Three-Dimensional Avian Hematopoietic Stem Cell Cultures as a Model for Studying Disease Pathogenesis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
35127695
PubMed Central
PMC8811169
DOI
10.3389/fcell.2021.730804
PII: 730804
Knihovny.cz E-zdroje
- Klíčová slova
- bone marrow niche, disease prevention, hematopoietic stem cell, poultry, three-dimensional cell culture,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Three-dimensional (3D) cell culture is attracting increasing attention today because it can mimic tissue environments and provide more realistic results than do conventional cell cultures. On the other hand, very little attention has been given to using 3D cell cultures in the field of avian cell biology. Although mimicking the bone marrow niche is a classic challenge of mammalian stem cell research, experiments have never been conducted in poultry on preparing in vitro the bone marrow niche. It is well known, however, that all diseases cause immunosuppression and target immune cells and their development. Hematopoietic stem cells (HSC) reside in the bone marrow and constitute a source for immune cells of lymphoid and myeloid origins. Disease prevention and control in poultry are facing new challenges, such as greater use of alternative breeding systems and expanding production of eggs and chicken meat in developing countries. Moreover, the COVID-19 pandemic will draw greater attention to the importance of disease management in poultry because poultry constitutes a rich source of zoonotic diseases. For these reasons, and because they will lead to a better understanding of disease pathogenesis, in vivo HSC niches for studying disease pathogenesis can be valuable tools for developing more effective disease prevention, diagnosis, and control. The main goal of this review is to summarize knowledge about avian hematopoietic cells, HSC niches, avian immunosuppressive diseases, and isolation of HSC, and the main part of the review is dedicated to using 3D cell cultures and their possible use for studying disease pathogenesis with practical examples. Therefore, this review can serve as a practical guide to support further preparation of 3D avian HSC niches to study the pathogenesis of avian diseases.
Zobrazit více v PubMed
Adhikari R., Chen C., Kim W. K. (2020). Effect of 20(S)-hydroxycholesterol on Multilineage Differentiation of Mesenchymal Stem Cells Isolated from Compact Bones in Chicken. Genes 11, 1360. 10.3390/genes11111360 PubMed DOI PMC
Adhikari R., Chen C., Waters E., West F. D., Kim W. K. (2019). Isolation and Differentiation of Mesenchymal Stem Cells from Broiler Chicken Compact Bones. Front. Physiol. 9, 1892. 10.3389/fphys.2018.01892 PubMed DOI PMC
Agrawal G., Ramesh A., Aishwarya P., Sally J., Ravi M. (2021). Devices and Techniques Used to Obtain and Analyze Three‐dimensional Cell Cultures. Biotechnol. Prog. 37, e3126. 10.1002/btpr.3126 PubMed DOI
Annamalai T., Selvaraj R. K. (2010). Chicken Chemokine Receptors in T Cells Isolated from Lymphoid Organs and in Splenocytes Cultured with Concanavalin A. Poult. Sci. 89, 2419–2425. 10.3382/ps.2010-00968 PubMed DOI
Arai F., Suda T. (2007). Maintenance of Quiescent Hematopoietic Stem Cells in the Osteoblastic Niche. Ann. N.Y Acad. Sci. 1106, 41–53. 10.1196/annals.1392.005 PubMed DOI
