Effect of stimulated erythropoiesis on liver SMAD signaling pathway in iron-overloaded and iron-deficient mice
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30958854
PubMed Central
PMC6453526
DOI
10.1371/journal.pone.0215028
PII: PONE-D-18-35722
Knihovny.cz E-zdroje
- MeSH
- deficit železa * MeSH
- erythropoetin aplikace a dávkování MeSH
- erytropoéza účinky léků MeSH
- fosforylace MeSH
- hepcidiny genetika metabolismus MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- přetížení železem metabolismus patologie MeSH
- proteiny Smad genetika metabolismus MeSH
- regulace genové exprese účinky léků MeSH
- železo aplikace a dávkování MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- erythropoetin MeSH
- Hamp protein, mouse MeSH Prohlížeč
- hepcidiny MeSH
- proteiny Smad MeSH
- železo MeSH
Expression of hepcidin, the hormone regulating iron homeostasis, is increased by iron overload and decreased by accelerated erythropoiesis or iron deficiency. The purpose of the study was to examine the effect of these stimuli, either alone or in combination, on the main signaling pathway controlling hepcidin biosynthesis in the liver, and on the expression of splenic modulators of hepcidin biosynthesis. Liver phosphorylated SMAD 1 and 5 proteins were determined by immunoblotting in male mice treated with iron dextran, kept on an iron deficient diet, or administered recombinant erythropoietin for four consecutive days. Administration of iron increased liver phosphorylated SMAD protein content and hepcidin mRNA content; subsequent administration of erythropoietin significantly decreased both the iron-induced phosphorylated SMAD proteins and hepcidin mRNA. These results are in agreement with the recent observation that erythroferrone binds and inactivates the BMP6 protein. Administration of erythropoietin substantially increased the amount of erythroferrone and transferrin receptor 2 proteins in the spleen; pretreatment with iron did not influence the erythropoietin-induced content of these proteins. Erythropoietin-treated iron-deficient mice displayed smaller spleen size in comparison with erythropoietin-treated mice kept on a control diet. While the erythropoietin-induced increase in splenic erythroferrone protein content was not significantly affected by iron deficiency, the content of transferrin receptor 2 protein was lower in the spleens of erythropoietin-treated mice kept on iron-deficient diet, suggesting posttranscriptional regulation of transferrin receptor 2. Interestingly, iron deficiency and erythropoietin administration had additive effect on hepcidin gene downregulation in the liver. In mice subjected both to iron deficiency and erythropoietin administration, the decrease of hepcidin expression was much more pronounced than the decrease in phosphorylated SMAD protein content or the decrease in the expression of the SMAD target genes Id1 and Smad7. These results suggest the existence of another, SMAD-independent pathway of hepcidin gene downregulation.
Zobrazit více v PubMed
Sheftel AD, Mason AB, Ponka P. The long history of iron in the Universe and in health and disease. Biochim Biophys Acta. 2012;1820: 161–187. 10.1016/j.bbagen.2011.08.002 PubMed DOI PMC
Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306(5704): 2090–2093. 10.1126/science.1104742 PubMed DOI
Papanikolaou G, Pantopoulos K. Systemic iron homeostasis and erythropoiesis. IUBMB Life. 2017;69: 399–413. 10.1002/iub.1629 PubMed DOI
Wallace DF. The Regulation of Iron Absorption and Homeostasis. Clin Biochem Rev. 2016;37: 51–62. PubMed PMC
Wang CY, Babitt JL. Liver iron sensing and body iron homeostasis. Blood. 2019;133(1): 18–29. 10.1182/blood-2018-06-815894 PubMed DOI PMC
Enns CA, Ahmed R, Wang J, Ueno A, Worthen C, Tsukamoto H, et al. Increased iron loading induces Bmp6 expression in the non-parenchymal cells of the liver independent of the BMP-signaling pathway. PLoS One. 2013;8(4): e60534 10.1371/journal.pone.0060534 PubMed DOI PMC
