The Impact of Long-Term Antibiotic Therapy of Cutaneous Adverse Reactions to EGFR Inhibitors in Colorectal Cancer Patients
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
PN-III-P1-1.1-PD-2019-1225
Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
PubMed
34362003
PubMed Central
PMC8347035
DOI
10.3390/jcm10153219
PII: jcm10153219
Knihovny.cz E-zdroje
- Klíčová slova
- EGFR inhibitors, Fusobacterium nucleatum, acneiform rash, gut microbiome dysbiosis, long-term antibiotic therapy, metastatic colorectal cancer, papulo-pustular rash, tetracyclines,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Colorectal cancer (CRC) is an important public health issue, in terms of incidence and mortality, with approximately 1.8 million new cases reported worldwide in 2018. Advancements in understanding pathophysiological key steps in CRC tumorigenesis have led to the development of new targeted therapies such as those based on epidermal growth factor receptor inhibitors (EGFR inhibitors). The cutaneous adverse reactions induced by EGFR inhibitors, particularly papulopustular rash, often require long-term antibiotic treatment with tetracycline agents (mostly minocycline and doxycycline). However, this raises several issues of concern: possible occurrence of gut dysbiosis in already vulnerable CRC patients, selection of highly antibiotic resistant and/or virulent clones, development of adverse reactions related to tetracyclines, interference of antibiotics with the response to oncologic therapy, with a negative impact on disease prognosis etc. In the context of scarce information regarding these issues and controversial opinions regarding the role of tetracyclines in patients under EGFR inhibitors, our aim was to perform a thorough literature review and discuss the main challenges raised by long-term use of tetracyclines in advanced CRC patients receiving this targeted therapy.
Zobrazit více v PubMed
Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492. PubMed DOI
Dekker E., Tanis P.J., Vleugels J.L.A., Kasi P.M., Wallace M.B. Colorectal cancer. Lancet. 2019;394:1467–1480. doi: 10.1016/S0140-6736(19)32319-0. PubMed DOI
Chan D.L.H., Segelov E., Wong R.S., Smith A., Herbertson R.A., Li B.T., Tebbutt N., Price T., Pavlakis N. Epidermal growth factor receptor (EGFR) inhibitors for metastatic colorectal cancer. Cochrane Database Syst. Rev. 2017;6:Cd007047. doi: 10.1002/14651858.CD007047.pub2. PubMed DOI PMC
Guggina L.M., Choi A.W., Choi J.N. EGFR Inhibitors and Cutaneous Complications: A Practical Approach to Management. Oncol. Ther. 2017;5:135–148. doi: 10.1007/s40487-017-0050-6. DOI
Bachet J.B., Peuvrel L., Bachmeyer C., Reguiai Z., Gourraud P.A., Bouché O., Ychou M., Bensadoun R.J., Dreno B., André T. Folliculitis induced by EGFR inhibitors, preventive and curative efficacy of tetracyclines in the management and incidence rates according to the type of EGFR inhibitor administered: A systematic literature review. Oncologist. 2012;17:555–568. doi: 10.1634/theoncologist.2011-0365. PubMed DOI PMC
Su X., Lacouture M.E., Jia Y., Wu S. Risk of high-grade skin rash in cancer patients treated with cetuximab--an antibody against epidermal growth factor receptor: Systemic review and meta-analysis. Oncology. 2009;77:124–133. doi: 10.1159/000229752. PubMed DOI
Chanprapaph K., Vachiramon V., Rattanakaemakorn P. Epidermal growth factor receptor inhibitors: A review of cutaneous adverse events and management. Dermatol. Res. Pract. 2014;2014:734249. doi: 10.1155/2014/734249. PubMed DOI PMC
Burtness B., Goldwasser M.A., Flood W., Mattar B., Forastiere A.A. Phase III randomized trial of cisplatin plus placebo compared with cisplatin plus cetuximab in metastatic/recurrent head and neck cancer: An Eastern Cooperative Oncology Group study. J. Clin. Oncol. 2005;23:8646–8654. doi: 10.1200/JCO.2005.02.4646. PubMed DOI
Cunningham D., Humblet Y., Siena S., Khayat D., Bleiberg H., Santoro A., Bets D., Mueser M., Harstrick A., Verslype C., et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N. Engl. J. Med. 2004;351:337–345. doi: 10.1056/NEJMoa033025. PubMed DOI
Fakih M., Vincent M. Adverse events associated with anti-EGFR therapies for the treatment of metastatic colorectal cancer. Curr. Oncol. 2010;17(Suppl. 1):S18–S30. doi: 10.3747/co.v17is1.616. PubMed DOI PMC
Molinari E., De Quatrebarbes J., André T., Aractingi S. Cetuximab-induced acne. Dermatology. 2005;211:330–333. doi: 10.1159/000088502. PubMed DOI
Lacouture M.E., Anadkat M.J., Bensadoun R.J., Bryce J., Chan A., Epstein J.B., Eaby-Sandy B., Murphy B.A. Clinical practice guidelines for the prevention and treatment of EGFR inhibitor-associated dermatologic toxicities. Support Care Cancer. 2011;19:1079–1095. doi: 10.1007/s00520-011-1197-6. PubMed DOI PMC
Cury-Martins J., Eris A.P.M., Abdalla C.M.Z., Silva G.B., Moura V.P.T., Sanches J.A. Management of dermatologic adverse events from cancer therapies: Recommendations of an expert panel. An. Bras. Dermatol. 2020;95:221–237. doi: 10.1016/j.abd.2020.01.001. PubMed DOI PMC
Rothschild S.I., Betticher D., Zenhäusern R., Anchisi S., von Moos R., Pless M., Moosmann P., Popescu R.A., Calderoni A., Dressler M., et al. Prospective, observational practice survey of applied skin care and management of cetuximab-related skin reactions: PROSKIN study. Cancer Chemother. Pharmacol. 2019;84:881–889. doi: 10.1007/s00280-019-03927-x. PubMed DOI PMC
Kripp M., Prasnikar N., Vehling-Kaiser U., Quidde J., Al-Batran S.E., Stein A., Neben K., Hannig C.V., Tessen H.W., Trarbach T., et al. AIO LQ-0110: A randomized phase II trial comparing oral doxycycline versus local administration of erythromycin as preemptive treatment strategies of panitumumab-mediated skin toxicity in patients with metastatic colorectal cancer. Oncotarget. 2017;8:105061–105071. doi: 10.18632/oncotarget.21249. PubMed DOI PMC
Albertha Health Services Prevention and treatment of acneiform rash in patients treated with EGFR inhibitor therapies. [(accessed on 23 May 2021)];Clin. Pract. Guidel. 2012 Available online: https://www.albertahealthservices.ca/assets/info/hp/cancer/if-hp-cancer-guide-supp003-egfri-rash.pdf.