Baldridge M. T., King K. Y., Goodell M. A. (2011). Inflammatory Signals Regulate Hematopoietic Stem Cells. Trends Immunol. 32, 57–65. 10.1016/j.it.2010.12.003 PubMed DOI PMC
Baldwin J., Antille M., Bonda U., De-Juan-Pardo E. M., Khosrotehrani K., Ivanovski S., et al. (2014). In Vitro pre-vascularisation of Tissue-Engineered Constructs A Co-culture Perspective. Vasc. Cel 6, 13. 10.1186/2045-824X-6-13 PubMed DOI PMC
Barrila J., Crabbé A., Yang J., Franco K., Nydam S. D., Forsyth R. J., et al. (2018). Modeling Host-Pathogen Interactions in the Context of the Microenvironment: Three-Dimensional Cell Culture Comes of Age. Infect. Immun. 86, e00282–18. 10.1128/IAI.00282-18 PubMed DOI PMC
Bellis S. L. (2011). Advantages of RGD Peptides for Directing Cell Association with Biomaterials. Biomaterials 32 (18), 4205–4210. 10.1016/j.biomaterials.2011.02.029 PubMed DOI PMC
Bello A. B., Park H., Lee S.-H. (2018). Current Approaches in Biomaterial-Based Hematopoietic Stem Cell Niches. Acta Biomater. 72, 1–15. 10.1016/j.actbio.2018.03.028 PubMed DOI
Bhatia S. N., Ingber D. E. (2014). Microfluidic Organs-On-Chips. Nat. Biotechnol. 32, 760–772. 10.1038/nbt.2989 PubMed DOI
Bílková B., Bainová Z., Janda J., Zita L., Vinkler M. (2017). Different Breeds, Different Blood: Cytometric Analysis of Whole Blood Cellular Composition in Chicken Breeds. Vet. Immunol. Immunopathology 188, 71–77. 10.1016/j.vetimm.2017.05.001 PubMed DOI
Blank U., Karlsson S. (2015). TGF-β Signaling in the Control of Hematopoietic Stem Cells. Blood 125, 3542–3550. 10.1182/blood-2014-12-618090 PubMed DOI
Bosworth L. A., HuShi W. Y., Shi Y., Cartmell S. H. (2019). Enhancing Biocompatibility without Compromising Material Properties: an Optimised Naoh Treatment for Electrospun Polycaprolactone Fibres. J. Nanomater. 2019, 1–11. 10.1155/2019/4605092 DOI
Brandon C., Eisenberg L. M., Eisenberg C. A. (2000). WNT Signaling Modulates the Diversification of Hematopoietic Cells. Blood 96, 4132–4141. 10.1182/blood.v96.13.4132 PubMed DOI
Caliari S. R., Burdick J. A. (2016). A Practical Guide to Hydrogels for Cell Culture. Nat. Methods 13, 405–414. 10.1038/nmeth.3839 PubMed DOI PMC
Canoville A., Schweitzer M. H., Zanno L. E. (2019). Systemic Distribution of Medullary Bone in the Avian Skeleton: Ground Truthing Criteria for the Identification of Reproductive Tissues in Extinct Avemetatarsalia. BMC Evol. Biol. 19, 71. 10.1186/s12862-019-1402-7 PubMed DOI PMC
Carthew J., Frith J. E., Forsythe J. S., Truong V. X. (2018). Polyethylene Glycol-Gelatin Hydrogels with Tuneable Stiffness Prepared by Horseradish Peroxidase-Activated Tetrazine-Norbornene Ligation. J. Mater. Chem. B 6, 1394–1401. 10.1039/c7tb02764h PubMed DOI
Castiaux A. D., Spence D. M., Martin R. S. (2019). Review of 3D Cell Culture with Analysis in Microfluidic Systems. Anal. Methods 11, 4220–4232. 10.1039/c9ay01328h PubMed DOI PMC
Çelebi B., Mantovani D., Pineault N. (2011). Effects of Extracellular Matrix Proteins on the Growth of Haematopoietic Progenitor Cells. Biomed. Mater. 6, 055011. 10.1088/1748-6041/6/5/055011 PubMed DOI
Chattopadhyay P. K., Roederer M., Bolton D. L. (2018). A Deadly Dance: the Choreography of Host-Pathogen Interactions, as Revealed by Single-Cell Technologies. Nat. Commun. 9, 4638. 10.1038/s41467-018-06214-0 PubMed DOI PMC
