Ex-Vivo Measurement of the pH in Aqueous Humor Samples by a Tapered Fiber-Optic Sensor

. 2021 Jul 27 ; 21 (15) : . [epub] 20210727

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34372310

Grantová podpora
TA04011400 Technology Agency of the Czech Republic

A practical demonstration of pH measurement in real biological samples with an in-house developed fiber-optic pH sensor system is presented. The sensor uses 8-hydroxypyrene-1,3,6-trisulfonate (HPTS) fluorescent dye as the opto-chemical transducer. The dye is immobilized in a hybrid sol-gel matrix at the tip of a tapered optical fiber. We used 405 nm and 450 nm laser diodes for the dye excitation and a photomultiplier tube as a detector. The sensor was used for the measurement of pH in human aqueous humor samples during cataract surgery. Two groups of patients were tested, one underwent conventional phacoemulsification removal of the lens while the other was subjected to femtosecond laser assisted cataract surgery (FLACS). The precision of the measurement was ±0.04 pH units. The average pH of the aqueous humor of patients subjected to FLACS and those subjected to phacoemulsification were 7.24 ± 0.17 and 7.31 ± 0.20 respectively.

Zobrazit více v PubMed

Flaxman S.R., Bourne R.R.A., Resnikoff S., Ackland P., Braithwaite T., Cicinelli M.V., Das A., Jonas J.B., Keeffe J., Kempen J.H., et al. Global Causes of Blindness and Distance Vision Impairment 1990–2020: A Systematic Review and Meta-Analysis. Lancet Glob. Health. 2017;5:e1221–e1234. doi: 10.1016/S2214-109X(17)30393-5. PubMed DOI

Rossi M., Di Censo F., Di Censo M., Oum M.A. Changes in Aqueous Humor PH After Femtosecond Laser-Assisted Cataract Surgery. J. Refract. Surg. 2015;31:462–465. doi: 10.3928/1081597X-20150623-04. PubMed DOI

Vivaldi F., Salvo P., Poma N., Bonini A., Biagini D., Del Noce L., Melai B., Lisi F., Francesco F.D. Recent Advances in Optical, Electrochemical and Field Effect PH Sensors. Chemosensors. 2021;9:33. doi: 10.3390/chemosensors9020033. DOI

Steinegger A., Wolfbeis O.S., Borisov S.M. Optical Sensing and Imaging of PH Values: Spectroscopies, Materials, and Applications. Chem. Rev. 2020;120:12357–12489. doi: 10.1021/acs.chemrev.0c00451. PubMed DOI PMC

Peterson J.I., Goldstein S.R., Fitzgerald R.V., Buckhold D.K. Fiber Optic PH Probe for Physiological Use. Anal. Chem. 1980;52:864–869. doi: 10.1021/ac50056a022. PubMed DOI

Chen M., Wang J., Tan W., Feng Y., Zheng G. Miniaturized All Fiber Probe for Optical Coherence Tomography and pH Detection of Biological Tissue. J. Biophotonics. 2021;14 doi: 10.1002/jbio.202000239. PubMed DOI

Gong J., Tanner M.G., Venkateswaran S., Stone J.M., Zhang Y., Bradley M. A Hydrogel-Based Optical Fibre Fluorescent PH Sensor for Observing Lung Tumor Tissue Acidity. Anal. Chim. Acta. 2020;1134:136–143. doi: 10.1016/j.aca.2020.07.063. PubMed DOI

Schultz A., Puvvadi R., Borisov S.M., Shaw N.C., Klimant I., Berry L.J., Montgomery S.T., Nguyen T., Kreda S.M., Kicic A., et al. Airway Surface Liquid PH Is Not Acidic in Children with Cystic Fibrosis. Nat. Commun. 2017;8:1409. doi: 10.1038/s41467-017-00532-5. PubMed DOI PMC

Choudhury D., Tanner M.G., McAughtrie S., Yu F., Mills B., Choudhary T.R., Seth S., Craven T.H., Stone J.M., Mati I.K., et al. Endoscopic Sensing of Alveolar PH. Biomed. Opt. Express. 2017;8:243. doi: 10.1364/BOE.8.000243. PubMed DOI PMC

Borofsky M.S., Handa R.K., Evan A.P., Williams J.C., Bledsoe S., Coe F.L., Worcester E.M., Lingeman J.E. In Vivo Renal Tubule PH in Stone-Forming Human Kidneys. J. Endourol. 2020;34:203–208. doi: 10.1089/end.2019.0378. PubMed DOI PMC

Handa R.K., Lingeman J.E., Bledsoe S.B., Evan A.P., Connors B.A., Johnson C.D. Intraluminal Measurement of Papillary Duct Urine PH, in Vivo: A Pilot Study in the Swine Kidney. Urolithiasis. 2016;44:211–217. doi: 10.1007/s00240-015-0834-9. PubMed DOI PMC

McLennan H.J., Saini A., Sylvia G.M., Schartner E.P., Dunning K.R., Purdey M.S., Monro T.M., Abell A.D., Thompson J.G. A Biophotonic Approach to Measure PH in Small Volumes in Vitro: Quantifiable Differences in Metabolic Flux around the Cumulus-oocyte-complex (COC) J. Biophotonics. 2020;13 doi: 10.1002/jbio.201960038. PubMed DOI

