Mechanochemistry for Energy Materials: Impact of High-Energy Milling on Chemical, Electric and Thermal Transport Properties of Chalcopyrite CuFeS2 Nanoparticles
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print
Typ dokumentu časopisecké články
Grantová podpora
APVV-18-0357
Slovak Research and Development Agency
2/0044/18
Slovak Research and Development Agency
18-12761S
Czech Science Foundation
LM2018096
Czech Research Infrastructures
SOLID21
MEYS
CZ.02.1.01/0.0/0.0/16_019/0000760
MEYS
PubMed
34402605
PubMed Central
PMC8369848
DOI
10.1002/open.202100144
Knihovny.cz E-zdroje
- Klíčová slova
- chalcopyrite, energy materials, mechanochemistry, semiconductors, thermoelectrics,
- Publikační typ
- časopisecké články MeSH
Chalcopyrite CuFeS2 , a semiconductor with applications in chemical sector and energy conversion engineering, was synthetized in a planetary mill from elemental precursors. The synthesis is environmentally friendly, waste-free and inexpensive. The synthesized nano-powders were characterized by XRD, SEM, EDX, BET and UV/Vis techniques, tests of chemical reactivity and, namely, thermoelectric performance of sintered ceramics followed. The crystallite size of ∼13 nm and the strain of ∼17 were calculated for CuFeS2 powders milled for 60, 120, 180 and 240 min, respectively. The evolution of characteristic band gaps, Eg, and the rate constant of leaching, k, of nano-powders are corroborated by the universal evolution of the parameter SBET /X (SBET -specific surface area, X-crystallinity) introduced for complex characterization of mechanochemically activated solids in various fields such as chemical engineering and/or energy conversion. The focus on non-doped semiconducting CuFeS2 enabled to assess the role of impurities, which critically and often negatively influence the thermoelectric properties.
Institute of Geotechnics Slovak Academy of Sciences Watsonova 45 04001 Košice Slovakia
Institute of Materials Research Slovak Academy of Sciences Watsonova 47 04001 Košice Slovakia
Institute of Physics of the Czech Academy of Sciences Cukrovarnická 10 16200 Prague Czech Republic
Zobrazit více v PubMed
Habashi F., Chalcopyrite its Chemistry and Metallurgy, McGraw-Hill, New York: 1978, p. 165.
Engin T. E., Powell A. V., Hull S., J. Solid State Chem. 2011, 184, 2272–2277;
Powell A. V., J. Appl. Phys. 2019, 126;
Wen T., Wang Y. G., Li N. N., Zhang Q., Zhao Y. S., Yang W. E., Zhao Y. S., Mao H. K., J. Am. Chem. Soc. 2019, 141, 505–510. PubMed
Li Y. L., Zhang T. S., Qin Y. T., Day T., Snyder G. J., Shi X., Chen L. D., J. Appl. Phys. 2014, 116, 203705.
Teranishi T., J. Phys. Soc. Jpn. 1961, 16, 1881–1887.
Vaqueiro P., Powell A. V., J. Mater. Chem. 2010, 20, 10950–10950;
Suekuni K., Takabatake T., APL Mater. 2016, 4, 104503;
Hebert S., Berthebaud D., Daou R., Breard Y., Pelloquin D., Guilmeau E., Gascoin F., Lebedev O., Maignan A., J. Phys. Condens. Matter 2016, 28, 013001. PubMed
Ang R., Khan A. U., Tsujii N., Takai K., Nakamura R., Mori T., Angew. Chem. Int. Ed. 2015, 54, 12909–12913; PubMed
Angew. Chem. 2015, 127, 13101–13105; PubMed
Balaz P., Dutkova E., Levinsky P., Daneu N., Kubickova L., Knizek K., Balaz M., Navratil J., Kasparova J., Ksenofontov V., Moller A., Hejtmanek J., Mater. Lett. 2020, 275, 128107.
Tsujii N., J. Electron. Mater. 2013, 42, 1974–1977;
Tsujii N., Mori T., Appl. Phys. Express 2013, 6; 043001;
Tsujii N., Mori T., Isoda Y., J. Electron. Mater. 2014, 43, 2371–2375;
Tsujii N., Meng F. Q., Tsuchiya K., Maruyama S., Mori T., J. Electron. Mater. 2016, 45, 1642–1647;
Berthebaud D., Lebedev O. I., Maignan A., J. Mater. 2015, 1, 68–74;
Lefevre R., Berthebaud D., Mychinko M. Y., Lebedev O. I., Mori T., Gascoin F., Maignan A., RSC Adv. 2016, 6, 55117–55124;
Xie H. Y., Su X. L., Yan Y. G., Liu W., Chen L. J., Fu J. F., Yang J. H., Uher C., Tang X. F., NPG Asia Mater. 2017, 9, e390;
Vaure L., Liu Y., Cadavid D., Agnese F., Aldakov D., Pouget S., Cabotu A., Reiss P., Chenevier P., ChemNanoMat 2018, 4, 982–991;
Navratil J., Kasparova J., Plechacek T., Benes L., Olmrova-Zmrhalova Z., Kucek V., Drasar C., J. Electron. Mater. 2019, 48, 1795–1804.
Hicks L. D., Dresselhaus M. S., Phys. Rev. B 1993, 47, 16631–16634; PubMed
Hicks L. D., Dresselhaus M. S., Phys. Rev. B 1993, 47, 12727–12731; PubMed
Dresselhaus M. S., Chen G., Tang M. Y., Yang R. G., Lee H., Wang D. Z., Ren Z. F., Fleurial J. P., Gogna P., Adv. Mater. 2007, 19, 1043–1053;
Biswas K., He J. Q., Blum I. D., Wu C. I., Hogan T. P., Seidman D. N., Dravid V. P., Kanatzidis M. G., Nature 2012, 489, 414–418; PubMed
Heremans J. P., Dresselhaus M. S., Bell L. E., Morelli D. T., Nat. Nanotechnol. 2013, 8, 471–473; PubMed
He J. Q., Kanatzidis M. G., Dravid V. P., Mater. Today 2013, 16, 166–176.