Chen B., Clark C., Chou T. (1988). Granulocyte/macrophage colony-stimulating Factor Stimulates Monocyte and Tissue Macrophage Proliferation and Enhances Their Responsiveness to Macrophage colony-stimulating Factor. Blood 71, 997–1002. 10.1182/blood.v71.4.997.bloodjournal714997 PubMed DOI
Chen C. H., Göbel T. W. F., Kubota T., Cooper M. D. (1994). T Cell Development in the Chicken. Poult. Sci. 73, 1012–1018. 10.3382/ps.0731012 PubMed DOI
Chen H.-W., Lin M.-F. (2020). Characterization, Biocompatibility, and Optimization of Electrospun SF/PCL/CS Composite Nanofibers. Polymers 12, 1439. 10.3390/polym12071439 PubMed DOI PMC
Chen Y.-C., Chang W.-C., Lin S.-P., Minami M., Jean C., Hayashi H., et al. (2018). Three-dimensional Culture of Chicken Primordial Germ Cells (cPGCs) in Defined media Containing the Functional Polymer FP003. PLoS One 13, e0200515. 10.1371/journal.pone.0200515 PubMed DOI PMC
Chitteti B. R., Kacena M. A., Voytik-Harbin S. L., Srour E. F. (2015). Modulation of Hematopoietic Progenitor Cell Fate In Vitro by Varying Collagen Oligomer Matrix Stiffness in the Presence or Absence of Osteoblasts. J. Immunological Methods 425, 108–113. 10.1016/j.jim.2015.07.001 PubMed DOI
Choi J. S., Harley B. A. C. (2017). Marrow-inspired Matrix Cues Rapidly Affect Early Fate Decisions of Hematopoietic Stem and Progenitor Cells. Sci. Adv. 3, e1600455. 10.1126/sciadv.1600455 PubMed DOI PMC
Chow A., Lucas D., Hidalgo A., Méndez-Ferrer S., Hashimoto D., Scheiermann C., et al. (2011). Bone Marrow CD169+ Macrophages Promote the Retention of Hematopoietic Stem and Progenitor Cells in the Mesenchymal Stem Cell Niche. J. Exp. Med. 208, 261–271. 10.1084/jem.20101688 PubMed DOI PMC
Coulombel L., Auffray I., Gaugler M.-H., Rosemblatt M. (1997). Expression and Function of Integrins on Hematopoietic Progenitor Cells. Acta Haematol. 97, 13–21. 10.1159/000203655 PubMed DOI
Cui Z., Sun S., Zhang Z., Meng S. (2009). Simultaneous Endemic Infections with Subgroup J Avian Leukosis Virus and Reticuloendotheliosis Virus in Commercial and Local Breeds of Chickens. Avian Pathol. 38, 443–448. 10.1080/03079450903349188 PubMed DOI
Darvish M., Payandeh Z., Soleimanifar F., Taheri B., Soleimani M., Islami M. (2019). Umbilical Cord Blood Mesenchymal Stem Cells Application in Hematopoietic Stem Cells Expansion on Nanofiber Three‐dimensional Scaffold. J. Cel Biochem 120, 12018–12026. 10.1002/jcb.28487 PubMed DOI
Dehdilani N., Shamsasenjan K., Movassaghpour A., Akbarzadehlaleh P., Amoughli Tabrizi B., Parsa H., et al. (2016). Improved Survival and Hematopoietic Differentiation of Murine Embryonic Stem Cells on Electrospun Polycaprolactone Nanofiber. Cell J 17, 629–638. 10.22074/cellj.2016.3835 PubMed DOI PMC
Deinhardt-Emmer S., Rennert K., Schicke E., Cseresnyés Z., Windolph M., Nietzsche S., et al. (2020). Co-infection with Staphylococcus aureus after Primary Influenza Virus Infection Leads to Damage of the Endothelium in a Human Alveolus-On-A-Chip Model. Biofabrication 12, 025012. 10.1088/1758-5090/ab7073 PubMed DOI
Di Maggio N., Piccinini E., Jaworski M., Trumpp A., Wendt D. J., Martin I. (2011). Toward Modeling the Bone Marrow Niche Using Scaffold-Based 3D Culture Systems. Biomaterials 32, 321–329. 10.1016/j.biomaterials.2010.09.041 PubMed DOI
