A pyrexic effect of FGF21 independent of energy expenditure and UCP1

. 2021 Nov ; 53 () : 101324. [epub] 20210819

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34418595
Odkazy

PubMed 34418595
PubMed Central PMC8452799
DOI 10.1016/j.molmet.2021.101324
PII: S2212-8778(21)00171-X
Knihovny.cz E-zdroje

OBJECTIVE: Administration of FGF21 to mice reduces body weight and increases body temperature. The increase in body temperature is generally interpreted as hyperthermia, i.e. a condition secondary to the increase in energy expenditure (heat production). Here, we examine an alternative hypothesis: that FGF21 has a direct pyrexic effect, i.e. FGF21 increases body temperature independently of any effect on energy expenditure. METHODS: We studied the effects of FGF21 treatment on body temperature and energy expenditure in high-fat-diet-fed and chow-fed mice exposed acutely to various ambient temperatures, in high-fat diet-fed mice housed at 30 °C (i.e. at thermoneutrality), and in mice lacking uncoupling protein 1 (UCP1). RESULTS: In every model studied, FGF21 increased body temperature, but energy expenditure was increased only in some models. The effect of FGF21 on body temperature was more (not less, as expected in hyperthermia) pronounced at lower ambient temperatures. Effects on body temperature and energy expenditure were temporally distinct (daytime versus nighttime). FGF21 enhanced UCP1 protein content in brown adipose tissue (BAT); there was no measurable UCP1 protein in inguinal brite/beige adipose tissue. FGF21 increased energy expenditure through adrenergic stimulation of BAT. In mice lacking UCP1, FGF21 did not increase energy expenditure but increased body temperature by reducing heat loss, e.g. a reduced tail surface temperature. CONCLUSION: The effect of FGF21 on body temperature is independent of UCP1 and can be achieved in the absence of any change in energy expenditure. Since elevated body temperature is a primary effect of FGF21 and can be achieved without increasing energy expenditure, only limited body weight-lowering effects of FGF21 may be expected.

Zobrazit více v PubMed

Fisher F.M., Maratos-Flier E. Understanding the Physiology of FGF21. Annual Review of Physiology. 2016;78:223–241. PubMed

Emanuelli B., Vienberg S.G., Smyth G., Cheng C., Stanford K.I., Arumugam M. Interplay between FGF21 and insulin action in the liver regulates metabolism. Journal of Clinical Investigation. 2014;124(2):515–527. PubMed PMC

Adams A.C., Yang C., Coskun T., Cheng C.C., Gimeno R.E., Luo Y. The breadth of FGF21's metabolic actions are governed by FGFR1 in adipose tissue. Molecular Metabolism. 2012;2(1):31–37. PubMed PMC

Xu J., Lloyd D.J., Hale C., Stanislaus S., Chen M., Sivits G. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes. 2009;58(1):250–259. PubMed PMC

Coskun T., Bina H.A., Schneider M.A., Dunbar J.D., Hu C.C., Chen Y. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology. 2008;149(12):6018–6027. PubMed

Veniant M.M., Sivits G., Helmering J., Komorowski R., Lee J., Fan W. Pharmacologic effects of FGF21 are independent of the "browning" of white adipose tissue. Cell Metabolism. 2015;21(5):731–738. PubMed

Fisher F.M., Kleiner S., Douris N., Fox E.C., Mepani R.J., Verdeguer F. FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes & Development. 2012;26(3):271–281. PubMed PMC

Romanovsky A.A. The thermoregulation system and how it works. Handbook of Clinical Neurology. 2018;156:3–43. PubMed

Ganeshan K., Chawla A. Warming the mouse to model human diseases. Nature Reviews Endocrinology. 2017;13(8):458–465. PubMed PMC

Fischer A.W., Cannon B., Nedergaard J. Optimal housing temperatures for mice to mimic the thermal environment of humans: an experimental study. Mol Metab. 2018;7:161–170. PubMed PMC

Samms R.J., Smith D.P., Cheng C.C., Antonellis P.P., Perfield J.W., 2nd, Kharitonenkov A. Discrete aspects of FGF21 in vivo pharmacology do not require UCP1. Cell Reports. 2015;11(7):991–999. PubMed

Song P., Zechner C., Hernandez G., Canovas J., Xie Y., Sondhi V. The hormone FGF21 stimulates water drinking in response to ketogenic diet and alcohol. Cell Metabolism. 2018;27(6):1338–1347. e1334. PubMed PMC

Fischer A.W., Hoefig C.S., Abreu-Vieira G., de Jong J.M.A., Petrovic N., Mittag J. Leptin raises defended body temperature without activating thermogenesis. Cell Reports. 2016;14(7):1621–1631. PubMed

Meyer C.W., Willershauser M., Jastroch M., Rourke B.C., Fromme T., Oelkrug R. Adaptive thermogenesis and thermal conductance in wild-type and UCP1-KO mice. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology. 2010;299(5):R1396–R1406. PubMed PMC

