Ex-Vivo Measurement of the pH in Aqueous Humor Samples by a Tapered Fiber-Optic Sensor
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TA04011400
Technology Agency of the Czech Republic
PubMed
34372310
PubMed Central
PMC8348832
DOI
10.3390/s21155075
PII: s21155075
Knihovny.cz E-zdroje
- Klíčová slova
- HPTS, cataract surgery, fiber-optic sensor, pH,
- MeSH
- fakoemulzifikace * MeSH
- komorová voda MeSH
- koncentrace vodíkových iontů MeSH
- laserová terapie * MeSH
- lidé MeSH
- prospektivní studie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
A practical demonstration of pH measurement in real biological samples with an in-house developed fiber-optic pH sensor system is presented. The sensor uses 8-hydroxypyrene-1,3,6-trisulfonate (HPTS) fluorescent dye as the opto-chemical transducer. The dye is immobilized in a hybrid sol-gel matrix at the tip of a tapered optical fiber. We used 405 nm and 450 nm laser diodes for the dye excitation and a photomultiplier tube as a detector. The sensor was used for the measurement of pH in human aqueous humor samples during cataract surgery. Two groups of patients were tested, one underwent conventional phacoemulsification removal of the lens while the other was subjected to femtosecond laser assisted cataract surgery (FLACS). The precision of the measurement was ±0.04 pH units. The average pH of the aqueous humor of patients subjected to FLACS and those subjected to phacoemulsification were 7.24 ± 0.17 and 7.31 ± 0.20 respectively.
Clinic JL 158 00 Prague Czech Republic
Faculty of Biomedical Engineering Czech Technical University Prague 166 36 Prague Czech Republic
Institute of Photonics and Electronics Czech Academy of Sciences 182 51 Prague Czech Republic
Zobrazit více v PubMed
Flaxman S.R., Bourne R.R.A., Resnikoff S., Ackland P., Braithwaite T., Cicinelli M.V., Das A., Jonas J.B., Keeffe J., Kempen J.H., et al. Global Causes of Blindness and Distance Vision Impairment 1990–2020: A Systematic Review and Meta-Analysis. Lancet Glob. Health. 2017;5:e1221–e1234. doi: 10.1016/S2214-109X(17)30393-5. PubMed DOI
Rossi M., Di Censo F., Di Censo M., Oum M.A. Changes in Aqueous Humor PH After Femtosecond Laser-Assisted Cataract Surgery. J. Refract. Surg. 2015;31:462–465. doi: 10.3928/1081597X-20150623-04. PubMed DOI
Vivaldi F., Salvo P., Poma N., Bonini A., Biagini D., Del Noce L., Melai B., Lisi F., Francesco F.D. Recent Advances in Optical, Electrochemical and Field Effect PH Sensors. Chemosensors. 2021;9:33. doi: 10.3390/chemosensors9020033. DOI
Steinegger A., Wolfbeis O.S., Borisov S.M. Optical Sensing and Imaging of PH Values: Spectroscopies, Materials, and Applications. Chem. Rev. 2020;120:12357–12489. doi: 10.1021/acs.chemrev.0c00451. PubMed DOI PMC
Peterson J.I., Goldstein S.R., Fitzgerald R.V., Buckhold D.K. Fiber Optic PH Probe for Physiological Use. Anal. Chem. 1980;52:864–869. doi: 10.1021/ac50056a022. PubMed DOI
Chen M., Wang J., Tan W., Feng Y., Zheng G. Miniaturized All Fiber Probe for Optical Coherence Tomography and pH Detection of Biological Tissue. J. Biophotonics. 2021;14 doi: 10.1002/jbio.202000239. PubMed DOI
Gong J., Tanner M.G., Venkateswaran S., Stone J.M., Zhang Y., Bradley M. A Hydrogel-Based Optical Fibre Fluorescent PH Sensor for Observing Lung Tumor Tissue Acidity. Anal. Chim. Acta. 2020;1134:136–143. doi: 10.1016/j.aca.2020.07.063. PubMed DOI
Schultz A., Puvvadi R., Borisov S.M., Shaw N.C., Klimant I., Berry L.J., Montgomery S.T., Nguyen T., Kreda S.M., Kicic A., et al. Airway Surface Liquid PH Is Not Acidic in Children with Cystic Fibrosis. Nat. Commun. 2017;8:1409. doi: 10.1038/s41467-017-00532-5. PubMed DOI PMC
Choudhury D., Tanner M.G., McAughtrie S., Yu F., Mills B., Choudhary T.R., Seth S., Craven T.H., Stone J.M., Mati I.K., et al. Endoscopic Sensing of Alveolar PH. Biomed. Opt. Express. 2017;8:243. doi: 10.1364/BOE.8.000243. PubMed DOI PMC
Borofsky M.S., Handa R.K., Evan A.P., Williams J.C., Bledsoe S., Coe F.L., Worcester E.M., Lingeman J.E. In Vivo Renal Tubule PH in Stone-Forming Human Kidneys. J. Endourol. 2020;34:203–208. doi: 10.1089/end.2019.0378. PubMed DOI PMC