Ding L., Saunders T. L., Enikolopov G., Morrison S. J. (2012). Endothelial and Perivascular Cells Maintain Haematopoietic Stem Cells. Nature 481, 457–462. 10.1038/nature10783 PubMed DOI PMC
Dunon D., Kaufman J., Salomonsen J., Skjoedt K., Vainio O., Thiery J. P., et al. (1990). T Cell Precursor Migration towards Beta 2-microglobulin Is Involved in Thymus Colonization of Chicken Embryos. EMBO J. 9, 3315–3322. 10.1002/j.1460-2075.1990.tb07531.x PubMed DOI PMC
Dutta P., Hoyer F. F., Grigoryeva L. S., Sager H. B., Leuschner F., Courties G., et al. (2015). Macrophages Retain Hematopoietic Stem Cells in the Spleen via VCAM-1. J. Exp. Med. 212, 497–512. 10.1084/jem.20141642 PubMed DOI PMC
Farzaneh M., Attari F., Mozdziak P. E., Khoshnam S. E. (2017). The Evolution of Chicken Stem Cell Culture Methods. Br. Poult. Sci. 58, 681–686. 10.1080/00071668.2017.1365354 PubMed DOI
Feaugas T., Sauvonnet N. (2021). Organ‐on‐chip to Investigate Host‐pathogens Interactions. Cell Microbiol. 23, e13336. 10.1111/cmi.13336 PubMed DOI
Fellah J. S., Jaffredo T., Nagy N., Dunon D. (2014). “Development of the Avian Immune System,” in Avian Immunology. Editors Schat K., Kaspers B., Kaiser P. (London: Elsevier; ), 45–63. 10.1016/b978-0-12-396965-1.00003-0 DOI
Ferreira M. S. V., Mousavi S. H. (2018). Nanofiber Technology in the Ex Vivo Expansion of Cord Blood-Derived Hematopoietic Stem Cells. Nanomedicine: Nanotechnology, Biol. Med. 14, 1707–1718. 10.1016/j.nano.2018.04.017 PubMed DOI
Frantz C., Stewart K. M., Weaver V. M. (2010). The Extracellular Matrix at a Glance. J. Cel Sci 123, 4195–4200. 10.1242/jcs.023820 PubMed DOI PMC
Garceau V., Balic A., Garcia-Morales C., Sauter K. A., McGrew M. J., Smith J., et al. (2015). The Development and Maintenance of the Mononuclear Phagocyte System of the Chick Is Controlled by Signals from the Macrophage colony-stimulating Factor Receptor. BMC Biol. 13, 12. 10.1186/s12915-015-0121-9 PubMed DOI PMC
Garcia-Morales C., Rothwell L., Moffat L., Garceau V., Balic A., Sang H. M., et al. (2014). Production and Characterisation of a Monoclonal Antibody that Recognises the Chicken CSF1 Receptor and Confirms that Expression Is Restricted to Macrophage-Lineage Cells. Develop. Comp. Immunol. 42, 278–285. 10.1016/j.dci.2013.09.011 PubMed DOI
Gibson M. S., Kaiser P., Fife M. (2009). Identification of Chicken Granulocyte colony-stimulating Factor (G-CSF/CSF3): the Previously Described Myelomonocytic Growth Factor Is Actually CSF3. J. Interferon Cytokine Res. 29, 339–344. 10.1089/jir.2008.0103 PubMed DOI
Gimeno I. M., Schat K. A. (2018). Virus-induced Immunosuppression in Chickens. Avian Dis. 62, 272–285. 10.1637/11841-041318-Review.1 PubMed DOI
Glick B. (1987). Cellular Composition of the Bone Marrow in the Chicken, a Comparison of Femur, Tibia and Humerus. Comp. Biochem. Physiol. A: Physiol. 86, 709–712. 10.1016/0300-9629(87)90629-3 PubMed DOI
Glick B., Rosse C. (1981). Cellular Composition of the Bone Marrow in the Chicken: II. The Effect of Age and the Influence of the Bursa of Fabricius on the Size of Cellular Compartments. Anat. Rec. 200, 471–479. 10.1002/ar.1092000410 PubMed DOI
