Polycystin-1 is required for insulin-like growth factor 1-induced cardiomyocyte hypertrophy

. 2021 ; 16 (8) : e0255452. [epub] 20210818

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34407099

Grantová podpora
R25 HL145817 NHLBI NIH HHS - United States
S10 OD010417 NIH HHS - United States
T32 HL007444 NHLBI NIH HHS - United States

Cardiac hypertrophy is the result of responses to various physiological or pathological stimuli. Recently, we showed that polycystin-1 participates in cardiomyocyte hypertrophy elicited by pressure overload and mechanical stress. Interestingly, polycystin-1 knockdown does not affect phenylephrine-induced cardiomyocyte hypertrophy, suggesting that the effects of polycystin-1 are stimulus-dependent. In this study, we aimed to identify the role of polycystin-1 in insulin-like growth factor-1 (IGF-1) signaling in cardiomyocytes. Polycystin-1 knockdown completely blunted IGF-1-induced cardiomyocyte hypertrophy. We then investigated the molecular mechanism underlying this result. We found that polycystin-1 silencing impaired the activation of the IGF-1 receptor, Akt, and ERK1/2 elicited by IGF-1. Remarkably, IGF-1-induced IGF-1 receptor, Akt, and ERK1/2 phosphorylations were restored when protein tyrosine phosphatase 1B was inhibited, suggesting that polycystin-1 knockdown deregulates this phosphatase in cardiomyocytes. Moreover, protein tyrosine phosphatase 1B inhibition also restored IGF-1-dependent cardiomyocyte hypertrophy in polycystin-1-deficient cells. Our findings provide the first evidence that polycystin-1 regulates IGF-1-induced cardiomyocyte hypertrophy through a mechanism involving protein tyrosine phosphatase 1B.

Zobrazit více v PubMed

Shimizu I., Minamino T. Physiological and pathological cardiac hypertrophy. J Mol Cell Cardiol. 2016;97:245–62. doi: 10.1016/j.yjmcc.2016.06.001 PubMed DOI

Blaauw E., van Nieuwenhoven F. A., Willemsen P., Delhaas T., Prinzen F. W., Snoeckx L. H., et al.. Stretch-induced hypertrophy of isolated adult rabbit cardiomyocytes. Am J Physiol Heart Circ Physiol. 2010;299:H780–7. doi: 10.1152/ajpheart.00822.2009 PubMed DOI

Duerr R. L., Huang S., Miraliakbar H. R., Clark R., Chien K. R., Ross J. Jr. Insulin-like growth factor-1 enhances ventricular hypertrophy and function during the onset of experimental cardiac failure. J Clin Invest. 1995;95:619–27. doi: 10.1172/JCI117706 PubMed DOI PMC

Ito H., Hiroe M., Hirata Y., Tsujino M., Adachi S., Shichiri M., et al.. Insulin-like growth factor-I induces hypertrophy with enhanced expression of muscle specific genes in cultured rat cardiomyocytes. Circulation. 1993;87:1715–21. doi: 10.1161/01.cir.87.5.1715 PubMed DOI

Rakesh K., Yoo B., Kim I. M., Salazar N., Kim K. S., Rockman H. A. beta-Arrestin-biased agonism of the angiotensin receptor induced by mechanical stress. Sci Signal. 2010;3:ra46. doi: 10.1126/scisignal.2000769 PubMed DOI PMC

Ruwhof C., van der Laarse A. Mechanical stress-induced cardiac hypertrophy: mechanisms and signal transduction pathways. Cardiovasc Res. 2000;47:23–37. doi: 10.1016/s0008-6363(00)00076-6 PubMed DOI

Catalucci D., Latronico M. V., Ellingsen O., Condorelli G. Physiological myocardial hypertrophy: how and why? Front Biosci. 2008;13:312–24. doi: 10.2741/2681 PubMed DOI

Foncea R., Andersson M., Ketterman A., Blakesley V., Sapag-Hagar M., Sugden P. H., et al.. Insulin-like growth factor-I rapidly activates multiple signal transduction pathways in cultured rat cardiac myocytes. J Biol Chem. 1997;272:19115–24. doi: 10.1074/jbc.272.31.19115 PubMed DOI

