NiO Nanoparticles for Electrochemical Insulin Detection
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
1/0095/21
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
PP-COVID-20-0036
Agentúra na Podporu Výskumu a Vývoja
K125244
Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
22020140
International Visegrad Fund
LM2018110
Ministry of Education, Youth and Science
PubMed
34372300
PubMed Central
PMC8347614
DOI
10.3390/s21155063
PII: s21155063
Knihovny.cz E-zdroje
- Klíčová slova
- NiO nanoparticles, electrochemical sensor, insulin,
- MeSH
- elektrochemické techniky * MeSH
- elektrody MeSH
- inzulin MeSH
- lidé MeSH
- limita detekce MeSH
- nanočástice * MeSH
- nikl MeSH
- skot MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- inzulin MeSH
- nikl MeSH
Diabetes mellitus represents one of the most widespread diseases in civilization nowadays. Since the costs for treating and diagnosing of diabetes represent several billions of dollars per year, a cheap, fast, and simple sensor for diabetes diagnosis is needed. Electrochemical insulin sensors can be considered as a novel approach for diabetes diagnosis. In this study, carbon electrode with electrodeposited NiO nanoparticles was selected as a suitable electrode material for insulin determination. The morphology and surface composition were studied by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, and X-ray photoelectron spectroscopy (XPS). For a better understanding of insulin determination on NiO-modified electrodes, the mechanism of electrochemical reaction and the kinetic parameters were studied. They were calculated from both voltammetric and amperometric measurements. The modified carbon electrode displayed a wide linear range from 600 nM to 10 µM, a low limit of detection of 19.6 nM, and a high sensitivity of 7.06 µA/µM. The electrodes were stable for 30 cycles and were able to detect insulin even in bovine blood serum. Additionally, the temperature stability of this electrode and its storage conditions were studied with appropriate outcomes. The above results show the high promise of this electrode for detecting insulin in clinical samples.
Department of Chemistry Masaryk University Kamenice 5 625 00 Brno Czech Republic
Department of General and Physical Chemistry University of Pécs Ifjúság útja 6 7624 Pécs Hungary
Institute of Materials Research Slovak Academy of Science Watsonova 47 040 01 Košice Slovakia
Zobrazit více v PubMed
Wang J., Musameh M. Electrochemical detection of trace insulin at carbon-nanotube-modified electrodes. Anal. Chim. Acta. 2004;511:33–36. doi: 10.1016/j.aca.2004.01.035. DOI
Alberti K.G., Zimmet P.Z., Grady N.P.O., Raad I.I., Rijnders B.J.A., Sherertz R.J., David K., Supiyev A., Kossumov A., Kassenova A., et al. NIH Public Access. Diabet. Med. 2014;15:6–12. doi: 10.1086/599376.Clinical. DOI
Mayer J.P., Zhang F., DiMarchi R.D. Insulin Structure and Function. Mem. Fukui Prefect. Dinosaur Museum. 2007;88:687–713. doi: 10.1002/bip.20734. PubMed DOI
Sisolakova I., Hovancova J., Orinakova R., Orinak A., Garcia D.R., Shylenko O., Radonak J. Comparison of Insulin Determination on NiNPs/chitosan-MWCNTs and NiONPs/chitosan-MWCNTs Modified Pencil Graphite Electrode. Electroanalysis. 2019:103–112. doi: 10.1002/elan.201800483. DOI
Rinderknecht E., Humbel R.E. Primary structure of human insulin-like growth factor II. FEBS Lett. 1978;89:283–286. doi: 10.1016/0014-5793(78)80237-3. PubMed DOI
De Meyts P. Insulin and its receptor: Structure, function and evolution. BioEssays. 2004;26:1351–1362. doi: 10.1002/bies.20151. PubMed DOI