Hofheinz R.D., Deplanque G., Komatsu Y., Kobayashi Y., Ocvirk J., Racca P., Guenther S., Zhang J., Lacouture M.E., Jatoi A. Recommendations for the Prophylactic Management of Skin Reactions Induced by Epidermal Growth Factor Receptor Inhibitors in Patients With Solid Tumors. Oncologist. 2016;21:1483–1491. doi: 10.1634/theoncologist.2016-0051. PubMed DOI PMC
Yrjänheikki J., Keinänen R., Pellikka M., Hökfelt T., Koistinaho J. Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc. Natl. Acad. Sci. USA. 1998;95:15769–15774. doi: 10.1073/pnas.95.26.15769. PubMed DOI PMC
Tamargo R.J., Bok R.A., Brem H. Angiogenesis inhibition by minocycline. Cancer Res. 1991;51:672–675. PubMed
Sapadin A.N., Fleischmajer R. Tetracyclines: Nonantibiotic properties and their clinical implications. J. Am. Acad. Dermatol. 2006;54:258–265. doi: 10.1016/j.jaad.2005.10.004. PubMed DOI
Onoda T., Ono T., Dhar D.K., Yamanoi A., Fujii T., Nagasue N. Doxycycline inhibits cell proliferation and invasive potential: Combination therapy with cyclooxygenase-2 inhibitor in human colorectal cancer cells. J. Lab. Clin. Med. 2004;143:207–216. doi: 10.1016/j.lab.2003.12.012. PubMed DOI
Ciardiello F., Tortora G. Epidermal growth factor receptor (EGFR) as a target in cancer therapy: Understanding the role of receptor expression and other molecular determinants that could influence the response to anti-EGFR drugs. Eur. J. Cancer. 2003;39:1348–1354. doi: 10.1016/S0959-8049(03)00235-1. PubMed DOI
Mizukami T., Izawa N., Nakajima T.E., Sunakawa Y. Targeting EGFR and RAS/RAF Signaling in the Treatment of Metastatic Colorectal Cancer: From Current Treatment Strategies to Future Perspectives. Drugs. 2019;79:633–645. doi: 10.1007/s40265-019-01113-0. PubMed DOI
Normanno N., De Luca A., Bianco C., Strizzi L., Mancino M., Maiello M.R., Carotenuto A., De Feo G., Caponigro F., Salomon D.S. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene. 2006;366:2–16. doi: 10.1016/j.gene.2005.10.018. PubMed DOI
Heinemann V., von Weikersthal L.F., Decker T., Kiani A., Vehling-Kaiser U., Al-Batran S.E., Heintges T., Lerchenmüller C., Kahl C., Seipelt G., et al. FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): A randomised, open-label, phase 3 trial. Lancet Oncol. 2014;15:1065–1075. doi: 10.1016/S1470-2045(14)70330-4. PubMed DOI
De Leeuw I. Atherogenic profiles in insulin-dependent diabetic patients and their treatment. Eur. J. Epidemiol. 1992;8(Suppl. 1):125–128. doi: 10.1007/BF00145363. PubMed DOI
Dutta P.R., Maity A. Cellular responses to EGFR inhibitors and their relevance to cancer therapy. Cancer Lett. 2007;254:165–177. doi: 10.1016/j.canlet.2007.02.006. PubMed DOI PMC
Ciardiello F., Tortora G. EGFR antagonists in cancer treatment. N. Engl. J. Med. 2008;358:1160–1174. doi: 10.1056/NEJMra0707704. PubMed DOI
Xie Y.H., Chen Y.X., Fang J.Y. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct. Target. Ther. 2020;5:22. doi: 10.1038/s41392-020-0116-z. PubMed DOI PMC
Miyamoto Y., Suyama K., Baba H. Recent Advances in Targeting the EGFR Signaling Pathway for the Treatment of Metastatic Colorectal Cancer. Int. J. Mol. Sci. 2017;18:752. doi: 10.3390/ijms18040752. PubMed DOI PMC
Li S., Schmitz K.R., Jeffrey P.D., Wiltzius J.J., Kussie P., Ferguson K.M. Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell. 2005;7:301–311. doi: 10.1016/j.ccr.2005.03.003. PubMed DOI
Snyder L.C., Astsaturov I., Weiner L.M. Overview of monoclonal antibodies and small molecules targeting the epidermal growth factor receptor pathway in colorectal cancer. Clin. Colorectal Cancer. 2005;5(Suppl. 2):S71–S80. doi: 10.3816/CCC.2005.s.010. PubMed DOI
Douillard J.Y., Siena S., Cassidy J., Tabernero J., Burkes R., Barugel M., Humblet Y., Bodoky G., Cunningham D., Jassem J., et al. Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: The PRIME study. J. Clin. Oncol. 2010;28:4697–4705. doi: 10.1200/JCO.2009.27.4860. PubMed DOI
Peeters M., Price T.J., Cervantes A., Sobrero A.F., Ducreux M., Hotko Y., André T., Chan E., Lordick F., Punt C.J., et al. Randomized phase III study of panitumumab with fluorouracil, leucovorin, and irinotecan (FOLFIRI) compared with FOLFIRI alone as second-line treatment in patients with metastatic colorectal cancer. J. Clin. Oncol. 2010;28:4706–4713. doi: 10.1200/JCO.2009.27.6055. PubMed DOI
