Effect of Erythropoietin on the Expression of Murine Transferrin Receptor 2
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
PROGRES Q26
Univerzita Karlova v Praze
SVV 260519
Univerzita Karlova v Praze
PubMed
34360974
PubMed Central
PMC8348427
DOI
10.3390/ijms22158209
PII: ijms22158209
Knihovny.cz E-zdroje
- Klíčová slova
- erythroferrone, exosomes, hepcidin, transferrin receptor,
- MeSH
- cytokiny genetika metabolismus MeSH
- erythropoetin farmakologie MeSH
- erytroblasty účinky léků metabolismus MeSH
- exozómy metabolismus MeSH
- hepcidiny genetika metabolismus MeSH
- játra metabolismus MeSH
- kultivované buňky MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- receptory transferinu genetika metabolismus MeSH
- slezina metabolismus MeSH
- svalové proteiny genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cytokiny MeSH
- Erfe protein, mouse MeSH Prohlížeč
- erythropoetin MeSH
- hepcidiny MeSH
- receptory transferinu MeSH
- svalové proteiny MeSH
- TFR2 protein, mouse MeSH Prohlížeč
Erythropoietin (EPO) downregulates hepcidin expression to increase the availability of iron; the downregulation of hepcidin is mediated by erythroferrone (ERFE) secreted by erythroblasts. Erythroblasts also express transferrin receptor 2 (TFR2); however, the possible role of TFR2 in hepcidin downregulation is unclear. The purpose of the study was to correlate liver expression of hepcidin with the expression of ERFE and TFR2 in murine bone marrow and spleen at 4, 16, 24, 48, 72 and 96 h following administration of a single dose of EPO. Splenic Fam132b expression increased 4 h after EPO injection; liver hepcidin mRNA was decreased at 16 h. In the spleen, expression of TFR2 and transferrin receptor (TFR1) proteins increased by an order of magnitude at 48 and 72 h after EPO treatment. The EPO-induced increase in splenic TFR2 and TFR1 was associated with an increase in the number of Tfr2- and Tfr1-expressing erythroblasts. Plasma exosomes prepared from EPO-treated mice displayed increased amount of TFR1 protein; however, no exosomal TFR2 was detected. Overall, the results confirm the importance of ERFE in stress erythropoiesis, support the role of TFR2 in erythroid cell development, and highlight possible differences in the removal of TFR2 and TFR1 from erythroid cell membranes.
Zobrazit více v PubMed
Camaschella C. Iron deficiency. Blood. 2019;133:30–39. doi: 10.1182/blood-2018-05-815944. PubMed DOI
Sheftel A.D., Mason A.B., Ponka P. The long history of iron in the Universe and in health and disease. Biochim. Biophys. Acta. 2012;1820:161–187. doi: 10.1016/j.bbagen.2011.08.002. PubMed DOI PMC
Kawabata H., Nakamaki T., Ikonomi P., Smith R.D., Germain R.S., Koeffler H.P. Expression of transferrin receptor 2 in normal and neoplastic hematopoietic cells. Blood. 2001;98:2714–2719. doi: 10.1182/blood.V98.9.2714. PubMed DOI
Levy J.E., Jin O., Fujiwara Y., Kuo F., Andrews N.C. Transferrin receptor is necessary for development of erythrocytes and the nervous system. Nat. Genet. 1999;21:396–399. doi: 10.1038/7727. PubMed DOI
Fleming R.E., Ahmann J.R., Migas M.C., Waheed A., Koeffler H.P., Kawabata H., Britton R.S., Bacon B.R., Sly W.S. Targeted mutagenesis of the murine transferrin receptor-2 gene produces hemochromatosis. Proc. Natl. Acad. Sci. USA. 2002;99:10653–10658. doi: 10.1073/pnas.162360699. PubMed DOI PMC