Enerback S., Jacobsson A., Simpson E.M., Guerra C., Yamashita H., Harper M.E. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature. 1997;387(6628):90–94. PubMed

Weir J.B. New methods for calculating metabolic rate with special reference to protein metabolism. Journal of Physiology. 1949;109(1–2):1–9. PubMed PMC

Abreu-Vieira G., Xiao C., Gavrilova O., Reitman M.L. Integration of body temperature into the analysis of energy expenditure in the mouse. Mol Metab. 2015;4(6):461–470. PubMed PMC

Flachs P., Adamcova K., Zouhar P., Marques C., Janovska P., Viegas I. Induction of lipogenesis in white fat during cold exposure in mice: link to lean phenotype. International Journal of Obesity. 2017;41(3):372–380. PubMed

Schagger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical Biochemistry. 1987;166(2):368–379. PubMed

Zouhar P., Rakipovski G., Bokhari M.H., Busby O., Paulsson J.F., Conde-Frieboes K.W. UCP1-independent glucose-lowering effect of leptin in type 1 diabetes: only in conditions of hypoleptinemia. American Journal of Physiology. Endocrinology and Metabolism. 2020;318(1):E72–E86. PubMed PMC

Scholander P.F., Hock R., Walters V., Johnson F., Irving L. Heat regulation in some arctic and tropical mammals and birds. Biology Bulletin. 1950;99(2):237–258. PubMed

Fischer A.W., Csikasz R.I., von Essen G., Cannon B., Nedergaard J. No insulating effect of obesity. American Journal of Physiology. Endocrinology and Metabolism. 2016;311(1):E202–E213. PubMed

Mcnab B.K. On estimating thermal conductance in endotherms. Physiological Zoology. 1980;53(2):145–156.

Nahmias C., Blin N., Elalouf J.M., Mattei M.G., Strosberg A.D., Emorine L.J. Molecular characterization of the mouse beta 3-adrenergic receptor: relationship with the atypical receptor of adipocytes. The EMBO Journal. 1991;10(12):3721–3727. PubMed PMC

Meythaler J.M., Stinson A.M., 3rd Fever of central origin in traumatic brain injury controlled with propranolol. Archives of Physical Medicine and Rehabilitation. 1994;75(7):816–818. PubMed

Nedergaard J., Cannon B. UCP1 mRNA does not produce heat. Biochimica et Biophysica Acta. 2013;1831(5):943–949. PubMed

von Essen G., Lindsund E., Cannon B., Nedergaard J. Adaptive facultative diet-induced thermogenesis in wild-type but not in UCP1-ablated mice. American Journal of Physiology. Endocrinology and Metabolism. 2017;313(5):E515–E527. PubMed

Feldmann H.M., Golozoubova V., Cannon B., Nedergaard J. UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metabolism. 2009;9(2):203–209. PubMed

Bargut T.C., Silva-e-Silva A.C., Souza-Mello V., Mandarim-de-Lacerda C.A., Aguila M.B. Mice fed fish oil diet and upregulation of brown adipose tissue thermogenic markers. European Journal of Nutrition. 2016;55(1):159–169. PubMed

Garcia-Ruiz E., Reynes B., Diaz-Rua R., Ceresi E., Oliver P., Palou A. The intake of high-fat diets induces the acquisition of brown adipocyte gene expression features in white adipose tissue. International Journal of Obesity. 2015;39(11):1619–1629. PubMed

Kontani Y., Wang Y., Kimura K., Inokuma K.I., Saito M., Suzuki-Miura T. UCP1 deficiency increases susceptibility to diet-induced obesity with age. Aging Cell. 2005;4(3):147–155. PubMed

Rowland L.A., Maurya S.K., Bal N.C., Kozak L., Periasamy M. Sarcolipin and uncoupling protein 1 play distinct roles in diet-induced thermogenesis and do not compensate for one another. Obesity. 2016;24(7):1430–1433. PubMed PMC

Gordon C.J. Thermal biology of the laboratory rat. Physiology & Behavior. 1990;47(5):963–991. PubMed

Warner A., Rahman A., Solsjo P., Gottschling K., Davis B., Vennstrom B. Inappropriate heat dissipation ignites brown fat thermogenesis in mice with a mutant thyroid hormone receptor alpha1. Proceedings of the National Academy of Sciences of the U S A. 2013;110(40):16241–16246. PubMed PMC

Warner A., Mittag J. Brown fat and vascular heat dissipation: the new cautionary tail. Adipocyte. 2014;3(3):221–223. PubMed PMC

Gachkar S., Oelkrug R., Martinez-Sanchez N., Rial-Pensado E., Warner A., Hoefig C.S. 3-Iodothyronamine induces tail vasodilation through central action in male mice. Endocrinology. 2017;158(6):1977–1984. PubMed