Van Cutsem E., Köhne C.H., Láng I., Folprecht G., Nowacki M.P., Cascinu S., Shchepotin I., Maurel J., Cunningham D., Tejpar S., et al. Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: Updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J. Clin. Oncol. 2011;29:2011–2019. doi: 10.1200/JCO.2010.33.5091. PubMed DOI
Fuchs E., Raghavan S. Getting under the skin of epidermal morphogenesis. Nat. Rev. Genet. 2002;3:199–209. doi: 10.1038/nrg758. PubMed DOI
Hu J.C., Sadeghi P., Pinter-Brown L.C., Yashar S., Chiu M.W. Cutaneous side effects of epidermal growth factor receptor inhibitors: Clinical presentation, pathogenesis, and management. J. Am. Acad. Dermatol. 2007;56:317–326. doi: 10.1016/j.jaad.2006.09.005. PubMed DOI
Macdonald J.B., Macdonald B., Golitz L.E., LoRusso P., Sekulic A. Cutaneous adverse effects of targeted therapies: Part I: Inhibitors of the cellular membrane. J. Am. Acad. Dermatol. 2015;72:203–218. doi: 10.1016/j.jaad.2014.07.032. PubMed DOI
Wnorowski A.M., de Souza A., Chachoua A., Cohen D.E. The management of EGFR inhibitor adverse events: A case series and treatment paradigm. Int. J. Dermatol. 2012;51:223–232. doi: 10.1111/j.1365-4632.2011.05082.x. PubMed DOI
Chen C.B., Wu M.Y., Ng C.Y., Lu C.W., Wu J., Kao P.H., Yang C.K., Peng M.T., Huang C.Y., Chang W.C., et al. Severe cutaneous adverse reactions induced by targeted anticancer therapies and immunotherapies. Cancer Manag. Res. 2018;10:1259–1273. doi: 10.2147/CMAR.S163391. PubMed DOI PMC
Li T., Perez-Soler R. Skin toxicities associated with epidermal growth factor receptor inhibitors. Target. Oncol. 2009;4:107–119. doi: 10.1007/s11523-009-0114-0. PubMed DOI
Saltz L.B., Meropol N.J., Loehrer P.J., Sr., Needle M.N., Kopit J., Mayer R.J. Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J. Clin. Oncol. 2004;22:1201–1208. doi: 10.1200/JCO.2004.10.182. PubMed DOI
Jacot W., Bessis D., Jorda E., Ychou M., Fabbro M., Pujol J.L., Guillot B. Acneiform eruption induced by epidermal growth factor receptor inhibitors in patients with solid tumours. Br. J. Dermatol. 2004;151:238–241. doi: 10.1111/j.1365-2133.2004.06026.x. PubMed DOI
Rosen A.C., Case E.C., Dusza S.W., Balagula Y., Gordon J., West D.P., Lacouture M.E. Impact of dermatologic adverse events on quality of life in 283 cancer patients: A questionnaire study in a dermatology referral clinic. Am. J. Clin. Dermatol. 2013;14:327–333. doi: 10.1007/s40257-013-0021-0. PubMed DOI
Clabbers J.M.K., Boers-Doets C.B., Gelderblom H., Stijnen T., Lacouture M.E., van der Hoeven K.J.M., Kaptein A.A. Xerosis and pruritus as major EGFRI-associated adverse events. Support Care Cancer. 2016;24:513–521. doi: 10.1007/s00520-015-2781-y. PubMed DOI PMC
Kozuki T. Skin problems and EGFR-tyrosine kinase inhibitor. Jpn. J. Clin. Oncol. 2016;46:291–298. doi: 10.1093/jjco/hyv207. PubMed DOI PMC
Annunziata M.C., De Stefano A., Fabbrocini G., Leo S., Marchetti P., Romano M.C., Romano I. Current Recommendations and Novel Strategies for the Management of Skin Toxicities Related to Anti-EGFR Therapies in Patients with Metastatic Colorectal Cancer. Clin. Drug Investig. 2019;39:825–834. doi: 10.1007/s40261-019-00811-7. PubMed DOI
Sagar J., Sales K., Dijk S., Taanman J., Seifalian A., Winslet M. Does doxycycline work in synergy with cisplatin and oxaliplatin in colorectal cancer? World J. Surg. Oncol. 2009;7:2. doi: 10.1186/1477-7819-7-2. PubMed DOI PMC
Ali I., Alfarouk K.O., Reshkin S.J., Ibrahim M.E. Doxycycline as Potential Anti-cancer Agent. Anticancer Agents Med. Chem. 2017;17:1617–1623. doi: 10.2174/1871520617666170213111951. PubMed DOI
Lacouture M.E., Mitchell E.P., Piperdi B., Pillai M.V., Shearer H., Iannotti N., Xu F., Yassine M. Skin toxicity evaluation protocol with panitumumab (STEPP), a phase II, open-label, randomized trial evaluating the impact of a pre-Emptive Skin treatment regimen on skin toxicities and quality of life in patients with metastatic colorectal cancer. J. Clin. Oncol. 2010;28:1351–1357. doi: 10.1200/JCO.2008.21.7828. PubMed DOI