Rausa M, Pagani A, Nai A, Campanella A, Gilberti ME, Apostoli P, et al. Bmp6 expression in murine liver non parenchymal cells: a mechanism to control their high iron exporter activity and protect hepatocytes from iron overload? PLoS One. 2015;10(4): e0122696 10.1371/journal.pone.0122696 PubMed DOI PMC
Canali S, Zumbrennen-Bullough KB, Core AB, Wang CY, Nairz M, Bouley R, et al. Endothelial cells produce bone morphogenetic protein 6 required for iron homeostasis in mice. Blood. 2017;129(4): 405–414. 10.1182/blood-2016-06-721571 PubMed DOI PMC
Steinbicker AU, Bartnikas TB, Lohmeyer LK, Leyton P, Mayeur C, Kao SM, et al. Perturbation of hepcidin expression by BMP type I receptor deletion induces iron overload in mice. Blood. 2011;118(15): 4224–4230. 10.1182/blood-2011-03-339952 PubMed DOI PMC
Mayeur C, Leyton PA, Kolodziej SA, Yu B, Bloch KD. BMP type II receptors have redundant roles in the regulation of hepatic hepcidin gene expression and iron metabolism. Blood. 2014;124(13): 2116–2123. 10.1182/blood-2014-04-572644 PubMed DOI PMC
Papanikolaou G, Samuels ME, Ludwig EH, MacDonald ML, Franchini PL, Dubé MP, et al. Mutations in HFE2 cause iron overload in chromosome 1q-linked juvenile hemochromatosis. Nat Genet. 2004;36(1): 77–82. 10.1038/ng1274 PubMed DOI
Feder JN, Gnirke A, Thomas W, Tsuchihashi Z, Ruddy DA, Basava A, et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet. 1996;13(4): 399–408. 10.1038/ng0896-399 PubMed DOI
Kawabata H, Yang R, Hirama T, Vuong PT, Kawano S, Gombart AF, et al. Molecular cloning of transferrin receptor 2. A new member of the transferrin receptor-like family. J Biol Chem. 1999;274(30): 20826–20832. PubMed
Babitt JL, Huang FW, Wrighting DM, Xia Y, Sidis Y, Samad TA, et al. Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. Nat Genet. 2006;38(5): 531–539. 10.1038/ng1777 PubMed DOI
Forejtniková H, Vieillevoye M, Zermati Y, Lambert M, Pellegrino RM, Guihard S et al. Transferrin receptor 2 is a component of the erythropoietin receptor complex and is required for efficient erythropoiesis. Blood. 2010;116(24): 5357–5367. 10.1182/blood-2010-04-281360 PubMed DOI
Wallace DF, Secondes ES, Rishi G, Ostini L, McDonald CJ, Lane SW, et al. A critical role for murine transferrin receptor 2 in erythropoiesis during iron restriction. Br J Haematol. 2015;168(6): 891–901. 10.1111/bjh.13225 PubMed DOI
Nai A, Lidonnici MR, Rausa M, Mandelli G, Pagani A, Silvestri L, et al. The second transferrin receptor regulates red blood cell production in mice. Blood. 2015;125(7): 1170–1179. 10.1182/blood-2014-08-596254 PubMed DOI PMC
Nicolas G, Chauvet C, Viatte L, Danan JL, Bigard X, Devaux I, et al. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest. 2002;110(7): 1037–1044. 10.1172/JCI15686 PubMed DOI PMC
Vokurka M, Krijt J, Sulc K, Necas E. Hepcidin mRNA levels in mouse liver respond to inhibition of erythropoiesis. Physiol Res. 2006;55(6): 667–674. PubMed
Pak M, Lopez MA, Gabayan V, Ganz T, Rivera S. Suppression of hepcidin during anemia requires erythropoietic activity. Blood. 2006;108(12): 3730–3735. 10.1182/blood-2006-06-028787 PubMed DOI PMC
Tanno T, Bhanu NV, Oneal PA, Goh SH, Staker P, Lee YT, et al. High levels of GDF15 in thalassemia suppress expression of the iron regulatory protein hepcidin. Nat Med. 2007;13(9): 1096–1101. 10.1038/nm1629 PubMed DOI
Tanno T, Porayette P, Sripichai O, Noh SJ, Byrnes C, Bhupatiraju A, et al. Identification of TWSG1as a second novel erythroid regulator of hepcidin expression in murine and human cells. Blood. 2009;114(1): 181–186. 10.1182/blood-2008-12-195503 PubMed DOI PMC
Kautz L, Jung G, Valore EV, Rivella S, Nemeth E, Ganz T. Identification of erythroferrone as an erythroid regulator of iron metabolism. Nat Genet. 2014;46(7): 678–684. 10.1038/ng.2996 PubMed DOI PMC