Camaschella C., Roetto A., Calì A., De Gobbi M., Garozzo G., Carella M., Majorano N., Totaro A., Gasparini P. The gene TFR2 is mutated in a new type of haemochromatosis mapping to 7q22. Nat. Genet. 2000;25:14–15. doi: 10.1038/75534. PubMed DOI
Forejtníková H., Vieillevoye M., Zermati Y., Lambert M., Pellegrino R.M., Guihard S., Gaudry M., Camaschella C., Lacombe C., Roetto A., et al. Transferrin receptor 2 is a component of the erythropoietin receptor complex and is required for efficient erythropoiesis. Blood. 2010;116:5357–5367. doi: 10.1182/blood-2010-04-281360. PubMed DOI
Roetto A., Di Cunto F., Pellegrino R.M., Hirsch E., Azzolino O., Bondi A., Defilippi I., Carturan S., Miniscalco B., Riondato F., et al. Comparison of 3 Tfr2-deficient murine models suggests distinct functions for Tfr2-alpha and Tfr2-beta isoforms in different tissues. Blood. 2010;115:3382–3389. doi: 10.1182/blood-2009-09-240960. PubMed DOI
Nai A., Lidonnici M.R., Rausa M., Mandelli G., Pagani A., Silvestri L., Ferrari G., Camaschella C. The second transferrin receptor regulates red blood cell production in mice. Blood. 2015;125:1170–1179. doi: 10.1182/blood-2014-08-596254. PubMed DOI PMC
Rishi G., Secondes E.S., Wallace D.F., Subramaniam V.N. Hematopoietic deletion of transferrin receptor 2 in mice leads to a block in erythroid differentiation during iron-deficient anemia. Am. J. Hematol. 2016;91:812–818. doi: 10.1002/ajh.24417. PubMed DOI
Khalil S., Holy M., Grado S., Fleming R., Kurita R., Nakamura Y., Goldfarb A. A specialized pathway for erythroid iron delivery through lysosomal trafficking of transferrin receptor 2. Blood Adv. 2017;1:1181–1194. doi: 10.1182/bloodadvances.2016003772. PubMed DOI PMC
Artuso I., Lidonnici M.R., Altamura S., Mandelli G., Pettinato M., Muckenthaler M.U., Silvestri L., Ferrari G., Camaschella C., Nai A. Transferrin receptor 2 is a potential novel therapeutic target for β-thalassemia: Evidence from a murine model. Blood. 2018;132:2286–2297. doi: 10.1182/blood-2018-05-852277. PubMed DOI PMC
Wortham A.M., Goldman D.C., Chen J., Fleming W.H., Zhang A.S., Enns C.A. Extrahepatic deficiency of transferrin receptor 2 is associated with increased erythropoiesis independent of iron overload. J. Biol. Chem. 2020;295:3906–3917. doi: 10.1074/jbc.RA119.010535. PubMed DOI PMC
Richard C., Viret S., Cantero Aguilar L., Lefevre C., Leduc M., Faouzi E.H., Azar N., Lavazec C., Mayeux P., Verdier F. Myotonic dystrophy kinase-related CDC42-binding kinase α, a new transferrin receptor type 2-binding partner, is a regulator of erythropoiesis. Am. J. Hematol. 2021;96:480–492. doi: 10.1002/ajh.26104. PubMed DOI
Trenor C.C., Campagna D.R., Sellers V.M., Andrews N.C., Fleming M.D. The molecular defect in hypotransferrinemic mice. Blood. 2000;96:1113–1118. doi: 10.1182/blood.V96.3.1113. PubMed DOI
Nicolas G., Viatte L., Bennoun M., Beaumont C., Kahn A., Vaulont S. Hepcidin, a new iron regulatory peptide. Blood Cells Mol. Dis. 2002;29:327–335. doi: 10.1006/bcmd.2002.0573. PubMed DOI
Vokurka M., Krijt J., Šulc K., Nečas E. Hepcidin mRNA levels in mouse liver respond to inhibition of erythropoiesis. Physiol. Res. 2006;55:667–674. PubMed