Yamada M., Iihara H., Fujii H., Ishihara M., Matsuhashi N., Takahashi T., Yoshida K., Itoh Y. Prophylactic Effect of Oral Minocycline in Combination with Topical Steroid and Skin Care Against Panitumumab-induced Acneiform Rash in Metastatic Colorectal Cancer Patients. Anticancer Res. 2015;35:6175–6181. PubMed
Jatoi A., Rowland K., Sloan J.A., Gross H.M., Fishkin P.A., Kahanic S.P., Novotny P.J., Schaefer P.L., Johnson D.B., Tschetter L.K., et al. Tetracycline to prevent epidermal growth factor receptor inhibitor-induced skin rashes: Results of a placebo-controlled trial from the North Central Cancer Treatment Group (N03CB) Cancer. 2008;113:847–853. doi: 10.1002/cncr.23621. PubMed DOI PMC
Kobayashi Y., Komatsu Y., Yuki S., Fukushima H., Sasaki T., Iwanaga I., Uebayashi M., Okuda H., Kusumi T., Miyagishima T., et al. Randomized controlled trial on the skin toxicity of panitumumab in Japanese patients with metastatic colorectal cancer: HGCSG1001 study; J-STEPP. Future Oncol. 2015;11:617–627. doi: 10.2217/fon.14.251. PubMed DOI
Jatoi A., Dakhil S.R., Sloan J.A., Kugler J.W., Rowland K.M., Jr., Schaefer P.L., Novotny P.J., Wender D.B., Gross H.M., Loprinzi C.L. Prophylactic tetracycline does not diminish the severity of epidermal growth factor receptor (EGFR) inhibitor-induced rash: Results from the North Central Cancer Treatment Group (Supplementary N03CB) Support Care Cancer. 2011;19:1601–1607. doi: 10.1007/s00520-010-0988-5. PubMed DOI PMC
Racca P., Fanchini L., Caliendo V., Ritorto G., Evangelista W., Volpatto R., Milanesi E., Ciorba A., Paris M., Facilissimo I., et al. Efficacy and skin toxicity management with cetuximab in metastatic colorectal cancer: Outcomes from an oncologic/dermatologic cooperation. Clin. Colorectal Cancer. 2008;7:48–54. doi: 10.3816/CCC.2008.n.007. PubMed DOI
Valentín S., Morales A., Sánchez J.L., Rivera A. Safety and efficacy of doxycycline in the treatment of rosacea. Clin. Cosmet. Investig. Dermatol. 2009;2:129–140. doi: 10.2147/ccid.s4296. PubMed DOI PMC
Segelnick S.L., Weinberg M.A. Recognizing doxycycline-induced esophageal ulcers in dental practice: A case report and review. J. Am. Dent. Assoc. 2008;139:581–585. doi: 10.14219/jada.archive.2008.0218. PubMed DOI
Smith K., Leyden J.J. Safety of doxycycline and minocycline: A systematic review. Clin. Ther. 2005;27:1329–1342. doi: 10.1016/j.clinthera.2005.09.005. PubMed DOI
Layton A.M., Cunliffe W.J. Phototoxic eruptions due to doxycycline--a dose-related phenomenon. Clin. Exp. Dermatol. 1993;18:425–427. doi: 10.1111/j.1365-2230.1993.tb02242.x. PubMed DOI
Sloan B., Scheinfeld N. The use and safety of doxycycline hyclate and other second-generation tetracyclines. Expert Opin. Drug Saf. 2008;7:571–577. doi: 10.1517/14740338.7.5.571. PubMed DOI
Simpson M.B., Pryzbylik J., Innis B., Denham M.A. Hemolytic anemia after tetracycline therapy. N. Engl. J. Med. 1985;312:840–842. doi: 10.1056/NEJM198503283121307. PubMed DOI
Somech R., Arav-Boger R., Assia A., Spirer Z., Jurgenson U. Complications of minocycline therapy for acne vulgaris: Case reports and review of the literature. Pediatr. Dermatol. 1999;16:469–472. doi: 10.1046/j.1525-1470.1999.00106.x. PubMed DOI
Lynch S.V., Pedersen O. The Human Intestinal Microbiome in Health and Disease. N. Engl. J. Med. 2016;375:2369–2379. doi: 10.1056/NEJMra1600266. PubMed DOI
Scepanovic P., Hodel F., Mondot S., Partula V., Byrd A., Hammer C., Alanio C., Bergstedt J., Patin E., Touvier M., et al. A comprehensive assessment of demographic, environmental, and host genetic associations with gut microbiome diversity in healthy individuals. Microbiome. 2019;7:130. doi: 10.1186/s40168-019-0747-x. PubMed DOI PMC
Nakatsu G., Li X., Zhou H., Sheng J., Wong S.H., Wu W.K., Ng S.C., Tsoi H., Dong Y., Zhang N., et al. Gut mucosal microbiome across stages of colorectal carcinogenesis. Nat. Commun. 2015;6:8727. doi: 10.1038/ncomms9727. PubMed DOI PMC
Watson A.J., Collins P.D. Colon cancer: A civilization disorder. Dig. Dis. 2011;29:222–228. doi: 10.1159/000323926. PubMed DOI
Rubinstein M.R., Wang X., Liu W., Hao Y., Cai G., Han Y.W. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe. 2013;14:195–206. doi: 10.1016/j.chom.2013.07.012. PubMed DOI PMC
Kostic A.D., Chun E., Robertson L., Glickman J.N., Gallini C.A., Michaud M., Clancy T.E., Chung D.C., Lochhead P., Hold G.L., et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe. 2013;14:207–215. doi: 10.1016/j.chom.2013.07.007. PubMed DOI PMC