Hale C., Chen M.M., Stanislaus S., Chinookoswong N., Hager T., Wang M. Lack of overt FGF21 resistance in two mouse models of obesity and insulin resistance. Endocrinology. 2012;153(1):69–80. PubMed

Ameka M., Markan K.R., Morgan D.A., BonDurant L.D., Idiga S.O., Naber M.C. Liver derived FGF21 maintains core body temperature during acute cold exposure. Scientific Reports. 2019;9(1):630. PubMed PMC

Himms-Hagen J. On raising energy expenditure in ob/ob mice. Science. 1997;276(5315):1132–1133. PubMed

Butler A.A., Kozak L.P. A recurring problem with the analysis of energy expenditure in genetic models expressing lean and obese phenotypes. Diabetes. 2010;59(2):323–329. PubMed PMC

Cannon B., Nedergaard J. Nonshivering thermogenesis and its adequate measurement in metabolic studies. Journal of Experimental Biology. 2011;214(Pt 2):242–253. PubMed

Tschop M.H., Speakman J.R., Arch J.R., Auwerx J., Bruning J.C., Chan L. A guide to analysis of mouse energy metabolism. Nature Methods. 2011;9(1):57–63. PubMed PMC

Chau M.D., Gao J., Yang Q., Wu Z., Gromada J. Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK-SIRT1-PGC-1alpha pathway. Proceedings of the National Academy of Sciences of the U S A. 2010;107(28):12553–12558. PubMed PMC

BonDurant L.D., Ameka M., Naber M.C., Markan K.R., Idiga S.O., Acevedo M.R. FGF21 regulates metabolism through adipose-dependent and -independent mechanisms. Cell Metabolism. 2017;25(4):935–944. e934. PubMed PMC

Douris N., Stevanovic D.M., Fisher F.M., Cisu T.I., Chee M.J., Nguyen N.L. Central fibroblast growth factor 21 Browns white fat via sympathetic action in male mice. Endocrinology. 2015;156(7):2470–2481. PubMed PMC

Owen B.M., Ding X., Morgan D.A., Coate K.C., Bookout A.L., Rahmouni K. FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metabolism. 2014;20(4):670–677. PubMed PMC

Kwon M.M., O'Dwyer S.M., Baker R.K., Covey S.D., Kieffer T.J. FGF21-Mediated improvements in glucose clearance require uncoupling protein 1. Cell Reports. 2015;13(8):1521–1527. PubMed

Chen M.Z., Chang J.C., Zavala-Solorio J., Kates L., Thai M., Ogasawara A. FGF21 mimetic antibody stimulates UCP1-independent brown fat thermogenesis via FGFR1/betaKlotho complex in non-adipocytes. Molecular Metabolism. 2017;6(11):1454–1467. PubMed PMC

Straub L., Wolfrum C. FGF21, energy expenditure and weight loss - how much brown fat do you need? Molecular Metabolism. 2015;4(9):605–609. PubMed PMC

Lee P., Swarbrick M.M., Greenfield J.R. The sum of all browning in FGF21 therapeutics. Cell Metabolism. 2015;21(6):795–796. PubMed

Tan C.L., Knight Z.A. Regulation of body temperature by the nervous system. Neuron. 2018;98(1):31–48. PubMed PMC

Jensen-Cody S.O., Flippo K.H., Claflin K.E., Yavuz Y., Sapouckey S.A., Walters G.C. FGF21 signals to glutamatergic neurons in the ventromedial hypothalamus to suppress carbohydrate intake. Cell Metabolism. 2020;32(2):273–286. e276. PubMed PMC

Santoso P., Nakata M., Shiizaki K., Boyang Z., Parmila K., Otgon-Uul Z. Fibroblast growth factor 21, assisted by elevated glucose, activates paraventricular nucleus NUCB2/Nesfatin-1 neurons to produce satiety under fed states. Scientific Reports. 2017;7:45819. PubMed PMC

Boulet N., Luijten I.H.N., Cannon B., Nedergaard J. Thermogenic recruitment of brown and brite/beige adipose tissues is not obligatorily associated with macrophage accretion or attrition. American Journal of Physiology. Endocrinology and Metabolism. 2020 PubMed PMC

Kalinovich A.V., de Jong J.M., Cannon B., Nedergaard J. UCP1 in adipose tissues: two steps to full browning. Biochimie. 2017;134:127–137. PubMed

Bernardo B., Lu M., Bandyopadhyay G., Li P., Zhou Y., Huang J. FGF21 does not require interscapular brown adipose tissue and improves liver metabolic profile in animal models of obesity and insulin-resistance. Scientific Reports. 2015;5:11382. PubMed PMC

Connolly E., Carnie J.A. Responses to cafeteria feeding in mice after the removal of interscapular brown adipose tissue. Bioscience Reports. 1982;2(11):877–882. PubMed

Rothwell N.J., Stock M.J. Surgical removal of brown fat results in rapid and complete compensation by other depots. American Journal of Physiology. 1989;257(2 Pt 2):R253–R258. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...