Gong Y., Zhao M., Yang W., Gao A., Yin X., Hu L., et al. (2018). Megakaryocyte-derived Excessive Transforming Growth Factor β1 Inhibits Proliferation of normal Hematopoietic Stem Cells in Acute Myeloid Leukemia. Exp. Hematol. 60, 40–46. e2. 10.1016/j.exphem.2017.12.010 PubMed DOI
Grassart A., Malardé V., Gobaa S., Sartori-Rupp A., Kerns J., Karalis K., et al. (2019). Bioengineered Human Organ-On-Chip Reveals Intestinal Microenvironment and Mechanical Forces Impacting Shigella Infection. Cell Host & Microbe 26, 435–444. e4. 10.1016/j.chom.2019.08.007 PubMed DOI
Guedes P. T., Oliveira B. C. E. P. D. d., Manso P. P. d. A., Caputo L. F. G., Cotta-Pereira G., Pelajo-Machado M. (2014). Histological Analyses Demonstrate the Temporary Contribution of Yolk Sac, Liver, and Bone Marrow to Hematopoiesis during Chicken Development. PLoS One 9, e90975. 10.1371/journal.pone.0090975 PubMed DOI PMC
Gurung A., Kamble N., Kaufer B. B., Pathan A., Behboudi S. (2017). Association of Marek's Disease Induced Immunosuppression with Activation of a Novel Regulatory T Cells in Chickens. Plos Pathog. 13, e1006745. 10.1371/journal.ppat.1006745 PubMed DOI PMC
Hao X., Li S., Chen L., Dong M., Wang J., Hu J., et al. (2020). Establishing a Multicolor Flow Cytometry to Characterize Cellular Immune Response in Chickens Following H7N9 Avian Influenza Virus Infection. Viruses 12, 1396. 10.3390/v12121396 PubMed DOI PMC
He B., Chen G., Zeng Y. (2016). Three-dimensional Cell Culture Models for Investigating Human Viruses. Virol. Sin. 31, 363–379. 10.1007/s12250-016-3889-z PubMed DOI PMC
Hirata Y., Furuhashi K., Ishii H., Li H. W., Pinho S., Ding L., et al. (2018). CD150high Bone Marrow Tregs Maintain Hematopoietic Stem Cell Quiescence and Immune Privilege via Adenosine. Cell stem cell 22, 445–453. e5. 10.1016/j.stem.2018.01.017 PubMed DOI PMC
Holst J., Watson S., Lord M. S., Eamegdool S. S., Bax D. V., Nivison-Smith L. B., et al. (2010). Substrate Elasticity Provides Mechanical Signals for the Expansion of Hemopoietic Stem and Progenitor Cells. Nat. Biotechnol. 28, 1123–1128. 10.1038/nbt.1687 PubMed DOI
Hosokawa K., Imai K., Dong H. V., Ogawa H., Suzutou M., Linn S. H., et al. (2020). Pathological and Virological Analysis of Concurrent Disease of Chicken Anemia Virus Infection and Infectious Bronchitis in Japanese Native Chicks. J. Vet. Med. Sci. 82, 422–430. 10.1292/jvms.20-0006 PubMed DOI PMC
Huang X., Ma S., Wang L., Zhou H., Jiang Y., Cui W., et al. (2020). Lactobacillus Johnsonii-Activated Chicken Bone Marrow-Derived Dendritic Cells Exhibit Maturation and Increased Expression of Cytokines and Chemokines In Vitro . Cytokine 136, 155269. 10.1016/j.cyto.2020.155269 PubMed DOI
Hur J., Choi J.-I., Lee H., Nham P., Kim T.-W., Chae C.-W., et al. (2016). CD82/KAI1 Maintains the Dormancy of Long-Term Hematopoietic Stem Cells through Interaction with DARC-Expressing Macrophages. Cell stem cell 18, 508–521. 10.1016/j.stem.2016.01.013 PubMed DOI
Jahandideh B., Derakhshani M., Abbaszadeh H., Akbar Movassaghpour A., Mehdizadeh A., Talebi M., et al. (2020). The Pro-inflammatory Cytokines Effects on Mobilization, Self-Renewal and Differentiation of Hematopoietic Stem Cells. Hum. Immunol. 81, 206–217. 10.1016/j.humimm.2020.01.004 PubMed DOI
Jansen C. A., van de Haar P. M., van Haarlem D., van Kooten P., de Wit S., van Eden W., et al. (2010). Identification of New Populations of Chicken Natural Killer (NK) Cells. Develop. Comp. Immunol. 34, 759–767. 10.1016/j.dci.2010.02.009 PubMed DOI