Arroba A. I., Revuelta-Cervantes J., Menes L., Gonzalez-Rodriguez A., Pardo V., de la Villa P., et al.. Loss of protein tyrosine phosphatase 1B increases IGF-I receptor tyrosine phosphorylation but does not rescue retinal defects in IRS2-deficient mice. Invest Ophthalmol Vis Sci. 2013;54:4215–25. doi: 10.1167/iovs.12-11438 PubMed DOI

Buckley D. A., Cheng A., Kiely P. A., Tremblay M. L., O’Connor R. Regulation of insulin-like growth factor type I (IGF-I) receptor kinase activity by protein tyrosine phosphatase 1B (PTP-1B) and enhanced IGF-I-mediated suppression of apoptosis and motility in PTP-1B-deficient fibroblasts. Mol Cell Biol. 2002;22:1998–2010. doi: 10.1128/MCB.22.7.1998-2010.2002 PubMed DOI PMC

Fan G., Lin G., Lucito R., Tonks N. K. Protein-tyrosine phosphatase 1B antagonized signaling by insulin-like growth factor-1 receptor and kinase BRK/PTK6 in ovarian cancer cells. J Biol Chem. 2013;288:24923–34. doi: 10.1074/jbc.M113.482737 PubMed DOI PMC

Bakke J., Haj F. G. Protein-tyrosine phosphatase 1B substrates and metabolic regulation. Semin Cell Dev Biol. 2015;37:58–65. doi: 10.1016/j.semcdb.2014.09.020 PubMed DOI PMC

Chen P. J., Cai S. P., Huang C., Meng X. M., Li J. Protein tyrosine phosphatase 1B (PTP1B): A key regulator and therapeutic target in liver diseases. Toxicology. 2015;337:10–20. doi: 10.1016/j.tox.2015.08.006 PubMed DOI

Kandadi M. R., Panzhinskiy E., Roe N. D., Nair S., Hu D., Sun A. Deletion of protein tyrosine phosphatase 1B rescues against myocardial anomalies in high fat diet-induced obesity: Role of AMPK-dependent autophagy. Biochim Biophys Acta. 2015;1852:299–309. doi: 10.1016/j.bbadis.2014.07.004 PubMed DOI

Gomez E., Vercauteren M., Kurtz B., Ouvrard-Pascaud A., Mulder P., Henry J. P., et al.. Reduction of heart failure by pharmacological inhibition or gene deletion of protein tyrosine phosphatase 1B. J Mol Cell Cardiol. 2012;52:1257–64. doi: 10.1016/j.yjmcc.2012.03.003 PubMed DOI

Pedrozo Z., Criollo A., Battiprolu P. K., Morales C. R., Contreras-Ferrat A., Fernandez C., et al.. Polycystin-1 is a cardiomyocyte mechanosensor that governs L-Type Ca2+ channel protein stability. Circulation. 2015;131:2131–42. doi: 10.1161/CIRCULATIONAHA.114.013537 PubMed DOI PMC

Chapin H. C., Caplan M. J. The cell biology of polycystic kidney disease. J Cell Biol. 2010;191:701–10. doi: 10.1083/jcb.201006173 PubMed DOI PMC

Huan Y., van Adelsberg J. Polycystin-1, the PKD1 gene product, is in a complex containing E-cadherin and the catenins. J Clin Invest. 1999;104:1459–68. doi: 10.1172/JCI5111 PubMed DOI PMC

Xu G. M., Sikaneta T., Sullivan B. M., Zhang Q., Andreucci M., Stehle T., et al.. Polycystin-1 interacts with intermediate filaments. J Biol Chem. 2001;276:46544–52. doi: 10.1074/jbc.M107828200 PubMed DOI

Geng L., Burrow C. R., Li H. P., Wilson P. D. Modification of the composition of polycystin-1 multiprotein complexes by calcium and tyrosine phosphorylation. Biochim Biophys Acta. 2000;1535:21–35. doi: 10.1016/s0925-4439(00)00079-x PubMed DOI

Li Y., Santoso N. G., Yu S., Woodward O. M., Qian F., Guggino W. B. Polycystin-1 interacts with inositol 1,4,5-trisphosphate receptor to modulate intracellular Ca2+ signaling with implications for polycystic kidney disease. J Biol Chem. 2009;284:36431–41. doi: 10.1074/jbc.M109.068916 PubMed DOI PMC