Goodwin A.C., Destefano Shields C.E., Wu S., Huso D.L., Wu X., Murray-Stewart T.R., Hacker-Prietz A., Rabizadeh S., Woster P.M., Sears C.L., et al. Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proc. Natl. Acad. Sci. USA. 2011;108:15354–15359. doi: 10.1073/pnas.1010203108. PubMed DOI PMC
Wu S., Rhee K.J., Albesiano E., Rabizadeh S., Wu X., Yen H.R., Huso D.L., Brancati F.L., Wick E., McAllister F., et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat. Med. 2009;15:1016–1022. doi: 10.1038/nm.2015. PubMed DOI PMC
Yang Y., Weng W., Peng J., Hong L., Yang L., Toiyama Y., Gao R., Liu M., Yin M., Pan C., et al. Fusobacterium nucleatum Increases Proliferation of Colorectal Cancer Cells and Tumor Development in Mice by Activating Toll-Like Receptor 4 Signaling to Nuclear Factor-κB, and Up-regulating Expression of MicroRNA-21. Gastroenterology. 2017;152:851–866.e24. doi: 10.1053/j.gastro.2016.11.018. PubMed DOI PMC
Clos-Garcia M., Garcia K., Alonso C., Iruarrizaga-Lejarreta M., D’Amato M., Crespo A., Iglesias A., Cubiella J., Bujanda L., Falcón-Pérez J.M. Integrative Analysis of Fecal Metagenomics and Metabolomics in Colorectal Cancer. Cancers. 2020;12:1142. doi: 10.3390/cancers12051142. PubMed DOI PMC
Xu X., Lv J., Guo F., Li J., Jia Y., Jiang D., Wang N., Zhang C., Kong L., Liu Y., et al. Gut Microbiome Influences the Efficacy of PD-1 Antibody Immunotherapy on MSS-Type Colorectal Cancer via Metabolic Pathway. Front. Microbiol. 2020;11:814. doi: 10.3389/fmicb.2020.00814. PubMed DOI PMC
Gagnière J., Raisch J., Veziant J., Barnich N., Bonnet R., Buc E., Bringer M.A., Pezet D., Bonnet M. Gut microbiota imbalance and colorectal cancer. World J. Gastroenterol. 2016;22:501–518. doi: 10.3748/wjg.v22.i2.501. PubMed DOI PMC
Alhinai E.A., Walton G.E., Commane D.M. The Role of the Gut Microbiota in Colorectal Cancer Causation. Int. J. Mol. Sci. 2019;20:5295. doi: 10.3390/ijms20215295. PubMed DOI PMC
Yu T., Guo F., Yu Y., Sun T., Ma D., Han J., Qian Y., Kryczek I., Sun D., Nagarsheth N., et al. Fusobacterium nucleatum Promotes Chemoresistance to Colorectal Cancer by Modulating Autophagy. Cell. 2017;170:548–563.e16. doi: 10.1016/j.cell.2017.07.008. PubMed DOI PMC
Chen Y., Peng Y., Yu J., Chen T., Wu Y., Shi L., Li Q., Wu J., Fu X. Invasive Fusobacterium nucleatum activates beta-catenin signaling in colorectal cancer via a TLR4/P-PAK1 cascade. Oncotarget. 2017;8:31802–31814. doi: 10.18632/oncotarget.15992. PubMed DOI PMC
Gur C., Ibrahim Y., Isaacson B., Yamin R., Abed J., Gamliel M., Enk J., Bar-On Y., Stanietsky-Kaynan N., Coppenhagen-Glazer S., et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity. 2015;42:344–355. doi: 10.1016/j.immuni.2015.01.010. PubMed DOI PMC
Kostic A.D., Gevers D., Pedamallu C.S., Michaud M., Duke F., Earl A.M., Ojesina A.I., Jung J., Bass A.J., Tabernero J., et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 2012;22:292–298. doi: 10.1101/gr.126573.111. PubMed DOI PMC
Yu J., Feng Q., Wong S.H., Zhang D., Liang Q.Y., Qin Y., Tang L., Zhao H., Stenvang J., Li Y., et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut. 2017;66:70–78. doi: 10.1136/gutjnl-2015-309800. PubMed DOI
Bullman S., Pedamallu C.S., Sicinska E., Clancy T.E., Zhang X., Cai D., Neuberg D., Huang K., Guevara F., Nelson T., et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science. 2017;358:1443–1448. doi: 10.1126/science.aal5240. PubMed DOI PMC
Chen Y., Lu Y., Ke Y., Li Y. Prognostic impact of the Fusobacterium nucleatum status in colorectal cancers. Medicine. 2019;98:e17221. doi: 10.1097/MD.0000000000017221. PubMed DOI PMC
Liu Y., Baba Y., Ishimoto T., Tsutsuki H., Zhang T., Nomoto D., Okadome K., Yamamura K., Harada K., Eto K., et al. Fusobacterium nucleatum confers chemoresistance by modulating autophagy in oesophageal squamous cell carcinoma. Br. J. Cancer. 2021;124:963–974. doi: 10.1038/s41416-020-01198-5. PubMed DOI PMC
Gilbert D.N., Chambers H.F., Saag M.S., Pavia A.T., Black D., Boucher H.W., Freedman D.O., Kim K., Scwartz B.S. The Sanford Guide to Antimicrobial Therapy 2020-Pocket Edition. 50th ed. Antimicrobial Therapy, Inc.; Sperryville, VA, USA: 2020.