Handa R.K., Lingeman J.E., Bledsoe S.B., Evan A.P., Connors B.A., Johnson C.D. Intraluminal Measurement of Papillary Duct Urine PH, in Vivo: A Pilot Study in the Swine Kidney. Urolithiasis. 2016;44:211–217. doi: 10.1007/s00240-015-0834-9. PubMed DOI PMC
McLennan H.J., Saini A., Sylvia G.M., Schartner E.P., Dunning K.R., Purdey M.S., Monro T.M., Abell A.D., Thompson J.G. A Biophotonic Approach to Measure PH in Small Volumes in Vitro: Quantifiable Differences in Metabolic Flux around the Cumulus-oocyte-complex (COC) J. Biophotonics. 2020;13 doi: 10.1002/jbio.201960038. PubMed DOI
Wencel D., Kaworek A., Abel T., Efremov V., Bradford A., Carthy D., Coady G., McMorrow R.C.N., McDonagh C. Optical Sensor for Real-Time PH Monitoring in Human Tissue. Small. 2018;14:1803627. doi: 10.1002/smll.201803627. PubMed DOI
Oellermann M., Pörtner H.-O., Mark F.C. Simultaneous High-Resolution PH and Spectrophotometric Recordings of Oxygen Binding in Native Blood Microvolumes. J. Exp. Biol. 2014;217:1430–1436. doi: 10.1242/jeb.092726. PubMed DOI
Kim S., Lee S.H., Min S.Y., Byun K.M., Lee S.Y. Dual-Modal Cancer Detection Based on Optical PH Sensing and Raman Spectroscopy. J. Biomed. Opt. 2017;22:1. doi: 10.1117/1.JBO.22.10.105002. PubMed DOI
Yang Q., Wang H., Chen S., Lan X., Xiao H., Shi H., Ma Y. Fiber-Optic-Based Micro-Probe Using Hexagonal 1-in-6 Fiber Configuration for Intracellular Single-Cell PH Measurement. Anal. Chem. 2015;87:7171–7179. doi: 10.1021/acs.analchem.5b01040. PubMed DOI
Veselovsky J., Olah Z., Vesela A., Gressnerova S. The Free Amino Acids and the Aqueous Humor PH after Antiglaucomatics in Vitro. Bratisl. Lek. Listy. 2003;104:14–18. PubMed
Sharma R.G., Mishra Y.C., Verma G.L., Lal K. A Clinical Evaluation of Oxygen and Carbon Dioxide Values and PH in the Human Aqueous Humour in Normal and Cataractous Eyes. Indian J. Ophthalmol. 1983;31:525–527. PubMed
Lu D.-W., Tai M.-C., Chang Y.-H., Liang C.-M., Chen C.-L., Chien K.-H., Chen J.-T., Chen Y.-H. Anterior Chamber Paracentesis and PH Values in Patients with Acute Primary Angle Closure. Graefes Arch. Clin. Exp. Ophthalmol. 2013;251:1229–1234. doi: 10.1007/s00417-012-2198-y. PubMed DOI
Wencel D., MacCraith B.D., McDonagh C. High Performance Optical Ratiometric Sol–Gel-Based PH Sensor. Sens. Actuators B Chem. 2009;139:208–213. doi: 10.1016/j.snb.2008.12.066. DOI
Kašík I., Mrazek J., Martan T., Pospisilova M., Podrazky O., Matejec V., Hoyerova K., Kaminek M. Fiber-Optic PH Detection in Small Volumes of Biosamples. Anal. Bioanal. Chem. 2010;398:1883–1889. doi: 10.1007/s00216-010-4130-9. PubMed DOI
Kašík I., Podrazký O., Mrázek J., Martan T., Matějec V., Hoyerová K., Kamínek M. In Vivo Optical Detection of PH in Microscopic Tissue Samples of Arabidopsis Thaliana. Mater. Sci. Eng. C. 2013;33:4809–4815. doi: 10.1016/j.msec.2013.07.045. PubMed DOI
Cui Q., Podrazky O., Mrazek J., Probostova J., Kasik I. Tapered-Fiber Optical Sensor for Physiological PH Range. IEEE Sens. J. 2015;15:4967–4973. doi: 10.1109/JSEN.2015.2432091. DOI
Podrazky O., Mrazek J., Vytykacova S., Probostova J., Kasik I. Fiber-Optic PH Sensing System with Microscopic Spatial Resolution. In: Baldini F., Homola J., Lieberman R.A., editors. Proceedings of the OPTICAL SENSORS 2015; Boston, MA, USA. 27 June–1 July 2015;;
Podrazký O., Peterka P., Kašík I., Vytykáčová S., Proboštová J., Mrázek J., Kuneš M., Závalová V., Radochová V., Lyutakov O., et al. In Vivo Testing of a Bioresorbable Phosphate-based Optical Fiber. J. Biophotonics. 2019;12 doi: 10.1002/jbio.201800397. PubMed DOI
Peterka P., Pugliese D., Jiříčková B., Boetti N.G., Turčičová H., Mirza I., Borodkin A., Milanese D. High-Power Laser Testing of Calcium-Phosphate-Based Bioresorbable Optical Fibers. Opt. Mater. Express. 2021;11:2049. doi: 10.1364/OME.428490. DOI
Britton H.T.S., Robinson R.A. CXCVIII.—Universal Buffer Solutions and the Dissociation Constant of Veronal. J. Chem. Soc. 1931:1456–1462. doi: 10.1039/JR9310001456. DOI
Schulman S.G., Chen S., Bai F., Leiner M.J.P., Weis L., Wolfbeis O.S. Dependence of the Fluorescence of Immobilized 1-Hydroxypyrene-3,6,8-Trisulfonate on Solution PH: Extension of the Range of Applicability of a PH Fluorosensor. Anal. Chim. Acta. 1995;304:165–170. doi: 10.1016/0003-2670(94)00631-U. DOI