Mechanochemistry for Energy Materials: Impact of High-Energy Milling on Chemical, Electric and Thermal Transport Properties of Chalcopyrite CuFeS2 Nanoparticles

. 2021 Aug ; 10 (8) : 806-814.

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34402605

Grantová podpora
APVV-18-0357 Slovak Research and Development Agency
2/0044/18 Slovak Research and Development Agency
18-12761S Czech Science Foundation
LM2018096 Czech Research Infrastructures
SOLID21 MEYS
CZ.02.1.01/0.0/0.0/16_019/0000760 MEYS

Chalcopyrite CuFeS2 , a semiconductor with applications in chemical sector and energy conversion engineering, was synthetized in a planetary mill from elemental precursors. The synthesis is environmentally friendly, waste-free and inexpensive. The synthesized nano-powders were characterized by XRD, SEM, EDX, BET and UV/Vis techniques, tests of chemical reactivity and, namely, thermoelectric performance of sintered ceramics followed. The crystallite size of ∼13 nm and the strain of ∼17 were calculated for CuFeS2 powders milled for 60, 120, 180 and 240 min, respectively. The evolution of characteristic band gaps, Eg, and the rate constant of leaching, k, of nano-powders are corroborated by the universal evolution of the parameter SBET /X (SBET -specific surface area, X-crystallinity) introduced for complex characterization of mechanochemically activated solids in various fields such as chemical engineering and/or energy conversion. The focus on non-doped semiconducting CuFeS2 enabled to assess the role of impurities, which critically and often negatively influence the thermoelectric properties.

Zobrazit více v PubMed

Habashi F., Chalcopyrite its Chemistry and Metallurgy, McGraw-Hill, New York: 1978, p. 165.

Engin T. E., Powell A. V., Hull S., J. Solid State Chem. 2011, 184, 2272–2277;

Powell A. V., J. Appl. Phys. 2019, 126;

Wen T., Wang Y. G., Li N. N., Zhang Q., Zhao Y. S., Yang W. E., Zhao Y. S., Mao H. K., J. Am. Chem. Soc. 2019, 141, 505–510. PubMed

Li Y. L., Zhang T. S., Qin Y. T., Day T., Snyder G. J., Shi X., Chen L. D., J. Appl. Phys. 2014, 116, 203705.

Teranishi T., J. Phys. Soc. Jpn. 1961, 16, 1881–1887.

Vaqueiro P., Powell A. V., J. Mater. Chem. 2010, 20, 10950–10950;

Suekuni K., Takabatake T., APL Mater. 2016, 4, 104503;

Hebert S., Berthebaud D., Daou R., Breard Y., Pelloquin D., Guilmeau E., Gascoin F., Lebedev O., Maignan A., J. Phys. Condens. Matter 2016, 28, 013001. PubMed

Ang R., Khan A. U., Tsujii N., Takai K., Nakamura R., Mori T., Angew. Chem. Int. Ed. 2015, 54, 12909–12913; PubMed

Angew. Chem. 2015, 127, 13101–13105; PubMed

Balaz P., Dutkova E., Levinsky P., Daneu N., Kubickova L., Knizek K., Balaz M., Navratil J., Kasparova J., Ksenofontov V., Moller A., Hejtmanek J., Mater. Lett. 2020, 275, 128107.

Tsujii N., J. Electron. Mater. 2013, 42, 1974–1977;

Tsujii N., Mori T., Appl. Phys. Express 2013, 6; 043001;

Tsujii N., Mori T., Isoda Y., J. Electron. Mater. 2014, 43, 2371–2375;

Tsujii N., Meng F. Q., Tsuchiya K., Maruyama S., Mori T., J. Electron. Mater. 2016, 45, 1642–1647;

Berthebaud D., Lebedev O. I., Maignan A., J. Mater. 2015, 1, 68–74;

Lefevre R., Berthebaud D., Mychinko M. Y., Lebedev O. I., Mori T., Gascoin F., Maignan A., RSC Adv. 2016, 6, 55117–55124;

Xie H. Y., Su X. L., Yan Y. G., Liu W., Chen L. J., Fu J. F., Yang J. H., Uher C., Tang X. F., NPG Asia Mater. 2017, 9, e390;

Vaure L., Liu Y., Cadavid D., Agnese F., Aldakov D., Pouget S., Cabotu A., Reiss P., Chenevier P., ChemNanoMat 2018, 4, 982–991;

Navratil J., Kasparova J., Plechacek T., Benes L., Olmrova-Zmrhalova Z., Kucek V., Drasar C., J. Electron. Mater. 2019, 48, 1795–1804.

Hicks L. D., Dresselhaus M. S., Phys. Rev. B 1993, 47, 16631–16634; PubMed

Hicks L. D., Dresselhaus M. S., Phys. Rev. B 1993, 47, 12727–12731; PubMed

Dresselhaus M. S., Chen G., Tang M. Y., Yang R. G., Lee H., Wang D. Z., Ren Z. F., Fleurial J. P., Gogna P., Adv. Mater. 2007, 19, 1043–1053;

Biswas K., He J. Q., Blum I. D., Wu C. I., Hogan T. P., Seidman D. N., Dravid V. P., Kanatzidis M. G., Nature 2012, 489, 414–418; PubMed

Heremans J. P., Dresselhaus M. S., Bell L. E., Morelli D. T., Nat. Nanotechnol. 2013, 8, 471–473; PubMed

He J. Q., Kanatzidis M. G., Dravid V. P., Mater. Today 2013, 16, 166–176.