Lee W.S., Jean S.S., Chen F.L., Hsieh S.M., Hsueh P.R. Lemierre’s syndrome: A forgotten and re-emerging infection. J. Microbiol. Immunol. Infect. 2020;53:513–517. doi: 10.1016/j.jmii.2020.03.027. PubMed DOI
Kaźmierczak-Siedlecka K., Daca A., Fic M., van de Wetering T., Folwarski M., Makarewicz W. Therapeutic methods of gut microbiota modification in colorectal cancer management-fecal microbiota transplantation, prebiotics, probiotics, and synbiotics. Gut Microbes. 2020;11:1518–1530. doi: 10.1080/19490976.2020.1764309. PubMed DOI PMC
Sizentsov A.N., Kvan O.V., Bykov A.V., Zamana S.P., Torshkov A.A., Sizentsov Y.A. A technology of experimental studies on the xenobiotic element sorption characteristics of representatives of the intestinal normal flora. Bioint. Res. App. Chem. 2019;9:4131–4135. doi: 10.33263/BRIAC94.131135. DOI
Sizentsov A., Mindolina Y., Barysheva E., Ponomareva P., Kunavina E., Levenets T., Dudko A., Kvan O. Effectiveness of combined use of antibiotics, essential metals and probiotic bacterial strain complexes against multidrug resistant pathogens. Bioint. Res. App. Chem. 2020;10:4830–4836. doi: 10.33263/BRIAC101.830836. DOI
Thakur A.K., Singh I. Formulation strategies for the oral delivery of probiotics: A review. Bioint. Res. App. Chem. 2019;9:4327–4333. doi: 10.33263/BRIAC95.327333. DOI
Kotrsová V., Kushkevych I. Possible methods for evaluation of hydrogen sulfide toxicity against lactic acid bacteria. Bioint. Res. App. Chem. 2019;9:4066–4069. doi: 10.33263/BRIAC94.066069. DOI
Hooshdar P., Kermanshahi R.K., Ghadam P., Khosravi-Darani K. A review on production of exopolysaccharide and biofilm in probiotics like lactobacilli and methods of analysis. Bioint. Res. App. Chem. 2020;10:6058–6075. doi: 10.33263/BRIAC105.60586075. DOI
Mehta R.S., Nishihara R., Cao Y., Song M., Mima K., Qian Z.R., Nowak J.A., Kosumi K., Hamada T., Masugi Y., et al. Association of Dietary Patterns With Risk of Colorectal Cancer Subtypes Classified by Fusobacterium nucleatum in Tumor Tissue. JAMA Oncol. 2017;3:921–927. doi: 10.1001/jamaoncol.2016.6374. PubMed DOI PMC
Li G., Xie C., Lu S., Nichols R.G., Tian Y., Li L., Patel D., Ma Y., Brocker C.N., Yan T., et al. Intermittent Fasting Promotes White Adipose Browning and Decreases Obesity by Shaping the Gut Microbiota. Cell Metab. 2017;26:672–685.e74. doi: 10.1016/j.cmet.2017.08.019. PubMed DOI PMC
Hao G.W., Chen Y.S., He D.M., Wang H.Y., Wu G.H., Zhang B. Growth of human colon cancer cells in nude mice is delayed by ketogenic diet with or without omega-3 fatty acids and medium-chain triglycerides. APJCP. 2015;16:2061–2068. doi: 10.7314/APJCP.2015.16.5.2061. PubMed DOI
Rafter J. The effects of probiotics on colon cancer development. Nutr. Res. Rev. 2004;17:277–284. doi: 10.1079/NRR200484. PubMed DOI
Calu V., Toma E.A., Enciu O., Miron A. Clostridium difficile Infection and Colorectal Surgery: Is There Any Risk? Medicina. 2019;55:683. doi: 10.3390/medicina55100683. PubMed DOI PMC
Miron A., Giulea C., Tudose I., Petrache D., Giurcaneanu C. Pyoderma gangrenosum, rare parietal complication after colorectal surgery. Chirurgia. 2014;109:248–253. PubMed
Uccello M., Malaguarnera G., Basile F., D’Agata V., Malaguarnera M., Bertino G., Vacante M., Drago F., Biondi A. Potential role of probiotics on colorectal cancer prevention. BMC Surg. 2012;12(Suppl. 1):S35. doi: 10.1186/1471-2482-12-S1-S35. PubMed DOI PMC
Ma E.L., Choi Y.J., Choi J., Pothoulakis C., Rhee S.H., Im E. The anticancer effect of probiotic Bacillus polyfermenticus on human colon cancer cells is mediated through ErbB2 and ErbB3 inhibition. Int. J. Cancer. 2010;127:780–790. doi: 10.1002/ijc.25011. PubMed DOI PMC
Kotzampassi K., Stavrou G., Damoraki G., Georgitsi M., Basdanis G., Tsaousi G., Giamarellos-Bourboulis E.J. A Four-Probiotics Regimen Reduces Postoperative Complications After Colorectal Surgery: A Randomized, Double-Blind, Placebo-Controlled Study. World J. Surg. 2015;39:2776–2783. doi: 10.1007/s00268-015-3071-z. PubMed DOI
Bruno-Barcena J.M., Azcarate-Peril M.A. Galacto-oligosaccharides and Colorectal Cancer: Feeding our Intestinal Probiome. J. Funct. Foods. 2015;12:92–108. doi: 10.1016/j.jff.2014.10.029. PubMed DOI PMC
Chen D., Wu J., Jin D., Wang B., Cao H. Fecal microbiota transplantation in cancer management: Current status and perspectives. Int. J. Cancer. 2019;145:2021–2031. doi: 10.1002/ijc.32003. PubMed DOI PMC
Angelakis E., Million M., Kankoe S., Lagier J.C., Armougom F., Giorgi R., Raoult D. Abnormal weight gain and gut microbiota modifications are side effects of long-term doxycycline and hydroxychloroquine treatment. Antimicrob. Agents Chemother. 2014;58:3342–3347. doi: 10.1128/AAC.02437-14. PubMed DOI PMC
