Bacterial Infection-Mimicking Three-Dimensional Phagocytosis and Chemotaxis in Electrospun Poly(ε-caprolactone) Nanofibrous Membrane

. 2021 Jul 28 ; 11 (8) : . [epub] 20210728

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34436332

Grantová podpora
HI16C0992, HR16C0001, 2019R1A6C1010003 Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea and by Basic Science Research Capacity Enhancement Project through Korea Basic Science Insti

In this study, we developed a three-dimensional (3D) in vitro infection model to investigate the crosstalk between phagocytes and microbes in inflammation using a nanofibrous membrane (NM). Poly(ε-caprolactone) (PCL)-NMs (PCL-NMs) were generated via electrospinning of PCL in chloroform. Staphylococcus aureus and phagocytes were able to adhere to the nanofibers and phagocytes engulfed S. aureus in the PCL-NM. The migration of phagocytes to S. aureus was evaluated in a two-layer co-culture system using PCL-NM. Neutrophils, macrophages and dendritic cells (DCs) cultured in the upper PCL-NM layer migrated to the lower PCL-NM layer containing bacteria. DCs migrated to neutrophils that cultured with bacteria and then engulfed neutrophils in two-layer system. In addition, phagocytes in the upper PCL-NM layer migrated to bacteria-infected MLE-12 lung epithelial cells in the lower PCL-NM layer. S. aureus-infected MLE-12 cells stimulated the secretion of tumor necrosis factor-α and IL-1α in 3D culture conditions, but not in 2D culture conditions. Therefore, the PCL-NM-based 3D culture system with phagocytes and bacteria mimics the inflammatory response to microbes in vivo and is applicable to the biomimetic study of various microbe infections.

Zobrazit více v PubMed

Schiffmann E., Corcoran B.A., Wahl S.M. N-formylmethionyl peptides as chemoattractants for leucocytes. Proc. Natl. Acad. Sci. USA. 1975;72:1059–1062. doi: 10.1073/pnas.72.3.1059. PubMed DOI PMC

Gouwy M., Struyf S., Proost P., Van Damme J. Synergy in cytokine and chemokine networks amplifies the inflammatory response. Cytokine Growth Factor Rev. 2005;16:561–580. doi: 10.1016/j.cytogfr.2005.03.005. PubMed DOI

Kim N.D., Luster A.D. The role of tissue resident cells in neutrophil recruitment. Trends Immunol. 2015;36:547–555. doi: 10.1016/j.it.2015.07.007. PubMed DOI PMC

Boyden S. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J. Exp. Med. 1962;115:453–466. doi: 10.1084/jem.115.3.453. PubMed DOI PMC

Sackmann E.K., Berthier E., Young E.W., Shelef M.A., Wernimont S.A., Huttenlocher A., Beebe D.J. Microfluidic kit-on-a-lid: A versatile platform for neutrophil chemotaxis assays. Blood. 2012;120:e45–e53. doi: 10.1182/blood-2012-03-416453. PubMed DOI PMC

Faure-André G., Vargas P., Yuseff M.I., Heuzé M., Diaz J., Lankar D., Steri V., Manry J., Hugues S., Vascotto F., et al. Regulation of dendritic cell migration by CD74, the MHC class II-associated invariant chain. Science. 2008;322:1705–1710. doi: 10.1126/science.1159894. PubMed DOI

Heuzé M.L., Collin O., Terriac E., Lennon-Duménil A.M., Piel M. Cell migration in confinement: A micro-channel-based assay. Methods Mol. Biol. 2011;769:415–434. PubMed

Stachowiak A.N., Irvine D.J. Inverse opal hydrogel-collagen composite scaffolds as a supportive microenvironment for immune cell migration. J. Biomed. Mater. Res. A. 2008;85:815–828. doi: 10.1002/jbm.a.31661. PubMed DOI

Huh D., Matthews B.D., Mammoto A., Montoya-Zavala M., Hsin H.Y., Ingber D.E. Reconstituting organ-level lung functions on a chip. Science. 2010;328:1662–1668. doi: 10.1126/science.1188302. PubMed DOI PMC

Pham Q.P., Sharma U., Mikos A.G. Electrospinning of polymeric nanofibers for tissue engineering applications: A review. Tissue Eng. 2006;12:1197–1211. doi: 10.1089/ten.2006.12.1197. PubMed DOI

