of complex I deficiency. Nat. Genet. 2010;42:1131–1134. doi: 10.1038/ng.706. PubMed DOI

Collet M., Assouline Z., Bonnet D., Rio M., Iserin F., Sidi D., Goldenberg A., Lardennois C., Metodiev M.D., Haberberger B., et al. High incidence and variable clinical outcome of cardiac hypertrophy due to ACAD9 mutations in childhood. Eur. J. Hum. Genet. 2015;24:1112–1116. doi: 10.1038/ejhg.2015.264. PubMed DOI PMC

Iglesias-Gato D., Thysell E., Tyanova S., Crnalic S., Santos A., Lima T.S., Geiger T., Cox J., Widmark A., Bergh A., et al. The Proteome of Prostate Cancer Bone Metastasis Reveals Heterogeneity with Prognostic Implications. Clin. Cancer Res. 2018;24:5433–5444. doi: 10.1158/1078-0432.CCR-18-1229. PubMed DOI

Liu Z., Chai T., Zhang Y., Chu A., Liang B., Guo X., Guo Z., Song R., Hou G., Yuan J., et al. Identification of abnormal nuclear and mitochondrial genes in esophageal cancer cells. Mol. Med. Rep. 2017;17:2817–2826. doi: 10.3892/mmr.2017.8228. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...