Transformations in the Photogrammetric Co-Processing of Thermal Infrared Images and RGB Images
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SGS21/054/OHK1/1T/11
Czech Technical University in Prague
PubMed
34372297
PubMed Central
PMC8348213
DOI
10.3390/s21155061
PII: s21155061
Knihovny.cz E-zdroje
- Klíčová slova
- close-range photogrammetry, photogrammetry, relative pose estimation, thermal camera calibration, thermal infrared image,
- Publikační typ
- časopisecké články MeSH
The photogrammetric processing of thermal infrared (TIR) images deals with several difficulties. TIR images ordinarily have low-resolution and the contrast of the images is very low. These factors strongly complicate the photogrammetric processing, especially when a modern structure from motion method is used. These factors can be avoided by a certain co-processing method of TIR and RGB images. Two of the solutions of co-processing were suggested by the authors and are presented in this article. Each solution requires a different type of transformation-plane transformation and spatial transformation. Both types of transformations are discussed in this paper. On the experiments that were performed, there are presented requirements, advantages, disadvantages, and results of the transformations. Both methods are evaluated mainly in terms of accuracy. The transformations are presented on suggested methods, but they can be easily applied to different kinds of methods of co-processing of TIR and RGB images.
Zobrazit více v PubMed
Capel D., Zisserman A. Computer vision applied to super resolution. IEEE Signal Process. Mag. 2003;20:75–86. doi: 10.1109/MSP.2003.1203211. DOI
Wakeford Z.E., Chmielewska M., Hole M.J., Howell J.A., Jerram D.A. Combining thermal imaging with photogrammetry of an active volcano using UAV: An example from Stromboli, Italy. Photogramm. Rec. 2019;34:445–466. doi: 10.1111/phor.12301. DOI
Sledz A., Unger J., Heipke C. Thermal IR imaging: Image quality and orthophoto generation. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018;42:413–420. doi: 10.5194/isprs-archives-XLII-1-413-2018. DOI
Maset E., Fusiello A., Crosilla F., Toldo R., Zorzetto D. Photogrammetric 3D building reconstruction from thermal images. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017;4:25–32. doi: 10.5194/isprs-annals-IV-2-W3-25-2017. DOI
Grechi G., Fiorucci M., Marmoni G.M., Martino S. 3D Thermal Monitoring of Jointed Rock Masses through Infrared Thermography and Photogrammetry. Remote Sens. 2021;13:957. doi: 10.3390/rs13050957. DOI
Hoegner L., Tuttas S., Xu Y., Eder K., Stilla U. Evaluation of methods for coregistration and fusion of rpas-based 3d point clouds and thermal infrared images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016;41:241–246. doi: 10.5194/isprs-archives-XLI-B3-241-2016. DOI
Weber I., Jenal A., Kneer C., Bongartz J. PANTIR-a dual camera setup for precise georeferencing and mosaicing of thermal aerial images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015;40:269–272. doi: 10.5194/isprsarchives-XL-3-W2-269-2015. DOI
Adamopoulos E., Volinia M., Girotto M., Rinaudo F. Three-Dimensional Thermal Mapping from IRT Images for Rapid Architectural Heritage NDT. Buildings. 2020;10:187. doi: 10.3390/buildings10100187. DOI
Javadnejad F., Gillins D.T., Parrish C.E., Slocum R.K. A photogrammetric approach to fusing natural colour and thermal infrared UAS imagery in 3D point cloud generation. Int. J. Remote Sens. 2020;41:211–237. doi: 10.1080/01431161.2019.1641241. DOI
Dlesk A., Vach K. Point Cloud Generation of a Building from Close Range Thermal Images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019;42:29–33. doi: 10.5194/isprs-archives-XLII-5-W2-29-2019. DOI
Acorsi M.G., Gimenez L.M., Martello M. Assessing the Performance of a Low-Cost Thermal Camera in Proximal and Aerial Conditions. Remote Sens. 2020;12:3591. doi: 10.3390/rs12213591. DOI
Šedina J., Housarová E., Raeva P. Using RPAS for the detection of archaeological objects using multispectral and thermal imaging. Eur. J. Remote Sens. 2019;52:182–191. doi: 10.1080/22797254.2018.1562848. DOI
Řehák M., Pavelka K. Using of uav for photogrammetry and thermal imaging; Proceedings of the 33nd Asian Conference on Remote Sensing, ACRS2012, CD-Proceedings; Pattaya, Thailand. 26–30 November 2012.
Luhmann T., Robson S., Kyle S., Harley I. Close Range Photogrammetry. Principles, Techniques and Applications. Whittles Publishing; Scotland, UK: 2011. pp. 448–458.
User’s Manual FLIR Exx Series. [(accessed on 26 April 2021)]; Available online: https://www.flir.com/globalassets/imported-assets/document/flir-exx-series-user-manual.pdf.
Fluke: Thermal Cameras. [(accessed on 26 April 2021)]; Available online: https://www.fluke.com/en-in/products/thermal-cameras.
The Engineering ToolBox: Emissivity Coefficient Materials. [(accessed on 7 June 2021)]; Available online: https://www.engineeringtoolbox.com/emissivity-coefficients-d_447.html.
Usamentiaga R., Garcia D.F., Ibarra-Castanedo C., Maldague X. Highly accurate geometric calibration for infrared cameras using inexpensive calibration targets. Measurement. 2017;112:105–116. doi: 10.1016/j.measurement.2017.08.027. DOI
Remondino F., Fraser C. Digital camera calibration methods: Considerations and comparisons. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016;36:266–272.
Luhmann T., Piechel J., Roelfs T. Geometric calibration of thermographic cameras. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2010;38:411–416.
Förstner W., Wrobel B.P. Photogrammetric Computer Vision. Springer International Publishing; Cham, Switzerland: 2016. pp. 696–707.
Sanz-Ablanedo E., Chandler J.H., Wackrow R. Parameterising internal camera geometry with focusing distance. Photogramm. Rec. 2012;27:210–226. doi: 10.1111/j.1477-9730.2012.00677.x. DOI
Clarke T.A., Wang X., Fryer J.G. The principal point and CCD cameras. Photogramm. Rec. 1998;16:293–312. doi: 10.1111/0031-868X.00127. DOI
Photogrammetric Co-Processing of Thermal Infrared Images and RGB Images