Elvers K.T., Wilson V.J., Hammond A., Duncan L., Huntley A.L., Hay A.D., van der Werf E.T. Antibiotic-induced changes in the human gut microbiota for the most commonly prescribed antibiotics in primary care in the UK: A systematic review. BMJ Open. 2020;10:e035677. doi: 10.1136/bmjopen-2019-035677. PubMed DOI PMC
Thompson K.G., Rainer B.M., Antonescu C., Florea L., Mongodin E.F., Kang S., Chien A.L. Minocycline and Its Impact on Microbial Dysbiosis in the Skin and Gastrointestinal Tract of Acne Patients. Ann. Dermatol. 2020;32:21–30. doi: 10.5021/ad.2020.32.1.21. PubMed DOI PMC
Zimmermann P., Curtis N. The effect of antibiotics on the composition of the intestinal microbiota-a systematic review. J. Infect. 2019;79:471–489. doi: 10.1016/j.jinf.2019.10.008. PubMed DOI
Zaura E., Brandt B.W., Teixeira de Mattos M.J., Buijs M.J., Caspers M.P., Rashid M.U., Weintraub A., Nord C.E., Savell A., Hu Y., et al. Same Exposure but Two Radically Different Responses to Antibiotics: Resilience of the Salivary Microbiome versus Long-Term Microbial Shifts in Feces. mBio. 2015;6:e01693-15. doi: 10.1128/mBio.01693-15. PubMed DOI PMC
Laurent F., Lelièvre H., Cornu M., Vandenesch F., Carret G., Etienne J., Flandrois J.P. Fitness and competitive growth advantage of new gentamicin-susceptible MRSA clones spreading in French hospitals. J. Antimicrob. Chemother. 2001;47:277–283. doi: 10.1093/jac/47.3.277. PubMed DOI
Podgoreanu P., Negrea S.M., Buia R., Delcaru C., Trusca S.B., Lazar V., Chifiriuc M.C. Alternative strategies for fighting multidrug resistant bacterial infections. Bioint. Res. App. Chem. 2019;9:3834–3841. doi: 10.33263/BRIAC91.834841. DOI
Ducu R., Gheorghe I., Chifiriuc M.C., Mihăescu G., Sârbu I. Prevalence of vancomycin resistance phenotypes among Enterococcus species isolated from clinical samples in a Romanian hospital. Bioint. Res. App. Chem. 2019;9:4699–4704. doi: 10.33263/BRIAC96.699704. DOI
Zhu Z., Surujon D., Ortiz-Marquez J.C., Huo W., Isberg R.R., Bento J., van Opijnen T. Entropy of a bacterial stress response is a generalizable predictor for fitness and antibiotic sensitivity. Nat. Commun. 2020;11:4365. doi: 10.1038/s41467-020-18134-z. PubMed DOI PMC
Bhattacharyya R.P., Bandyopadhyay N., Ma P., Son S.S., Liu J., He L.L., Wu L., Khafizov R., Boykin R., Cerqueira G.C., et al. Simultaneous detection of genotype and phenotype enables rapid and accurate antibiotic susceptibility determination. Nat. Med. 2019;25:1858–1864. doi: 10.1038/s41591-019-0650-9. PubMed DOI PMC
Khazaei T., Barlow J.T., Schoepp N.G., Ismagilov R.F. RNA markers enable phenotypic test of antibiotic susceptibility in Neisseria gonorrhoeae after 10 minutes of ciprofloxacin exposure. Sci. Rep. 2018;8:11606. doi: 10.1038/s41598-018-29707-w. PubMed DOI PMC
Kilkkinen A., Rissanen H., Klaukka T., Pukkala E., Heliövaara M., Huovinen P., Männistö S., Aromaa A., Knekt P. Antibiotic use predicts an increased risk of cancer. Int. J. Cancer. 2008;123:2152–2155. doi: 10.1002/ijc.23622. PubMed DOI
Dik V.K., van Oijen M.G., Smeets H.M., Siersema P.D. Frequent Use of Antibiotics Is Associated with Colorectal Cancer Risk: Results of a Nested Case-Control Study. Dig. Dis. Sci. 2016;61:255–264. doi: 10.1007/s10620-015-3828-0. PubMed DOI PMC
Zhang J., Haines C., Watson A.J.M., Hart A.R., Platt M.J., Pardoll D.M., Cosgrove S.E., Gebo K.A., Sears C.L. Oral antibiotic use and risk of colorectal cancer in the United Kingdom, 1989-2012: A matched case-control study. Gut. 2019;68:1971–1978. doi: 10.1136/gutjnl-2019-318593. PubMed DOI
Lu L., Zhuang T., Shao E., Liu Y., He H., Shu Z., Huang Y., Yao Y., Lin S., Lin S., et al. Association of antibiotic exposure with the mortality in metastatic colorectal cancer patients treated with bevacizumab-containing chemotherapy: A hospital-based retrospective cohort study. PLoS ONE. 2019;14:e0221964. doi: 10.1371/journal.pone.0221964. PubMed DOI PMC
Nenclares P., Bhide S.A., Sandoval-Insausti H., Pialat P., Gunn L., Melcher A., Newbold K., Nutting C.M., Harrington K.J. Impact of antibiotic use during curative treatment of locally advanced head and neck cancers with chemotherapy and radiotherapy. Eur. J. Cancer. 2020;131:9–15. doi: 10.1016/j.ejca.2020.02.047. PubMed DOI
Pennock G.K., Chow L.Q. The Evolving Role of Immune Checkpoint Inhibitors in Cancer Treatment. Oncologist. 2015;20:812–822. doi: 10.1634/theoncologist.2014-0422. PubMed DOI PMC
Overman M.J., Ernstoff M.S., Morse M.A. Where We Stand With Immunotherapy in Colorectal Cancer: Deficient Mismatch Repair, Proficient Mismatch Repair, and Toxicity Management. Am. Soc. Clin. Oncol. Educ. Book. 2018;38:239–247. doi: 10.1200/EDBK_200821. PubMed DOI
Scope A., Agero A.L., Dusza S.W., Myskowski P.L., Lieb J.A., Saltz L., Kemeny N.E., Halpern A.C. Randomized double-blind trial of prophylactic oral minocycline and topical tazarotene for cetuximab-associated acne-like eruption. J. Clin. Oncol. 2007;25:5390–5396. doi: 10.1200/JCO.2007.12.6987. PubMed DOI