Poudeu P. F. P., D′Angelo J., Downey A. D., Short J. L., Hogan T. P., Kanatzidis M. G., Angew. Chem. Int. Ed. 2006, 45, 3835–3839; PubMed
Angew. Chem. 2006, 118, 3919–3923;
Johnsen S., He J. Q., Androulakis J., Dravid V. P., Todorov I., Chung D. Y., Kanatzidis M. G., J. Am. Chem. Soc. 2011, 133, 3460–3470. PubMed
Liang D. X., Ma R. S., Jiao S. H., Pang G. S., Feng S. H., Nanoscale 2012, 4, 6265–6268; PubMed
Park J., Xia Y., Ozolins V., J. Appl. Phys. 2019, 125, 125102.
Balaz P., Mechanochemistry in Nanoscience and Minerals Engineering, Springer, Berlin Heidelberg, 2008, p. 413;
Balaz P., Balaz M., Achimovicova M., Bujinakova Z., Dutkova E., J. Mater. Sci. 2017, 52, 11851–11890.
Lan Y. C., Minnich A. J., Chen G., Ren Z. F., Adv. Funct. Mater. 2010, 20, 357–376.
Dutkova E., Bujnakova Z., Kovac J., Skorvanek I., Sayagues M. J., Zorkovska A., Kovac J., Balaz P., Adv. Powder Technol. 2018, 29, 1820–1826.
Levinsky P., Hejtmanek J., Knizek K., Pashchenko M., Navratil J., Masschelein P., Dutkova E., Balaz P., Acta Phys. Pol. A 2020, 137, 904–907.
Balaz P., Achimovicova M., Balaz M., Chen K., Dobrozhan O., Guilmeau E., Hejtmanek J., Knizek K., Kubickova L., Levinsky P., Puchy V., Reece M. J., Varga P., Zhang R., ACS Sustainable Chem. Eng. 2021, 9, 5, 2003–2016.
Zhao S. X., Wang G. R., Yang H. Y., Chen G. B., Qiu X. M., Trans. Nonferrous Met. Soc. China 2021, 31, 1465–1474;
Cullity D. B., Elements of X-ray Diffraction, Second Edition, Addison-Wesley Publishing Company, Inc., London, 1978.
Juhasz A. Z., Opoczky L., Mechanical Activation of Minerals by Grinding: Pulverizing and Morphology of Particles, Ellis Horwood, Chichester, 1990, p. 213.
Tkacova K., Mechanical Activation of Minerals, Elsevier, Amsterdam: 1989, p. 155.
Boldyrev V. V., Tkacova K., J. Mater. Synth. Process. 2000, 8, 121–132.
Miyasaka K., Senna M., React. Solids 1986, 2, 135–149;
Inoue S. I., Senna M., React. Solids 1988, 5, 155–166.
Senna M., Part. Part. Syst. Charact. 1989, 6, 163–167.
Tkacova K., Balaz P., Hydrometallurgy 1988, 21, 103–112.
Zeier W. G., Zevalkink A., Gibbs Z. M., Hautier G., Kanatzidis M. G., Snyder G. J., Angew. Chem. Int. Ed. 2016, 55, 6826–6841; PubMed
Angew. Chem. 2016, 128, 6938–6954.
Tian Z. T., Esfarjani K., Shiomi J., Henry A. S., Chen G., Appl. Phys. Lett. 2011, 99, 053122.
Balaz P., Bastl Z., Tkacova K., J. Mater. Sci. Lett. 1993, 12, 511–512;
Li J. H., Tan Q., Li J. F., J. Alloys Compd. 2013, 551, 143–149;
Granata G., Takahashi K., Kato T., Tokoro C., Miner. Eng. 2019, 131, 280–285;
Huang Z. W., Zhao L. D., J. Mater. Chem. C 2020, 8, 12054–12061.
Balaz P., Tkacova K., Avvakumov E. G., J. Therm. Anal. 1989, 35, 1325–1330;
Gock E., Erzmetall 1978, 31, 282–288 (in German).
Tkacova K., Boldyrev V. V., Pavluchin Yu. T., Avvakumov E. G., Sadykov R. S., Balaz P., Izv. Sib. Otdel. AN SSSR 2 1984, 9–13 (in Russian).
Baláž P., Extractive Metallurgy of Activated Minerals, Elsevier, Amsterdam: 2000, p. 278.
Navratil J., Levinský P., Hejtmánek J., Pashchenko M., Knizek K., Kubickova L., Kmjec T., Drasar C., J. Phys. Chem. C 2020, 124, 20773–20783.
Ge Z. H., Zhang B. P., Chen Y. X., Yu Z. X., Liu Y., Li J. F., Chem. Commun. 2011, 47, 12697–12699; PubMed
Pearce C. I., Pattrick R. A. D., Vaughan D. J., Rev. Mineral. Geochem. 2006, 61, 127–180;
Qiu P., Zhang T., Qiu Y., Shi X., Chen L., Energy Environ. Sci. 2014, 7, 4000–4006.
Ohlberg S. M., Strickler D. W., J. Am. Ceram. Soc. 1962, 45, 170–171.
Li Y., Kawashima N., Li J., Chandra A. P., Gerson A. R., Adv. Colloid Interface Sci. 2013, 197–198, 1–32. PubMed