Duvnjak L., Blaslov K., Vučić Lovrenčić M., Knežević Ćuća J. Persons with latent autoimmune diabetes in adults express higher dipeptidyl peptidase-4 activity compared to persons with type 2 and type 1 diabetes. Diabetes Res. Clin. Pract. 2016;121:119–126. doi: 10.1016/j.diabres.2016.09.013. PubMed DOI
Arvinte A., Westermann A.C., Sesay A.M., Virtanen V. Electrocatalytic oxidation and determination of insulin at CNT-nickel-cobalt oxide modified electrode. Sens. Actuators B Chem. 2010;150:756–763. doi: 10.1016/j.snb.2010.08.004. DOI
Cho H., Kumar S., Yang D., Vaidyanathan S., Woo K., Garcia I., Shue H.J., Yoon Y., Ferreri K., Choo H. Surface-Enhanced Raman Spectroscopy-Based Label-Free Insulin Detection at Physiological Concentrations for Analysis of Islet Performance. ACS Sens. 2018;3:65–71. doi: 10.1021/acssensors.7b00864. PubMed DOI
Verma R., Daya K.S. Microwave sensing of pM concentration of insulin in buffer solution using WGM-DR; Proceedings of the 2013 Seventh International Conference on Sensing Technology (ICST); Wellington, New Zealand. 3–5 December 2013; DOI
Sabu C., Henna T.K., Raphey V.R., Nivitha K.P., Pramod K. Biosensors and Bioelectronics Advanced biosensors for glucose and insulin. Biosens. Bioelectron. 2019;141:111201. doi: 10.1016/j.bios.2019.03.034. PubMed DOI
Yu Y., Guo M., Yuan M., Liu W., Hu J. Nickel nanoparticle-modified electrode for ultra-sensitive electrochemical detection of insulin. Biosens. Bioelectron. 2016;77:215–219. doi: 10.1016/j.bios.2015.09.036. PubMed DOI
Šišoláková I., Hovancová J., Oriňaková R., Oriňak A., Trnková L., Třísková I., Farka Z., Pastucha M., Radoňák J. Electrochemical determination of insulin at CuNPs/chitosan-MWCNTs and CoNPs/chitosan-MWCNTs modified screen printed carbon electrodes. J. Electroanal. Chem. 2020;860:113881. doi: 10.1016/j.jelechem.2020.113881. DOI
Li Y., Tian L., Liu L., Khan M.S., Zhao G., Fan D., Cao W., Wei Q. Dual-responsive electrochemical immunosensor for detection of insulin based on dual-functional zinc silicate spheres-palladium nanoparticles. Talanta. 2018;179:420–425. doi: 10.1016/j.talanta.2017.11.037. PubMed DOI
Rafiee B., Fakhari A.R. Electrocatalytic oxidation and determination of insulin at nickel oxide nanoparticles-multiwalled carbon nanotube modified screen printed electrode. Biosens. Bioelectron. 2013;46:130–135. doi: 10.1016/j.bios.2013.01.037. PubMed DOI
Prasad B.B., Madhuri R., Tiwari M.P., Sharma P.S. Imprinting molecular recognition sites on multiwalled carbon nanotubes surface for electrochemical detection of insulin in real samples. Electrochim. Acta. 2010;55:9146–9156. doi: 10.1016/j.electacta.2010.09.008. DOI
Zarei K., Khodadadi A. Very sensitive electrochemical determination of diuron on glassy carbon electrode modified with reduced graphene oxide–gold nanoparticle–Nafion composite film. Ecotoxicol. Environ. Saf. 2017;144:171–177. doi: 10.1016/j.ecoenv.2017.06.030. PubMed DOI
Abazar F., Noorbakhsh A. Chitosan-carbon quantum dots as a new platform for highly sensitive insulin impedimetric aptasensor. Sens. Actuators B Chem. 2020;304:127281. doi: 10.1016/j.snb.2019.127281. DOI
Yagati A.K., Choi Y., Park J., Choi J.W., Jun H.S., Cho S. Silver nanoflower-reduced graphene oxide composite based micro-disk electrode for insulin detection in serum. Biosens. Bioelectron. 2016;80:307–314. doi: 10.1016/j.bios.2016.01.086. PubMed DOI
Šišoláková I., Hovancová J., Oriňaková R., Oriňak A., Trnková L., García D.R., Radoňak J. Influence of a polymer membrane on the electrochemical determination of insulin in nanomodified screen printed carbon electrodes. Bioelectrochemistry. 2019;130 doi: 10.1016/j.bioelechem.2019.06.011. PubMed DOI
