Wood pellets transport with vibrating conveyor: experimental for DEM simulations analysis
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34400743
PubMed Central
PMC8368062
DOI
10.1038/s41598-021-96111-2
PII: 10.1038/s41598-021-96111-2
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
This work presents a comprehensive overview of the mechanical-physical parameters of the transport material affecting the vibratory transport. For this purpose, spruce pellets of different lengths, oak rods and spruce crush were tested. The determined parameters were particle size distribution and shape, internal friction, static and dynamic angle of repose. The samples were transported by a patented validation vibrating conveyor. Various settings were used. The results show that by changing the shape, it is possible to reduce friction or resistance as well as energy intensity during transport. It was observed that perfect shapes and lighter particles have lower friction, but a more pronounced bounce. Therefore, it does not form a typical pattern during transport, as in the case of an imperfectly shaped one. There is also included a simulation of the discrete element method. The study shows the possibility of the vibration machine where the material can be conveyed either directionally or sorted.
Zobrazit více v PubMed
Krengel D, Strobl S, Sack A, Heckel M, Pöschel T. Pattern formation in a horizontally shaken granular submonolayer. Granul. Matter. 2013 doi: 10.1007/s10035-013-0411-2. DOI
Salueña C, Pöschel T. Convection in horizontally shaken granular material. Eur. Phys. J. E. 2000 doi: 10.1007/s101890050006. PubMed DOI
Mullin T. Coarsening of self-organized clusters in binary mixtures of particles. Phys. Rev. Lett. 2000 doi: 10.1103/PhysRevLett.84.4741. PubMed DOI
Mullin T. Mixing and de-mixing. Science. 2002;295:1851. doi: 10.1126/science.1070258. PubMed DOI
Pihler-Puzović D, Mullin T. The timescales of granular segregation in horizontally shaken monolayers. Proc. R. Soc. A. 2013 doi: 10.1098/rspa.2013.0203. DOI
Betat A, et al. Formation of patterns in granular materials. Evol. Spont. Struct. Dissip. Contin. Syst. 2007 doi: 10.1007/3-540-49537-1_12. DOI
Makse HA, Havlin S, King PR, Stanley HE. Spontaneous stratification in granular mixtures. Nature. 1997 doi: 10.1038/386379a0. DOI
Head DA, Rodgers GJ. Slowly driven sandpile formation with granular mixtures. Phys. Rev. E. 1997 doi: 10.1103/PhysRevE.56.1976. DOI
Cizeau P, Makse HA, Stanley HE. Mechanisms of granular spontaneous stratification and segregation in two-dimensional silos. Phys. Rev. E. 1999 doi: 10.1103/PhysRevE.59.4408. DOI
Reis PM, Sykes T, Mullin T. Phases of granular segregation in a binary mixture. Phys. Rev. E. 2006 doi: 10.1103/PhysRevE.74.051306. PubMed DOI
Pica Ciamarra M, Coniglio A, Nicodemi M. Phenomenology and theory of horizontally oscillated granular mixtures. Eur. Phys. J. E. 2007 doi: 10.1140/epje/e2007-00007-0. PubMed DOI
Ciamarra MP, Coniglio A, Nicodemi M. Dynamically induced effective interaction in periodically driven granular mixtures. Phys. Rev. Lett. 2006 doi: 10.1103/PhysRevLett.97.038001. PubMed DOI
Rivas N, et al. Sudden chain energy transfer events in vibrated granular media. Phys. Rev. Lett. 2011 doi: 10.1103/PhysRevLett.106.088001. PubMed DOI
Luo X, Zhao L, Zhang M, DEM Dong H. study on the effects of pellet characteristics on particle flow in rectangular hopper. Powder Technol. 2020 doi: 10.1016/j.powtec.2020.06.027. DOI
Ganesan V, Rosentrater KA, Muthukumarappan K. Flowability and handling characteristics of bulk solids and powders—A review with implications for DDGS. Biosyst. Eng. 2008 doi: 10.1016/j.biosystemseng.2008.09.008. DOI
Stasiak M, et al. Friction and shear properties of pine biomass and pellets. Materials (Basel). 2020 doi: 10.3390/MA13163567. PubMed DOI PMC
Stasiak M, et al. Mechanical characteristics of pine biomass of different sizes and shapes. Eur. J. Wood Wood Prod. 2019 doi: 10.1007/s00107-019-01415-w. DOI
Kiesgen de Richter S, et al. Vibration-induced compaction of granular suspensions. Eur. Phys. J. E. 2015 doi: 10.1140/epje/i2015-15074-7. PubMed DOI
Capozza R, Vanossi A, Vezzani A, Zapperi S. Triggering frictional slip by mechanical vibrations. Tribol. Lett. 2012 doi: 10.1007/s11249-012-0002-0. DOI
Gaudel N, Kiesgen De Richter S, Louvet N, Jenny M, Skali-Lami S. Bulk and local rheology in a dense and vibrated granular suspension. Phys. Rev. E. 2017 doi: 10.1103/PhysRevE.96.062905. PubMed DOI
Gaudel N, Kiesgen De Richter S, Louvet N, Jenny M, Skali-Lami S. Granular avalanches down inclined and vibrated planes. Phys. Rev. E. 2016 doi: 10.1103/PhysRevE.94.032904. PubMed DOI
Qiao J, et al. DEM study of segregation degree and velocity of binary granular mixtures subject to vibration. Powder Technol. 2021 doi: 10.1016/j.powtec.2020.12.064. DOI
Gaudel N, Kiesgen De Richter S. Effect of vibrations on granular material flows down an inclined plane using DEM simulations. Powder Technol. 2019 doi: 10.1016/j.powtec.2019.01.080. DOI
Qian Q, et al. DEM simulation on the vibrated packing densification of mono-sized equilateral cylindrical particles. Powder Technol. 2018 doi: 10.1016/j.powtec.2017.10.050. DOI
Pachón-Morales J, et al. Potential of DEM for investigation of non-consolidated flow of cohesive and elongated biomass particles. Adv. Powder Technol. 2020 doi: 10.1016/j.apt.2020.01.023. DOI
Gelnar D, Zegzulka J. Discrete Element Method in the Design of Transport Systems. Verification and Validation of 3D Models. Springer; 2019.