Tahimic C. G., Long R. K., Kubota T., Sun M. Y., Elalieh H., Fong C., et al.. Regulation of ligand and shear stress-induced insulin-like growth factor 1 (IGF1) signaling by the integrin pathway. J Biol Chem. 2016;291:8140–9. doi: 10.1074/jbc.M115.693598 PubMed DOI PMC

Boucher C. A., Ward H. H., Case R. L., Thurston K. S., Li X, Needham A., et al.. Receptor protein tyrosine phosphatases are novel components of a polycystin complex. Biochim Biophys Acta. 2011;1812:1225–38. doi: 10.1016/j.bbadis.2010.11.006 PubMed DOI PMC

Pennanen C., Parra V., Lopez-Crisosto C., Morales P. E., Del Campo A., Gutierrez T., et al.. Mitochondrial fission is required for cardiomyocyte hypertrophy mediated by a Ca2+-calcineurin signaling pathway. J Cell Sci. 2014;127:2659–71. doi: 10.1242/jcs.139394 PubMed DOI PMC

Oyarzun A. P., Westermeier F., Pennanen C., Lopez-Crisosto C., Parra V., Sotomayor-Flores C., et al.. FK866 compromises mitochondrial metabolism and adaptive stress responses in cultured cardiomyocytes. Biochem Pharmacol. 2015;98:92–101. doi: 10.1016/j.bcp.2015.08.097 PubMed DOI

Aoki H., Sadoshima J., Izumo S. Myosin light chain kinase mediates sarcomere organization during cardiac hypertrophy in vitro. Nat Med. 2000;6:183–88. doi: 10.1038/72287 PubMed DOI

Carrasco L., Cea P., Rocco P., Pena-Oyarzun D., Rivera-Mejias P., Sotomayor-Flores C., et al.. Role of heterotrimeric G protein and calcium in cardiomyocyte hypertrophy induced by IGF-1. J Cell Biochem. 2014;115:712–20. doi: 10.1002/jcb.24712 PubMed DOI

Ibarra C., Estrada M., Carrasco L., Chiong M., Liberona J. L., Cardenas C., et al.. Insulin-like growth factor-1 induces an inositol 1,4,5-trisphosphate-dependent increase in nuclear and cytosolic calcium in cultured rat cardiac myocytes. J Biol Chem. 2004;279:7554–65. doi: 10.1074/jbc.M311604200 PubMed DOI

Kim S. J., Abdellatif M., Koul S., Crystal G. J. Chronic treatment with insulin-like growth factor I enhances myocyte contraction by upregulation of Akt-SERCA2a signaling pathway. Am J Physiol Heart Circ Physiol. 2008;295:H130–5. doi: 10.1152/ajpheart.00298.2008 PubMed DOI PMC

Buckley D. A., Loughran G., Murphy G., Fennelly C., O’Connor R. Identification of an IGF-1R kinase regulatory phosphatase using the fission yeast Schizosaccharomyces pombe and a GFP tagged IGF-1R in mammalian cells. Mol Pathol. 2002;55:46–54. doi: 10.1136/mp.55.1.46 PubMed DOI PMC

Yao Z., Darowski K., St-Denis N., Wong V., Offensperger F., Villedieu A., et al.. A Global analysis of the receptor tyrosine kinase-protein phosphatase interactome. Mol Cell. 2017;65:347–60. doi: 10.1016/j.molcel.2016.12.004 PubMed DOI PMC

Troncoso R., Ibarra C., Vicencio J. M., Jaimovich E., Lavandero S. New insights into IGF-1 signaling in the heart. Trends Endocrinol Metab. 2014;25:128–37. doi: 10.1016/j.tem.2013.12.002 PubMed DOI

Westermeier F., Bustamante M., Pavez M., Garcia L., Chiong M., Ocaranza M. P., et al.. Novel players in cardioprotection: Insulin like growth factor-1, angiotensin-(1–7) and angiotensin-(1–9). Pharmacol Res. 2015;101:41–55. doi: 10.1016/j.phrs.2015.06.018 PubMed DOI