Kim T.E., Kim C.G., Kim J.S., Jin S., Yoon S., Bae H.R., Kim J.H., Jeong Y.H., Kwak J.Y. Three-dimensional culture and interaction of cancer cells and dendritic cells in an electrospun nano-submicron hybrid fibrous scaffold. Int. J. Nanomed. 2016;11:823–835. PubMed PMC

Jin S., Park T.M., Kim C.H., Kim J.S., Le B.D., Jeong Y.H., Kwak J.Y., Yoon S. Three-dimensional migration of neutrophils through an electrospun nanofibrous membrane. Biotechniques. 2015;58:285–292. doi: 10.2144/000114297. PubMed DOI

Woodruff M.A., Hutmacher D.W. The Return of a Forgotten Polymer-Polycaprolactone in the 21st Century. Prog. Polym. Sci. 2010;35:1217–1256. doi: 10.1016/j.progpolymsci.2010.04.002. DOI

Mountcastle S.E., Cox S.C., Sammons R.L., Jabbari S., Shelton R.M., Kuehne S.A. A review of co-culture models to study the oral microenvironment and disease. J. Oral Microbiol. 2020;12:1773122. doi: 10.1080/20002297.2020.1773122. PubMed DOI PMC

Popov L., Kovalski J., Grandi G., Bagnoli F., Amieva M.R. Three-dimensional human skin models to understand Staphylococcus aureus skin colonization and infection. Front. Immunol. 2014;5:41. doi: 10.3389/fimmu.2014.00041. PubMed DOI PMC

Parente R., Possetti V., Schiavone M.L., Campodoni E., Menale C., Loppini M., Doni A., Bottazzi B., Mantovani A., Sandri M. 3D cocultures of osteoblasts and Staphylococcus aureus on biomimetic bone scaffolds as a tool to investigate the host–pathogen interface in osteomyelitis. Pathogens. 2021;10:837. doi: 10.3390/pathogens10070837. PubMed DOI PMC

Ding P., Wu H., Fang L., Wu M., Liu R. Transmigration and phagocytosis of macrophages in an airway infection model using four-dimensional techniques. Am. J. Respir. Cell Mol. Biol. 2014;51:1–10. doi: 10.1165/rcmb.2013-0390TE. PubMed DOI

Oh Y.S., Choi M.H., Shin J.I., Maza P.A.M.A., Kwak J.Y. Co-culturing of endothelial and cancer cells in a nanofibrous scaffold-based two-layer system. Int. J. Mol. Sci. 2020;11:4128. doi: 10.3390/ijms21114128. PubMed DOI PMC

Swamydas M., Luo Y., Dorf M.E., Lionakis M.S. Isolation of mouse neutrophils. Curr. Protoc. Immunol. 2015;110:3.20.1–3.20.15. doi: 10.1002/0471142735.im0320s110. PubMed DOI PMC

Maza P.A.M.A., Lee J.H., Kim Y.S., Sun G.M., Sung Y.J., Ponomarenko L.P., Stonik V.A., Ryu M., Kwak J.Y. Inotodiol from Inonotus obliquus chaga mushroom induces atypical maturation in dendritic cells. Front. Immunol. 2021;12:650841. doi: 10.3389/fimmu.2021.650841. PubMed DOI PMC

Pineda-Torra I., Gage M., de Juan A., Pello O.M. Isolation, culture, and polarization of murine bone marrow-derived and peritoneal macrophages. Methods Mol. Biol. 2015;1339:101–109. PubMed

Park K.H., Kurokawa K., Zheng L., Jung D.J., Tateishi K., Jin J.O., Ha N.C., Kang H.J., Matsushita M., Kwak J.Y., et al. Human serum mannose-binding lectin senses wall teichoic acid glycopolymer of Staphylococcus aureus, which is restricted in infancy. J. Biol. Chem. 2010;285:27167–27175. doi: 10.1074/jbc.M110.141309. PubMed DOI PMC

Raybourne R.B., Bunning V.K. Bacterium-host cell interactions at the cellular level: Fluorescent labeling of bacteria and analysis of short-term bacterium-phagocyte interaction by flow cytometry. Infect. Immun. 1994;62:665–672. doi: 10.1128/iai.62.2.665-672.1994. PubMed DOI PMC