Dafnomilis I, et al. Review of solid and liquid biofuel demand and supply in Northwest Europe towards 2030—A comparison of national and regional projections. Renew. Sustain. Energy Rev. 2017;78:31–45. doi: 10.1016/j.rser.2017.04.108. DOI
Blott SJ, Pye K. Particle shape: A review and new methods of characterization and classification. Sedimentology. 2008 doi: 10.1111/j.1365-3091.2007.00892.x. DOI
Đuriš M, Arsenijević Z, Jaćimovski D, Kaluđerović Radoičić T. Optimal pixel resolution for sand particles size and shape analysis. Powder Technol. 2016 doi: 10.1016/j.powtec.2016.08.045. DOI
Tunwal M, Mulchrone KF, Meere PA. Image based particle shape analysis toolbox (IPSAT) Comput. Geosci. 2020 doi: 10.1016/j.cageo.2019.104391. DOI
Cox EP. A method of assigning numerical and percentage values to the degree of roundness of sand grains. J. Paleontol. 1927;1:197.
Sun Y, Cai Z, Fu J. Particle morphomics by high-throughput dynamic image analysis. Sci. Rep. 2019 doi: 10.1038/s41598-019-46062-6. PubMed DOI PMC
Zegzulka J, et al. Internal friction angle of metal powders. Metals (Basel) 2018;8:255. doi: 10.3390/met8040255. DOI
Gelnar D, Zegzulka J, Soos L, Juchelkova D, Necas J. Validation Device and Method of Measuring Static and Dynamic Angle of Discharge. VŠB-Technical University of Ostrava; 2016.
Jezerská, L., Zádrapa, F., Žurovec, D. & Zegzulka, J. Avalanching and aeration regions for glidants. In NANOCON 2017—Conference Proceedings, 9th International Conference on Nanomaterials—Research and Application, Vol. 2017, 781–786 (2018).
Rozbroj J, Zegzulka J, Necas J, Jezerska L. Discrete element method model optimization of cylindrical pellet size. Processes. 2019 doi: 10.3390/pr7020101. DOI
Dafnomilis I, Lodewijks G, Junginger M, Schott DL. Evaluation of wood pellet handling in import terminals. Biomass Bioenergy. 2018;117:10–23. doi: 10.1016/j.biombioe.2018.07.006. DOI
Liu X, Gan J, Zhong W, Yu A. Particle shape effects on dynamic behaviors in a spouted bed: CFD-DEM study. Powder Technol. 2020;361:349–362. doi: 10.1016/j.powtec.2019.07.099. DOI
Zegzulka J, Gelnar D, Jezerska L, Prokes R, Rozbroj J. Characterization and flowability methods for metal powders. Sci. Rep. 2020 doi: 10.1038/s41598-020-77974-3. PubMed DOI PMC
Zegzulka J, Gelnar D, Jezerska L, et al. Characterization and flowability methods for metal powders. Sci Rep. 2020;10:21004. doi: 10.1038/s41598-020-77974-3. PubMed DOI PMC
Wu MR, Schott DL, Lodewijks G. Physical properties of solid biomass. Biomass Bioenergy. 2011;35:2093–2105. doi: 10.1016/j.biombioe.2011.02.020. DOI
Rosato A, Windows-Yule K. Segregation in Vibrated Granular Systems. Academic Press; 2020.
Lehtikangas P. Storage effects on pelletised sawdust, logging residues and bark. Biomass Bioenergy. 2000;19:287–293. doi: 10.1016/S0961-9534(00)00046-5. DOI
Hlosta J, et al. DEM investigation of the influence of particulate properties and operating conditions on the mixing process in rotary drums: Part 1-determination of the DEM parameters and calibration process. Processes. 2020 doi: 10.3390/pr8020222. DOI