Jansen L. E., Birch N. P., Schiffman J. D., Crosby A. J., Peyton S. R. (2015). Mechanics of Intact Bone Marrow. J. Mech. Behav. Biomed. Mater. 50, 299–307. 10.1016/j.jmbbm.2015.06.023 PubMed DOI PMC
Kalaiyarasu S., Bhatia S., Mishra N., Sood R., Kumar M., SenthilKumar D., et al. (2016). Elevated Level of Pro Inflammatory Cytokine and Chemokine Expression in Chicken Bone Marrow and Monocyte Derived Dendritic Cells Following LPS Induced Maturation. Cytokine 85, 140–147. 10.1016/j.cyto.2016.06.022 PubMed DOI
Kamble N. M., Jawale C. V., Lee J. H. (2016a). Activation of Chicken Bone Marrow-Derived Dendritic Cells Induced by a Salmonella Enteritidis Ghost Vaccine Candidate. Poult. Sci. 95, 2274–2280. 10.3382/ps/pew158 PubMed DOI
Kamble N. M., Jawale C. V., Lee J. H. (2016b). Interaction of a Live attenuatedSalmonellaGallinarum Vaccine Candidate with Chicken Bone Marrow-Derived Dendritic Cells. Avian Pathol. 45, 235–243. 10.1080/03079457.2016.1144919 PubMed DOI
Kandow C. E., Georges P. C., Janmey P. A., Beningo K. A. (2007). Polyacrylamide Hydrogels for Cell Mechanics: Steps toward Optimization and Alternative Uses. Methods Cel Biol 83, 29–46. 10.1016/S0091-679X(07)83002-0 PubMed DOI
Kang Y. G., Shin J. W., Park S. H., Kim Y. M., Gu S. R., Wu Y., et al. (2016). A Three-Dimensional Hierarchical Scaffold Fabricated by a Combined Rapid Prototyping Technique and Electrospinning Process to Expand Hematopoietic Stem/progenitor Cells. Biotechnol. Lett. 38, 175–181. 10.1007/s10529-015-1952-8 PubMed DOI
Kapałczyńska M., Kolenda T., Przybyła W., Zajączkowska M., Teresiak A., Filas V., et al. (2018). 2D and 3D Cell Cultures - a Comparison of Different Types of Cancer Cell Cultures. aoms 14, 910–919. 10.5114/aoms.2016.63743 PubMed DOI PMC
Kefallinou D., Grigoriou M., Boumpas D. T., Gogolides E., Tserepi A. (2020). Fabrication of a 3D Microfluidic Cell Culture Device for Bone Marrow-On-A-Chip. Micro Nano Eng. 9, 100075. 10.1016/j.mne.2020.100075 DOI
Khatri M., Sharma J. M. (2009). Susceptibility of Chicken Mesenchymal Stem Cells to Infectious Bursal Disease Virus. J. Virol. Methods 160, 197–199. 10.1016/j.jviromet.2009.05.008 PubMed DOI
Kim H. J., Oh D. X., ChoyNguyen S. H. L., Nguyen H.-L., Cha H. J., Hwang D. S. (2018). 3D Cellulose Nanofiber Scaffold with Homogeneous Cell Population and Long-Term Proliferation. Cellulose 25, 7299–7314. 10.1007/s10570-018-2058-y DOI
Kim J. H., Park J. Y., Jin S., Yoon S., Kwak J.-Y., Jeong Y. H. (2019). A Microfluidic Chip Embracing a Nanofiber Scaffold for 3D Cell Culture and Real-Time Monitoring. Nanomaterials 9, 588. 10.3390/nano9040588 PubMed DOI PMC
Kim T. E., Kim C. G., Kim J. S., Jin S., Yoon S., Bae H. R., et al. (2016). Three-dimensional Culture and Interaction of Cancer Cells and Dendritic Cells in an Electrospun Nano-Submicron Hybrid Fibrous Scaffold. Int. J. Nanomedicine 11, 823–835. 10.2147/IJN.S101846 PubMed DOI PMC
Kim H. J., Li H., Collins J. J., Ingber D. E. (2016). Contributions of Microbiome and Mechanical Deformation to Intestinal Bacterial Overgrowth and Inflammation in a Human Gut-On-A-Chip. Proc. Natl. Acad. Sci. USA 113, E7–E15. 10.1073/pnas.1522193112 PubMed DOI PMC