Nikolaou V., Stratigos A., Antoniou C., Kiagia M., Nikolaou C., Katsambas A., Syrigos K. Pimecrolimus cream 1% for the treatment of papulopustular eruption related to epidermal growth factor receptor inhibitors: A case series and a literature review of therapeutic approaches. Dermatology. 2010;220:243–248. doi: 10.1159/000277430. PubMed DOI
Scope A., Lieb J.A., Dusza S.W., Phelan D.L., Myskowski P.L., Saltz L., Halpern A.C. A prospective randomized trial of topical pimecrolimus for cetuximab-associated acnelike eruption. J. Am. Acad. Dermatol. 2009;61:614–620. doi: 10.1016/j.jaad.2009.03.046. PubMed DOI
Pinta F., Ponzetti A., Spadi R., Fanchini L., Zanini M., Mecca C., Sonetto C., Ciuffreda L., Racca P. Pilot clinical trial on the efficacy of prophylactic use of vitamin K1-based cream (Vigorskin) to prevent cetuximab-induced skin rash in patients with metastatic colorectal cancer. Clin. Colorectal Cancer. 2014;13:62–67. doi: 10.1016/j.clcc.2013.10.001. PubMed DOI
Jo J.C., Hong Y.S., Kim K.P., Lee J.L., Kim H.J., Lee M.W., Lim S.B., Yu C.S., Kim J.C., Kim J.H., et al. Topical vitamin K1 may not be effective in preventing acneiform rash during cetuximab treatment in patients with metastatic colorectal cancer. Eur. J. Dermatol. 2013;23:77–82. doi: 10.1684/ejd.2012.1899. PubMed DOI
Wang C.J., Brownell I. BRAF Inhibitors for the Treatment of Papulopustular Eruptions from MAPK Pathway Inhibitors. Am. J. Clin. Dermatol. 2020;21:759–764. doi: 10.1007/s40257-020-00539-7. PubMed DOI PMC
Lacouture M.E., Wainberg Z.A., Patel A.B., Anadkat M.J., Stemmer S.M., Shacham-Shmueli E., Medina E., Zelinger G., Shelach N., Ribas A. Reducing skin toxicities from EGFR inhibitors with topical BRAF inhibitor therapy. Cancer Discov. 2021 doi: 10.1158/2159-8290.CD-20-1847. PubMed DOI PMC
Costello C.M., Hill H.E., Brumfiel C.M., Yang Y.W., Swanson D.L. Choosing between isotretinoin and acitretin for epidermal growth factor receptor inhibitor and small molecule tyrosine kinase inhibitor acneiform eruptions. J. Am. Acad. Dermatol. 2021;84:840–841. doi: 10.1016/j.jaad.2020.09.090. PubMed DOI
Andrews E.D., Garg N., Patel A.B. A retrospective chart review on oral retinoids as a treatment for epidermal growth factor receptor inhibitor- and mitogen-activated protein kinase kinase inhibitor-induced acneiform eruptions. J. Am. Acad. Dermatol. 2020;82:998–1000. doi: 10.1016/j.jaad.2019.10.003. PubMed DOI
Caruana M., Hatami A., Marcoux D., Perreault S., McCuaig C.C. Isotretinoin for the treatment of severe acneiform eruptions associated with the MEK inhibitor trametinib. JAAD Case Rep. 2020;6:1056–1058. doi: 10.1016/j.jdcr.2020.07.021. PubMed DOI PMC
Mima K., Sukawa Y., Nishihara R., Qian Z.R., Yamauchi M., Inamura K., Kim S.A., Masuda A., Nowak J.A., Nosho K., et al. Fusobacterium nucleatum and T Cells in Colorectal Carcinoma. JAMA Oncol. 2015;1:653–661. doi: 10.1001/jamaoncol.2015.1377. PubMed DOI PMC
Biagi E., Nylund L., Candela M., Ostan R., Bucci L., Pini E., Nikkïla J., Monti D., Satokari R., Franceschi C., et al. Through ageing, and beyond: Gut microbiota and inflammatory status in seniors and centenarians. PLoS ONE. 2010;5:e10667. doi: 10.1371/annotation/df45912f-d15c-44ab-8312-e7ec0607604d. PubMed DOI PMC
Walker A.W., Ince J., Duncan S.H., Webster L.M., Holtrop G., Ze X., Brown D., Stares M.D., Scott P., Bergerat A., et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 2011;5:220–230. doi: 10.1038/ismej.2010.118. PubMed DOI PMC
Johnson A.J., Vangay P., Al-Ghalith G.A., Hillmann B.M., Ward T.L., Shields-Cutler R.R., Kim A.D., Shmagel A.K., Syed A.N., Walter J., et al. Daily Sampling Reveals Personalized Diet-Microbiome Associations in Humans. Cell Host Microbe. 2019;25:789–802.e85. doi: 10.1016/j.chom.2019.05.005. PubMed DOI
Jandhyala S.M., Talukdar R., Subramanyam C., Vuyyuru H., Sasikala M., Nageshwar Reddy D. Role of the normal gut microbiota. World J. Gastroenterol. 2015;21:8787–8803. doi: 10.3748/wjg.v21.i29.8787. PubMed DOI PMC
Eilers R.E., Jr., Gandhi M., Patel J.D., Mulcahy M.F., Agulnik M., Hensing T., Lacouture M.E. Dermatologic infections in cancer patients treated with epidermal growth factor receptor inhibitor therapy. J. Natl. Cancer Inst. 2010;102:47–53. doi: 10.1093/jnci/djp439. PubMed DOI
Tomková H., Kohoutek M., Zábojníková M., Pospísková M., Ostrízková L., Gharibyar M. Cetuximab-induced cutaneous toxicity. J. Eur. Acad. Dermatol. Venereol. 2010;24:692–696. doi: 10.1111/j.1468-3083.2009.03490.x. PubMed DOI
Wang J., Li S., Liu Y., Zhang C., Li H., Lai B. Metastatic patterns and survival outcomes in patients with stage IV colon cancer: A population-based analysis. Cancer Med. 2020;9:361–373. doi: 10.1002/cam4.2673. PubMed DOI PMC