Poudeu P. F. P., D′Angelo J., Downey A. D., Short J. L., Hogan T. P., Kanatzidis M. G., Angew. Chem. Int. Ed. 2006, 45, 3835–3839; PubMed

Angew. Chem. 2006, 118, 3919–3923;

Johnsen S., He J. Q., Androulakis J., Dravid V. P., Todorov I., Chung D. Y., Kanatzidis M. G., J. Am. Chem. Soc. 2011, 133, 3460–3470. PubMed

Liang D. X., Ma R. S., Jiao S. H., Pang G. S., Feng S. H., Nanoscale 2012, 4, 6265–6268; PubMed

Park J., Xia Y., Ozolins V., J. Appl. Phys. 2019, 125, 125102.

Balaz P., Mechanochemistry in Nanoscience and Minerals Engineering, Springer, Berlin Heidelberg, 2008, p. 413;

Balaz P., Balaz M., Achimovicova M., Bujinakova Z., Dutkova E., J. Mater. Sci. 2017, 52, 11851–11890.

Lan Y. C., Minnich A. J., Chen G., Ren Z. F., Adv. Funct. Mater. 2010, 20, 357–376.

Dutkova E., Bujnakova Z., Kovac J., Skorvanek I., Sayagues M. J., Zorkovska A., Kovac J., Balaz P., Adv. Powder Technol. 2018, 29, 1820–1826.

Levinsky P., Hejtmanek J., Knizek K., Pashchenko M., Navratil J., Masschelein P., Dutkova E., Balaz P., Acta Phys. Pol. A 2020, 137, 904–907.

Balaz P., Achimovicova M., Balaz M., Chen K., Dobrozhan O., Guilmeau E., Hejtmanek J., Knizek K., Kubickova L., Levinsky P., Puchy V., Reece M. J., Varga P., Zhang R., ACS Sustainable Chem. Eng. 2021, 9, 5, 2003–2016.

Zhao S. X., Wang G. R., Yang H. Y., Chen G. B., Qiu X. M., Trans. Nonferrous Met. Soc. China 2021, 31, 1465–1474;

Cullity D. B., Elements of X-ray Diffraction, Second Edition, Addison-Wesley Publishing Company, Inc., London, 1978.

Juhasz A. Z., Opoczky L., Mechanical Activation of Minerals by Grinding: Pulverizing and Morphology of Particles, Ellis Horwood, Chichester, 1990, p. 213.

Tkacova K., Mechanical Activation of Minerals, Elsevier, Amsterdam: 1989, p. 155.

Boldyrev V. V., Tkacova K., J. Mater. Synth. Process. 2000, 8, 121–132.

Miyasaka K., Senna M., React. Solids 1986, 2, 135–149;

Inoue S. I., Senna M., React. Solids 1988, 5, 155–166.

Senna M., Part. Part. Syst. Charact. 1989, 6, 163–167.

Tkacova K., Balaz P., Hydrometallurgy 1988, 21, 103–112.

Zeier W. G., Zevalkink A., Gibbs Z. M., Hautier G., Kanatzidis M. G., Snyder G. J., Angew. Chem. Int. Ed. 2016, 55, 6826–6841; PubMed

Angew. Chem. 2016, 128, 6938–6954.

Tian Z. T., Esfarjani K., Shiomi J., Henry A. S., Chen G., Appl. Phys. Lett. 2011, 99, 053122.

Balaz P., Bastl Z., Tkacova K., J. Mater. Sci. Lett. 1993, 12, 511–512;

Li J. H., Tan Q., Li J. F., J. Alloys Compd. 2013, 551, 143–149;

Granata G., Takahashi K., Kato T., Tokoro C., Miner. Eng. 2019, 131, 280–285;

Huang Z. W., Zhao L. D., J. Mater. Chem. C 2020, 8, 12054–12061.

Balaz P., Tkacova K., Avvakumov E. G., J. Therm. Anal. 1989, 35, 1325–1330;

Gock E., Erzmetall 1978, 31, 282–288 (in German).

Tkacova K., Boldyrev V. V., Pavluchin Yu. T., Avvakumov E. G., Sadykov R. S., Balaz P., Izv. Sib. Otdel. AN SSSR 2 1984, 9–13 (in Russian).

Baláž P., Extractive Metallurgy of Activated Minerals, Elsevier, Amsterdam: 2000, p. 278.

Navratil J., Levinský P., Hejtmánek J., Pashchenko M., Knizek K., Kubickova L., Kmjec T., Drasar C., J. Phys. Chem. C 2020, 124, 20773–20783.

Ge Z. H., Zhang B. P., Chen Y. X., Yu Z. X., Liu Y., Li J. F., Chem. Commun. 2011, 47, 12697–12699; PubMed

Pearce C. I., Pattrick R. A. D., Vaughan D. J., Rev. Mineral. Geochem. 2006, 61, 127–180;

Qiu P., Zhang T., Qiu Y., Shi X., Chen L., Energy Environ. Sci. 2014, 7, 4000–4006.

Ohlberg S. M., Strickler D. W., J. Am. Ceram. Soc. 1962, 45, 170–171.

Li Y., Kawashima N., Li J., Chandra A. P., Gerson A. R., Adv. Colloid Interface Sci. 2013, 197–198, 1–32. PubMed

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...