Coffey R, Sardo U, Kautz L, Gabayan V, Nemeth E, Ganz T. Erythroferrone is not required for the glucoregulatory and hematologic effects of chronic erythropoietin treatment in mice. Physiol Rep. 2018. September;6(19):e13890 10.14814/phy2.13890 PubMed DOI PMC
Kautz L, Jung G, Du X, Gabayan V, Chapman J, Nasoff M, et al. Erythroferrone contributes to hepcidin suppression and iron overload in a mouse model of β-thalassemia. Blood. 2015. October 22;126(17):2031–7. 10.1182/blood-2015-07-658419 PubMed DOI PMC
Wang CY, Core AB, Canali S, Zumbrennen-Bullough KB, Ozer S, Umans L, et al. Smad1/5 is required for erythropoietin-mediated suppression of hepcidin in mice. Blood. 2017;130(1): 73–83. 10.1182/blood-2016-12-759423 PubMed DOI PMC
Arezes J, Foy N, McHugh K, Sawant A, Quinkert D, Terraube V, et al. Erythroferrone inhibits the induction of hepcidin by BMP6. Blood. 2018;132(14): 1473–1477. 10.1182/blood-2018-06-857995 PubMed DOI PMC
Cazzola M, Beguin Y, Bergamaschi G, Guarnone R, Cerani P, Barella S, et al. Soluble transferrin receptor as a potential determinant of iron loading in congenital anaemias due to ineffective erythropoiesis. Br J Haematol. 1999;106(3): 752–755. PubMed
Krijt J, Jonásová A, Neuwirtová R, Necas E. Effect of erythropoietin on hepcidin expression in hemojuvelin-mutant mice. Blood Cells Mol Dis. 2010;44(4): 257–261. 10.1016/j.bcmd.2010.02.012 PubMed DOI
Nai A, Rubio A, Campanella A, Gourbeyre O, Artuso I, Bordini J, et al. Limiting hepatic Bmp-Smad signaling by matriptase-2 is required for erythropoietin-mediated hepcidin suppression in mice. Blood. 2016;127(19): 2327–2336. 10.1182/blood-2015-11-681494 PubMed DOI PMC
Finberg KE, Heeney MM, Campagna DR, Aydinok Y, Pearson HA, Hartman KR, et al. Mutations in TMPRSS6 cause iron-refractory iron deficiency anemia (IRIDA). Nat Genet. 2008;40(5): 569–571. 10.1038/ng.130 PubMed DOI PMC
Du X, She E, Gelbart T, Truksa J, Lee P, Xia Y, et al. The serine protease TMPRSS6 is required to sense iron deficiency. Science. 2008;320(5879): 1088–1092. 10.1126/science.1157121 PubMed DOI PMC
Folgueras AR, de Lara FM, Pendás AM, Garabaya C, Rodríguez F, Astudillo A, et al. Membrane-bound serine protease matriptase-2 (Tmprss6) is an essential regulator of iron homeostasis. Blood. 2008;112(6): 2539–2545. 10.1182/blood-2008-04-149773 PubMed DOI
Silvestri L, Pagani A, Nai A, De Domenico I, Kaplan J, Camaschella C. The serine protease matriptase-2 (TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin. Cell Metab. 2008;8(6): 502–511. 10.1016/j.cmet.2008.09.012 PubMed DOI PMC
Wahedi M, Wortham AM, Kleven MD, Zhao N, Jue S, Enns CA, et al. Matriptase-2 suppresses hepcidin expression by cleaving multiple components of the hepcidin induction pathway. J Biol Chem. 2017;292(44): 18354–18371. 10.1074/jbc.M117.801795 PubMed DOI PMC
Finberg KE, Whittlesey RL, Andrews NC. Tmprss6 is a genetic modifier of the Hfe-hemochromatosis phenotype in mice. Blood. 2011;117(17): 4590–4599. 10.1182/blood-2010-10-315507 PubMed DOI PMC
Frýdlová J, Rychtarčíková Z, Gurieva I, Vokurka M, Truksa J, Krijt J. Effect of erythropoietin administration on proteins participating in iron homeostasis in Tmprss6-mutated mask mice. PLoS One. 2017. October 26;12(10):e0186844 10.1371/journal.pone.0186844 PubMed DOI PMC
Nicolas G, Deschemin JC, Ramsay AJ, Mayeux P, Grandchamp B, Beaumont C, et al. Is EPO therapy able to correct iron deficiency anaemia caused by matriptase-2 deficiency? Br J Haematol. 2011;152(4): 498–500. 10.1111/j.1365-2141.2010.08473.x PubMed DOI
Lee P. Response to the letter by Nicolas et al, BJH-2010-01422. Br J Haematol. 2011;152(6): 785–6. 10.1111/j.1365-2141.2010.08475.x PubMed DOI
Torrance JD, Bothwell TH. Tissue iron stores In: Cook JD, editor. Methods in hematology, Vol. 1 New York: Churchill Livingstone; 1981. p. 90–115.