Ibarra C., Vicencio J. M., Estrada M., Lin Y., Rocco P., Rebellato P., et al.. Local control of nuclear calcium signaling in cardiac myocytes by perinuclear microdomains of sarcolemmal insulin-like growth factor 1 receptors. Circ Res. 2013;112:236–45. doi: 10.1161/CIRCRESAHA.112.273839 PubMed DOI

Boura-Halfon S., Zick Y. Serine kinases of insulin receptor substrate proteins. Vitam Horm. 2009;80:313–49. doi: 10.1016/S0083-6729(08)00612-2 PubMed DOI

Gainullin V. G., Hopp K., Ward C. J., Hommerding C. J., Harris P. C. Polycystin-1 maturation requires polycystin-2 in a dose-dependent manner. J Clin Invest. 2015;125:607–20. doi: 10.1172/JCI76972 PubMed DOI PMC

Criollo A., Altamirano F., Pedrozo Z., Schiattarella G. G., Li D. L., Rivera-Mejías P., et al.. Polycystin-2-dependent control of cardiomyocyte autophagy. J Mol Cell Cardiol. 2018;118:110–21. doi: 10.1016/j.yjmcc.2018.03.002 PubMed DOI

Kaur S., McGlashan S. R., Ward M-L. Evidence of primary cilia in the developing rat heart. Cilia. 2018;7:4. doi: 10.1186/s13630-018-0058-z PubMed DOI PMC

Villalobos E., Criollo A., Schiattarella G. G., Altamirano F., French K. M., May H. I., et al.. Fibroblast primary cilia are required for cardiac fibrosis. Circulation. 2019;139:2342–57. doi: 10.1161/CIRCULATIONAHA.117.028752 PubMed DOI PMC

Altamirano F., Schiattarella G. G., French K. M., Kim S. Y., Engelberger F., Kyrychenko S., et al.. Polycystin-1 assembles with Kv channels to govern cardiomyocyte repolarization and contractility. Circulation. 2019;140:921–36. doi: 10.1161/CIRCULATIONAHA.118.034731 PubMed DOI PMC

Aránguiz P., Romero P., Vásquez F., Flores-Vergara R., Aravena D., Sánchez G., et al.. Polycystin-1 mitigates damage and regulates CTGF expression through AKT activation during cardiac ischemia/reperfusion. Biochim Biophys Acta Mol Basis Dis. 2021;1867:165986. doi: 10.1016/j.bbadis.2020.165986 PubMed DOI

Carver K. C., Piazza T. M., Schuler L. A. Prolactin enhances insulin-like growth factor I receptor phosphorylation by decreasing its association with the tyrosine phosphatase SHP-2 in MCF-7 breast cancer cells. J Biol Chem. 2010;285:8003–12. doi: 10.1074/jbc.M109.066480 PubMed DOI PMC

Parnell S. C., Puri S., Wallace D. P., Calvet J. P. Protein phosphatase-1alpha interacts with and dephosphorylates polycystin-1. PLoS One. 2012;7:e36798. doi: 10.1371/journal.pone.0036798 PubMed DOI PMC

Córdova-Casanova A., Olmedo I., Riquelme J. A., Barrientos G., Sánchez G., Gillette T. G., et al.. Mechanical stretch increases L-type calcium channel stability in cardiomyocytes through a polycystin-1/AKT-dependent mechanism. Biochim Biophys Acta Mol Cell Res. 2018;1865:289–96. doi: 10.1016/j.bbamcr.2017.11.001 PubMed DOI

Ravichandran L. V., Chen H., Li Y., Quon M. J. Phosphorylation of PTP1B at Ser(50) by Akt impairs its ability to dephosphorylate the insulin receptor. Mol Endocrinol. 2001;15:1768–80. doi: 10.1210/mend.15.10.0711 PubMed DOI

Incerpi S., Hsieh M. T., Lin H. Y., Cheng G. Y., De Vito P., Fiore A. M., et al.. Thyroid hormone inhibition in L6 myoblasts of IGF-I-mediated glucose uptake and proliferation: new roles for integrin alphavbeta3. Am J Physiol Cell Physiol. 2014;307:C150–61. doi: 10.1152/ajpcell.00308.2013 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...