Yokuş Ö.A., Kardaş F., Akyildirim O., Eren T., Atar N., Yola M.L. Sensitive voltammetric sensor based on polyoxometalate/reduced graphene oxide nanomaterial: Application to the simultaneous determination of l-tyrosine and l-tryptophan. Sens. Actuators B Chem. 2016;233:47–54. doi: 10.1016/j.snb.2016.04.050. DOI
Jaafariasl M., Shams E., Amini M.K. Silica gel modified carbon paste electrode for electrochemical detection of insulin. Electrochim. Acta. 2011;56:4390–4395. doi: 10.1016/j.electacta.2010.12.052. DOI
Erdelyi B., Oriňak A., Oriňaková R., Lorinčík J., Jerigová M., Velič D., Mičušík M., Omastová M., Smith R.M., Girman V. Catalytic activity of mono and bimetallic Zn/Cu/MWCNTs catalysts for the thermocatalyzed conversion of methane to hydrogen. Appl. Surf. Sci. 2017;396:574–581. doi: 10.1016/j.apsusc.2016.10.199. DOI
Weidler N., Schuch J., Knaus F., Stenner P., Hoch S., Maljusch A., Schäfer R., Kaiser B., Jaegermann W. X-ray Photoelectron Spectroscopic Investigation of Plasma-Enhanced Chemical Vapor Deposited NiOx, NiOx(OH)y, and CoNiOx(OH)y: Influence of the Chemical Composition on the Catalytic Activity for the Oxygen Evolution Reaction. J. Phys. Chem. C. 2017;121:6455–6463. doi: 10.1021/acs.jpcc.6b12652. DOI
Šišoláková I., Hovancová J., Chovancová F., Oriňaková R., Maskaľová I., Oriňak A., Radoňak J. Zn Nanoparticles Modified Screen Printed Carbon Electrode as a Promising Sensor for Insulin Determination. Electroanalysis. 2021;33:627–634. doi: 10.1002/elan.202060417. DOI
Lu L., Liang L., Xie Y., Tang K., Wan Z., Chen S. A nickel nanoparticle/carbon nanotube-modified carbon fiber microelectrode for sensitive insulin detection. J. Solid State Electrochem. 2018;22:825–833. doi: 10.1007/s10008-017-3816-8. DOI
Hasanzadeh M., Shadjou N., Marandi M. Graphene quantum dots functionalized by chitosan and β-cyclodextrin: An advanced nanocomposite for sensing of multi-analytes at physiological pH. J. Nanosci. Nanotechnol. 2017;17:4598–4607. doi: 10.1166/jnn.2017.13779. DOI
Wu Y., Midinov B., White R.J. Electrochemical aptamer-based sensor for real-Time monitoring of insulin. ACS Sens. 2019;4:498–503. doi: 10.1021/acssensors.8b01573. PubMed DOI PMC
Businova P., Prasek J., Chomoucka J., Drbohlavova J., Pekarek J., Hrdy R., Hubalek J. Voltammetric sensor for direct insulin detection. Procedia Eng. 2012;47:1235–1238. doi: 10.1016/j.proeng.2012.09.376. DOI
Salimi A., Noorbakhash A., Sharifi E., Semnani A. Highly sensitive sensor for picomolar detection of insulin at physiological pH, using GC electrode modified with guanine and electrodeposited nickel oxide nanoparticles. Biosens. Bioelectron. 2008;24:792–798. doi: 10.1016/j.bios.2008.06.046. PubMed DOI
Martínez-Periñán E., Revenga-Parra M., Gennari M., Pariente F., Mas-Ballesté R., Zamora F., Lorenzo E. Insulin sensor based on nanoparticle-decorated multiwalled carbon nanotubes modified electrodes. Sens. Actuators B Chem. 2016;222:331–338. doi: 10.1016/j.snb.2015.08.033. DOI
Pikulski M., Gorski W. Iridium-based electrocatalytic systems for the determination of insulin. Anal. Chem. 2000;72:2696–2702. doi: 10.1021/ac000343f. PubMed DOI
Zhang M., Mullens C., Gorski W. Insulin oxidation and determination at carbon electrodes. Anal. Chem. 2005;77:6396–6401. doi: 10.1021/ac0508752. PubMed DOI
Wang J., Tangkuaram T., Loyprasert S., Vazquez-Alvarez T., Veerasai W., Kanatharana P., Thavarungkul P. Electrocatalytic detection of insulin at RuOx/carbon nanotube-modified carbon electrodes. Anal. Chim. Acta. 2007;581:1–6. doi: 10.1016/j.aca.2006.07.084. PubMed DOI