Ko K. H., Jeong Y. H., Kwak J. Y., Gu M. J., Kim H. Y., Park B. C., et al. (2018). Changes in Bursal B Cells in Chicken during Embryonic Development and Early Life after Hatching. Sci. Rep. 8, 16905. 10.1038/s41598-018-34897-4 PubMed DOI PMC
Kobayashi H., Morikawa T., Okinaga A., Hamano F., Hashidate-Yoshida T., Watanuki S., et al. (2019). Environmental Optimization Enables Maintenance of Quiescent Hematopoietic Stem Cells Ex Vivo . Cel Rep. 28, 145–158. e9. 10.1016/j.celrep.2019.06.008 PubMed DOI
Kogut M. H. (2000). Cytokines and Prevention of Infectious Diseases in Poultry: a Review. Avian Pathol. 29, 395–404. 10.1080/030794500750047135 PubMed DOI
Kogut M. H., Moyes R., Deloach J. R. (1997). Neutralization of G-CSF Inhibits ILK-Induced Heterophil Influx: Granulocyte-colony Stimulating Factor Mediates the Salmonella Enteritidis-Immune Lymphokine Potentiation of the Acute Avian Inflammatory Response. Inflammation 21, 9–25. 10.1023/a:1027382523535 PubMed DOI
Kozai M., Kubo Y., Katakai T., Kondo H., Kiyonari H., Schaeuble K., et al. (2017). Essential Role of CCL21 in Establishment of central Self-Tolerance in T Cells. J. Exp. Med. 214, 1925–1935. 10.1084/jem.20161864 PubMed DOI PMC
Kramer A. C., Blake A. L., Taisto M. E., Lehrke M. J., Webber B. R., Lund T. C. (2017). Dermatopontin in Bone Marrow Extracellular Matrix Regulates Adherence but Is Dispensable for Murine Hematopoietic Cell Maintenance. Stem Cel Rep. 9, 770–778. 10.1016/j.stemcr.2017.07.021 PubMed DOI PMC
Kräter M., Jacobi A., Otto O., Tietze S., Müller K., Poitz D. M., et al. (2017). Bone Marrow Niche-Mimetics Modulate HSPC Function via Integrin Signaling. Sci. Rep. 7, 2549. 10.1038/s41598-017-02352-5 PubMed DOI PMC
Lampisuo M., Katevuo K., Lassila O. (1998). Antigenic Phenotype of Early Intra‐Embryonic Lymphoid Progenitors in the Chicken. Scand. J. Immunol. 48, 52–58. 10.1046/j.1365-3083.1998.00361.x PubMed DOI
Larsen F. T., Guldbrandtsen B., Christensen D., Pitcovski J., Kjærup R. B., Dalgaard T. S. (2020). Pustulan Activates Chicken Bone Marrow-Derived Dendritic Cells In Vitro and Promotes Ex Vivo CD4+ T Cell Recall Response to Infectious Bronchitis Virus. Vaccines 8, 226. 10.3390/vaccines8020226 PubMed DOI PMC
Lazzari G., Vinciguerra D., Balasso A., Nicolas V., Goudin N., Garfa-Traore M., et al. (2019). Light Sheet Fluorescence Microscopy versus Confocal Microscopy: in Quest of a Suitable Tool to Assess Drug and Nanomedicine Penetration into Multicellular Tumor Spheroids. Eur. J. Pharmaceutics Biopharmaceutics 142, 195–203. 10.1016/j.ejpb.2019.06.019 PubMed DOI
Lee J. B., Jeong S. I., Bae M. S., Yang D. H., Heo D. N., Kim C. H., et al. (2011). Highly Porous Electrospun Nanofibers Enhanced by Ultrasonication for Improved Cellular Infiltration. Tissue Eng. A 17, 2695–2702. 10.1089/ten.TEA.2010.0709 PubMed DOI
Lee S.-J., Maza P. A. M. A., Sun G.-M., Slama P., Lee I.-J., Kwak J.-Y. (2021). Bacterial Infection-Mimicking Three-Dimensional Phagocytosis and Chemotaxis in Electrospun Poly(ε-Caprolactone) Nanofibrous Membrane. Membranes 11, 569. 10.3390/membranes11080569 PubMed DOI PMC
Leisten I., Kramann R., Ventura Ferreira M. S., Bovi M., Neuss S., Ziegler P., et al. (2012). 3D Co-culture of Hematopoietic Stem and Progenitor Cells and Mesenchymal Stem Cells in Collagen Scaffolds as a Model of the Hematopoietic Niche. Biomaterials 33, 1736–1747. 10.1016/j.biomaterials.2011.11.034 PubMed DOI