Pak M., Lopez M.A., Gabayan V., Ganz T., Rivera S. Suppression of hepcidin during anemia requires erythropoietic activity. Blood. 2006;108:3730–3735. doi: 10.1182/blood-2006-06-028787. PubMed DOI PMC
Kautz L., Jung G., Valore E.V., Rivella S., Nemeth E., Ganz T. Identification of erythroferrone as an erythroid regulator of iron metabolism. Nat. Genet. 2014;46:678–684. doi: 10.1038/ng.2996. PubMed DOI PMC
Arezes J., Foy N., McHugh K., Sawant A., Quinkert D., Terraube V., Brinth A., Tam M., LaVallie E.R., Taylor S., et al. Erythroferrone inhibits the induction of hepcidin by BMP6. Blood. 2018;132:1473–1477. doi: 10.1182/blood-2018-06-857995. PubMed DOI PMC
Arezes J., Foy N., McHugh K., Quinkert D., Benard S., Sawant A., Frost J.N., Armitage A.E., Pasricha S.R., Lim P.J., et al. Antibodies against the erythroferrone N-terminal domain prevent hepcidin suppression and ameliorate murine thalassemia. Blood. 2020;135:547–557. doi: 10.1182/blood.2019003140. PubMed DOI PMC
Wang C.Y., Xu Y., Traeger L., Dogan D.Y., Xiao X., Steinbicker A.U., Babitt J.L. Erythroferrone lowers hepcidin by sequestering BMP2/6 heterodimer from binding to the BMP type I receptor ALK3. Blood. 2020;135:453–456. doi: 10.1182/blood.2019002620. PubMed DOI PMC
Babitt J.L., Huang F.W., Wrighting D.M., Xia Y., Sidis Y., Samad T.A., Campagna J.A., Chung R.T., Schneyer A.L., Woolf C.J., et al. Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. Nat. Genet. 2006;38:531–539. doi: 10.1038/ng1777. PubMed DOI
Meynard D., Kautz L., Darnaud V., Canonne-Hergaux F., Coppin H., Roth M.P. Lack of the bone morphogenetic protein BMP6 induces massive iron overload. Nat. Genet. 2009;41:478–481. doi: 10.1038/ng.320. PubMed DOI
Canali S., Wang C.Y., Zumbrennen-Bullough K.B., Bayer A., Babitt J.L. Bone morphogenetic protein 2 controls iron homeostasis in mice independent of Bmp6. Am. J. Hematol. 2017;92:1204–1213. doi: 10.1002/ajh.24888. PubMed DOI PMC
Rauner M., Baschant U., Roetto A., Pellegrino R.M., Rother S., Salbach-Hirsch J., Weidner H., Hintze V., Campbell G., Petzold A., et al. Transferrin receptor 2 controls bone mass and pathological bone formation via BMP and Wnt signaling. Nat. Metab. 2019;1:111–124. doi: 10.1038/s42255-018-0005-8. PubMed DOI PMC
Frýdlová J., Rogalsky D.W., Truksa J., Nečas E., Vokurka M., Krijt J. Effect of stimulated erythropoiesis on liver SMAD signaling pathway in iron-overloaded and iron-deficient mice. PLoS ONE. 2019;14:e0215028. doi: 10.1371/journal.pone.0215028. PubMed DOI PMC
Chen K., Liu J., Heck S., Chasis J.A., An X., Mohandas N. Resolving the distinct stages in erythroid differentiation based on dynamic changes in membrane protein expression during erythropoiesis. Proc. Natl. Acad. Sci. USA. 2009;106:17413–17418. doi: 10.1073/pnas.0909296106. PubMed DOI PMC
Kohgo Y., Niitsu Y., Kondo H., Kato J., Tsushima N., Sasaki K., Hirayama M., Numata T., Nishisato T., Urushizaki I. Serum transferrin receptor as a new index of erythropoiesis. Blood. 1987;70:1955–1958. doi: 10.1182/blood.V70.6.1955.1955. PubMed DOI
Cook J.D., Skikne B.S., Baynes R.D. Serum transferrin receptor. Annu. Rev. Med. 1993;44:63–74. doi: 10.1146/annurev.me.44.020193.000431. PubMed DOI
Pagani A., Vieillevoye M., Nai A., Rausa M., Ladli M., Lacombe C., Mayeux P., Verdier F., Camaschella C., Silvestri L. Regulation of cell surface transferrin receptor-2 by iron-dependent cleavage and release of a soluble form. Haematologica. 2015;100:458–465. doi: 10.3324/haematol.2014.118521. PubMed DOI PMC