Paulson RF, Shi L, Wu DC. Stress erythropoiesis: new signals and new stress progenitor cells. Curr Opin Hematol. 2011;18(3): 139–145. 10.1097/MOH.0b013e32834521c8 PubMed DOI PMC
Kautz L, Meynard D, Monnier A, Darnaud V, Bouvet R, Wang RH, et al. Iron regulates phosphorylation of Smad1/5/8 and gene expression of Bmp6, Smad7, Id1, and Atoh8 in the mouse liver. Blood. 2008;112(4): 1503–1509. 10.1182/blood-2008-03-143354 PubMed DOI
Huang H, Constante M, Layoun A, Santos MM. Contribution of STAT3 and SMAD4 pathways to the regulation of hepcidin by opposing stimuli. Blood. 2009;113(15): 3593–3599. 10.1182/blood-2008-08-173641 PubMed DOI PMC
Ganz T. Erythropoietic regulators of iron metabolism. Free Radic Biol Med. 2018. pii: S0891-5849(18)31188-2. 10.1016/j.freeradbiomed.2018.07.003 PubMed DOI PMC
Gurieva I, Frýdlová J, Rychtarčíková Z, Vokurka M, Truksa J, Krijt J. Erythropoietin administration increases splenic erythroferrone protein content and liver TMPRSS6 protein content in rats. Blood Cells Mol Dis. 2017;64: 1–7. 10.1016/j.bcmd.2017.02.007 PubMed DOI
Artuso I, Lidonnici MR, Altamura S, Mandelli G, Pettinato M, Muckenthaler MU, et al. Transferrin receptor 2 is apotential novel therapeutic target for β-thalassemia: evidence from a murine model. Blood. 2018;132(21): 2286–2297. 10.1182/blood-2018-05-852277 PubMed DOI PMC
Pagani A, Vieillevoye M, Nai A, Rausa M, Ladli M, Lacombe C, et al. Regulation of cell surface transferrin receptor-2 by iron-dependent cleavage and release of a soluble form. Haematologica. 2015;100(4): 458–465. 10.3324/haematol.2014.118521 PubMed DOI PMC
Rauner M, Baschant U, Roetto A, Pellegrino RM, Rother S, Salbach-Hirsch J, et al. Transferrin receptor 2 controls bone mass and pathological bone formation via BMP and Wnt signalling. Nat Metab. 2019; 1(1): 111–124. 10.1038/s42255-018-0005-8 PubMed DOI PMC
Johnson MB, Enns CA. Diferric transferrin regulates transferrin receptor 2 protein stability. Blood. 2004;104(13): 4287–4293. 10.1182/blood-2004-06-2477 PubMed DOI
Robb A, Wessling-Resnick M. Regulation of transferrin receptor 2 protein levels by transferrin. Blood. 2004;104(13): 4294–4299. 10.1182/blood-2004-06-2481 PubMed DOI
Mirciov CSG, Wilkins SJ, Hung GCC, Helman SL, Anderson GJ, Frazer DM. Circulating iron levels influence the regulation of hepcidin following stimulated erythropoiesis. Haematologica. 2018;103(10): 1616–1626. 10.3324/haematol.2017.187245 PubMed DOI PMC
Kawabata H. Transferrin and transferrin receptors update. Free Radic Biol Med. 2018. June 30 pii: S0891-5849(18)31160-2. 10.1016/j.freeradbiomed.2018.06.037 PubMed DOI
Khalil S, Holy M, Grado S, Fleming R, Kurita R, Nakamura Y, et al. A specialized pathway for erythroid iron delivery through lysosomal trafficking of transferrin receptor 2. Blood Adv. 2017;1(15): 1181–1194. 10.1182/bloodadvances.2016003772 PubMed DOI PMC
Mueller K, Sunami Y, Stuetzle M, Guldiken N, Kucukoglu O, Mueller S, et al. CHOP-mediated hepcidin suppression modulates hepatic iron load. J Pathol. 2013;231(4): 532–542. 10.1002/path.4221 PubMed DOI
Chen H, Choesang T, Li H, Sun S, Pham P, Bao W, et al. Increased hepcidin in transferrin-treated thalassemic mice correlates with increased liver BMP2 expression and decreased hepatocyte ERK activation. Haematologica. 2016;101(3): 297–308. 10.3324/haematol.2015.127902 PubMed DOI PMC
López-Rovira T, Chalaux E, Massagué J, Rosa JL, Ventura F. Direct binding of Smad1 and Smad4 to two distinct motifs mediates bone morphogenetic protein-specific transcriptional activation of Id1 gene. J Biol Chem. 2002;277(5): 3176–3185. 10.1074/jbc.M106826200 PubMed DOI
Korchynskyi O, ten Dijke P. Identification and functional characterization of distinct critically important bone morphogenetic protein-specific response elements in the Id1 promoter. J Biol Chem. 2002. February 15;277(7):4883–91. 10.1074/jbc.M111023200 PubMed DOI
Effect of Erythropoietin on the Expression of Murine Transferrin Receptor 2