Wencel D., Kaworek A., Abel T., Efremov V., Bradford A., Carthy D., Coady G., McMorrow R.C.N., McDonagh C. Optical Sensor for Real-Time PH Monitoring in Human Tissue. Small. 2018;14:1803627. doi: 10.1002/smll.201803627. PubMed DOI

Oellermann M., Pörtner H.-O., Mark F.C. Simultaneous High-Resolution PH and Spectrophotometric Recordings of Oxygen Binding in Native Blood Microvolumes. J. Exp. Biol. 2014;217:1430–1436. doi: 10.1242/jeb.092726. PubMed DOI

Kim S., Lee S.H., Min S.Y., Byun K.M., Lee S.Y. Dual-Modal Cancer Detection Based on Optical PH Sensing and Raman Spectroscopy. J. Biomed. Opt. 2017;22:1. doi: 10.1117/1.JBO.22.10.105002. PubMed DOI

Yang Q., Wang H., Chen S., Lan X., Xiao H., Shi H., Ma Y. Fiber-Optic-Based Micro-Probe Using Hexagonal 1-in-6 Fiber Configuration for Intracellular Single-Cell PH Measurement. Anal. Chem. 2015;87:7171–7179. doi: 10.1021/acs.analchem.5b01040. PubMed DOI

Veselovsky J., Olah Z., Vesela A., Gressnerova S. The Free Amino Acids and the Aqueous Humor PH after Antiglaucomatics in Vitro. Bratisl. Lek. Listy. 2003;104:14–18. PubMed

Sharma R.G., Mishra Y.C., Verma G.L., Lal K. A Clinical Evaluation of Oxygen and Carbon Dioxide Values and PH in the Human Aqueous Humour in Normal and Cataractous Eyes. Indian J. Ophthalmol. 1983;31:525–527. PubMed

Lu D.-W., Tai M.-C., Chang Y.-H., Liang C.-M., Chen C.-L., Chien K.-H., Chen J.-T., Chen Y.-H. Anterior Chamber Paracentesis and PH Values in Patients with Acute Primary Angle Closure. Graefes Arch. Clin. Exp. Ophthalmol. 2013;251:1229–1234. doi: 10.1007/s00417-012-2198-y. PubMed DOI

Wencel D., MacCraith B.D., McDonagh C. High Performance Optical Ratiometric Sol–Gel-Based PH Sensor. Sens. Actuators B Chem. 2009;139:208–213. doi: 10.1016/j.snb.2008.12.066. DOI

Kašík I., Mrazek J., Martan T., Pospisilova M., Podrazky O., Matejec V., Hoyerova K., Kaminek M. Fiber-Optic PH Detection in Small Volumes of Biosamples. Anal. Bioanal. Chem. 2010;398:1883–1889. doi: 10.1007/s00216-010-4130-9. PubMed DOI

Kašík I., Podrazký O., Mrázek J., Martan T., Matějec V., Hoyerová K., Kamínek M. In Vivo Optical Detection of PH in Microscopic Tissue Samples of Arabidopsis Thaliana. Mater. Sci. Eng. C. 2013;33:4809–4815. doi: 10.1016/j.msec.2013.07.045. PubMed DOI

Cui Q., Podrazky O., Mrazek J., Probostova J., Kasik I. Tapered-Fiber Optical Sensor for Physiological PH Range. IEEE Sens. J. 2015;15:4967–4973. doi: 10.1109/JSEN.2015.2432091. DOI

Podrazky O., Mrazek J., Vytykacova S., Probostova J., Kasik I. Fiber-Optic PH Sensing System with Microscopic Spatial Resolution. In: Baldini F., Homola J., Lieberman R.A., editors. Proceedings of the OPTICAL SENSORS 2015; Boston, MA, USA. 27 June–1 July 2015;;

Podrazký O., Peterka P., Kašík I., Vytykáčová S., Proboštová J., Mrázek J., Kuneš M., Závalová V., Radochová V., Lyutakov O., et al. In Vivo Testing of a Bioresorbable Phosphate-based Optical Fiber. J. Biophotonics. 2019;12 doi: 10.1002/jbio.201800397. PubMed DOI

Peterka P., Pugliese D., Jiříčková B., Boetti N.G., Turčičová H., Mirza I., Borodkin A., Milanese D. High-Power Laser Testing of Calcium-Phosphate-Based Bioresorbable Optical Fibers. Opt. Mater. Express. 2021;11:2049. doi: 10.1364/OME.428490. DOI

Britton H.T.S., Robinson R.A. CXCVIII.—Universal Buffer Solutions and the Dissociation Constant of Veronal. J. Chem. Soc. 1931:1456–1462. doi: 10.1039/JR9310001456. DOI

Schulman S.G., Chen S., Bai F., Leiner M.J.P., Weis L., Wolfbeis O.S. Dependence of the Fluorescence of Immobilized 1-Hydroxypyrene-3,6,8-Trisulfonate on Solution PH: Extension of the Range of Applicability of a PH Fluorosensor. Anal. Chim. Acta. 1995;304:165–170. doi: 10.1016/0003-2670(94)00631-U. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...