Johnstone R.M., Adam M., Hammond J.R., Orr L., Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes) J. Biol. Chem. 1987;262:9412–9420. doi: 10.1016/S0021-9258(18)48095-7. PubMed DOI
Johnstone R.M. Cleavage of the transferrin receptor by human granulocytes: Preferential proteolysis of the exosome-bound TFR. J. Cell Physiol. 1996;168:333–345. doi: 10.1002/(SICI)1097-4652(199608)168:2<333::AID-JCP12>3.0.CO;2-4. PubMed DOI
Paulson R.F., Shi L., Wu D.C. Stress erythropoiesis: New signals and new stress progenitor cells. Curr. Opin. Hematol. 2011;18:139–145. doi: 10.1097/MOH.0b013e32834521c8. PubMed DOI PMC
Mirciov C.S.G., Wilkins S.J., Hung G.C.C., Helman S.L., Anderson G.J., Frazer D.M. Circulating iron levels influence the regulation of hepcidin following stimulated erythropoiesis. Haematologica. 2018;103:1616–1626. doi: 10.3324/haematol.2017.187245. PubMed DOI PMC
Krijt J., Jonášová A., Neuwirtová R., Nečas E. Effect of erythropoietin on hepcidin expression in hemojuvelin-mutant mice. Blood Cells Mol. Dis. 2010;44:257–261. doi: 10.1016/j.bcmd.2010.02.012. PubMed DOI
Coffey R., Sardo U., Kautz L., Gabayan V., Nemeth E., Ganz T. Erythroferrone is not required for the glucoregulatory and hematologic effects of chronic erythropoietin treatment in mice. Physiol. Rep. 2018;6:e13890. doi: 10.14814/phy2.13890. PubMed DOI PMC
Casey J.L., Hentze M.W., Koeller D.M., Caughman S.W., Rouault T.A., Klausner R.D., Harford J.B. Iron-responsive elements: Regulatory RNA sequences that control mRNA levels and translation. Science. 1988;240:924–928. doi: 10.1126/science.2452485. PubMed DOI
Lok C.N., Ponka P. Identification of an erythroid active element in the transferrin receptor gene. J. Biol. Chem. 2000;275:24185–24190. doi: 10.1074/jbc.M000944200. PubMed DOI
Vogt T.M., Blackwell A.D., Giannetti A.M., Bjorkman P.J., Enns C.A. Heterotypic interactions between transferrin receptor and transferrin receptor 2. Blood. 2003;101:2008–2014. doi: 10.1182/blood-2002-09-2742. PubMed DOI
Guillemot J., Canuel M., Essalmani R., Prat A., Seidah N.G. Implication of the proprotein convertases in iron homeostasis: Proprotein convertase 7 sheds human transferrin receptor 1 and furin activates hepcidin. Hepatology. 2013;57:2514–2524. doi: 10.1002/hep.26297. PubMed DOI
Gautier E.F., Leduc M., Ladli M., Schulz V.P., Lefèvre C., Boussaid I., Fontenay M., Lacombe C., Verdier F., Guillonneau F., et al. Comprehensive proteomic analysis of murine terminal erythroid differentiation. Blood Adv. 2020;4:1464–1477. doi: 10.1182/bloodadvances.2020001652. PubMed DOI PMC
Calzolari A., Raggi C., Deaglio S., Sposi N.M., Stafsnes M., Fecchi K., Parolini I., Malavasi F., Peschle C., Sargiacomo M., et al. TfR2 localizes in lipid raft domains and is released in exosomes to activate signal transduction along the MAPK pathway. J. Cell Sci. 2006;119:4486–4498. doi: 10.1242/jcs.03228. PubMed DOI
Sadvakassova G., Tiedemann K., Steer K.J.D., Mikolajewicz N., Stavnichuk M., In-Kyung Lee I., Sabirova Z., Schranzhofer M., Komarova S.V. Active hematopoiesis triggers exosomal release of PRDX2 that promotes osteoclast formation. Physiol. Rep. 2021;9:e14745. doi: 10.14814/phy2.14745. PubMed DOI PMC