Lu T., Porter A.R., Kennedy A.D., Kobayashi S.D., DeLeo F.R. Phagocytosis and killing of Staphylococcus aureus by human neutrophils. J. Innate Immun. 2014;6:639–649. doi: 10.1159/000360478. PubMed DOI PMC

Ye R.D., Boulay F., Wang J.M., Dahlgren C., Gerard C., Parmentier M., Serhan C.N., Murphy P.M. International union of basic and clinical pharmacology. LXXIII. Nomenclature for the formyl peptide receptor (FPR) family. Pharmacol. Rev. 2009;61:119–161. PubMed PMC

Skovbakke S.L., Winther M., Gabl M., Holdfeldt A., Linden S., Wang J.M., Dahlgren C., Franzyk H., Forsman H. The peptidomimetic Lau-(Lys-βNSpe)6-NH2 antagonizes formyl peptide receptor 2 expressed in mouse neutrophils. Biochem. Pharmacol. 2016;119:56–65. doi: 10.1016/j.bcp.2016.09.004. PubMed DOI

Warren S.E., Armstrong A., Hamilton M.K., Mao D.P., Leaf I.A., Miao E.A., Aderem A. Cutting Edge: Cytosolic bacterial DNA activates the inflammasome via Aim2. J. Immunol. 2010;185:818–821. doi: 10.4049/jimmunol.1000724. PubMed DOI PMC

Alfaro C., Suarez N., Oñate C., Perez-Gracia J.L., Martinez-Forero I., Hervas-Stubbs S., Rodriguez I., Perez G., Bolaños E., Palazon A., et al. Dendritic cells take up and present antigens from viable and apoptotic polymorphonuclear leukocytes. PLoS ONE. 2011;6:e29300. doi: 10.1371/journal.pone.0029300. PubMed DOI PMC

Sinha B., François P.P., Nüsse O., Foti M., Hartford O.M., Vaudaux P., Foster T.J., Lew D.P., Herrmann M., Krause K.H. Fibronectin-binding protein acts as Staphylococcus aureus invasin via fibronectin bridging to integrin α5β1. Cell. Microbiol. 1999;1:101–117. doi: 10.1046/j.1462-5822.1999.00011.x. PubMed DOI

Mortimer C.J., Burke L., Wright C.J. Microbial interactions with nanostructures and their importance for the development of electrospun nanofibrous materials used in regenerative medicine and filtration. J. Microb. Biochem. Technol. 2016;8:195–201. doi: 10.4172/1948-5948.1000285. DOI

Abrigo M., Kingshott P., McArthur S.L. Electrospun polystyrene fiber diameter influencing bacterial attachment, proliferation, and growth. ACS Appl. Mater. Interfaces. 2015;7:7644–7652. doi: 10.1021/acsami.5b00453. PubMed DOI

Schindler D., Gutierrez M.G., Beineke A., Rauter Y., Rohde M., Foster S., Goldmann O., Medina E. Dendritic cells are central coordinators of the host immune response to Staphylococcus aureus bloodstream infection. Am. J. Pathol. 2012;181:1327–1337. doi: 10.1016/j.ajpath.2012.06.039. PubMed DOI

Shimada T., Park B.G., Wolf A.J., Brikos C., Goodridge H.S., Becker C.A., Reyes C.N., Miao E.A., Aderem A., Götz F., et al. Staphylococcus aureus evades lysozyme-based peptidoglycan digestion that links phagocytosis, inflammasome activation, and IL-1β secretion. Cell. Host Microbe. 2010;7:38–49. PubMed PMC

Spaan A.N., Surewaard B.G., Nijland R., van Strijp J.A. Neutrophils versus Staphylococcus aureus: A biological tug of war. Annu. Rev. Microbiol. 2013;67:629–650. doi: 10.1146/annurev-micro-092412-155746. PubMed DOI

Liu M., Chen K., Yoshimura T., Liu Y., Gong W., Wang A., Gao J., Murphy P.M., Wang J.M. Formylpeptide receptors are critical for rapid neutrophil mobilization in host defense against Listeria monocytogenes. Sci. Rep. 2012;2:786. doi: 10.1038/srep00786. PubMed DOI PMC

Sadik C.D., Kim N.D., Luster A.D. Neutrophils cascading their way to inflammation. Trends Immunol. 2011;32:452–460. doi: 10.1016/j.it.2011.06.008. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...