Li T., Wu Y. (2011). Paracrine Molecules of Mesenchymal Stem Cells for Hematopoietic Stem Cell Niche. Bone Marrow Res. 2011, 1–8. 10.1155/2011/353878 PubMed DOI PMC
Liang J., Yin Y., Qin T., Yang Q. (2015). Chicken Bone Marrow-Derived Dendritic Cells Maturation in Response to Infectious Bursal Disease Virus. Vet. Immunol. Immunopathology 164, 51–55. 10.1016/j.vetimm.2014.12.012 PubMed DOI
Lin J., Xia J., Zhang K., Yang Q. (2016). Genome-wide Profiling of Chicken Dendritic Cell Response to Infectious Bursal Disease. BMC Genomics 17, 878. 10.1186/s12864-016-3157-5 PubMed DOI PMC
Liu D., Qiu Q., Zhang X., Dai M., Qin J., Hao J., et al. (2016a). Infection of Chicken Bone Marrow Mononuclear Cells with Subgroup J Avian Leukosis Virus Inhibits Dendritic Cell Differentiation and Alters Cytokine Expression. Infect. Genet. Evol. 44, 130–136. 10.1016/j.meegid.2016.06.045 PubMed DOI
Liu D., Dai M., Zhang X., Cao W., Liao M. (2016b). Subgroup J Avian Leukosis Virus Infection of Chicken Dendritic Cells Induces Apoptosis via the Aberrant Expression of microRNAs. Sci. Rep. 6, 20188. 10.1038/srep20188 PubMed DOI PMC
Liu H., Wang Y., Cui K., Guo Y., Zhang X., Qin J. (2019). Advances in Hydrogels in Organoids and Organs‐on‐a‐Chip. Adv. Mater. 31, 1902042. 10.1002/adma.201902042 PubMed DOI
Liu Q., Yang J., Huang X., Liu Y., Han K., Zhao D., et al. (2020). Transcriptomic Profile of Chicken Bone Marrow-Derive Dendritic Cells in Response to H9N2 Avian Influenza A Virus. Vet. Immunol. Immunopathology 220, 109992. 10.1016/j.vetimm.2019.109992 PubMed DOI
Luis T. C., Naber B. A. E., Roozen P. P. C., Brugman M. H., de Haas E. F. E., Ghazvini M., et al. (2011). Canonical Wnt Signaling Regulates Hematopoiesis in a Dosage-dependent Fashion. Cell Stem Cell 9, 345–356. 10.1016/j.stem.2011.07.017 PubMed DOI
Ma K., Chan C. K., Liao S., Hwang W. Y. K., Feng Q., Ramakrishna S. (2008). Electrospun Nanofiber Scaffolds for Rapid and Rich Capture of Bone Marrow-Derived Hematopoietic Stem Cells. Biomaterials 29, 2096–2103. 10.1016/j.biomaterials.2008.01.024 PubMed DOI
Machálková M., Pavlatovská B., Michálek J., Pruška A., Štěpka K., Nečasová T., et al. (2019). Drug Penetration Analysis in 3D Cell Cultures Using Fiducial-Based Semiautomatic Coregistration of MALDI MSI and Immunofluorescence Images. Anal. Chem. 91, 13475–13484. 10.1021/acs.analchem.9b02462 PubMed DOI
Mahadik B. P., Wheeler T. D., Skertich L. J., Kenis P. J. A., Harley B. A. C. (2014). Microfluidic Generation of Gradient Hydrogels to Modulate Hematopoietic Stem Cell Culture Environment. Adv. Healthc. Mater. 3 (3), 449–458. 10.1002/adhm.201300263 PubMed DOI
Man Y., Yao X., Yang T., Wang Y. (2021). Hematopoietic Stem Cell Niche during Homeostasis, Malignancy, and Bone Marrow Transplantation. Front. Cel Dev. Biol. 9, 621214. 10.3389/fcell.2021.621214 PubMed DOI PMC
Mansikka A., Sandberg M., Lassila O., Toivanen P. (1990). Rearrangement of Immunoglobulin Light Chain Genes in the Chicken Occurs Prior to Colonization of the Embryonic Bursa of Fabricius. Proc. Natl. Acad. Sci. 87, 9416–9420. 10.1073/pnas.87.23.9416 PubMed DOI PMC
Mast J., Goddeeris B. M. (1997). CD57, a Marker for B-Cell Activation and Splenic Ellipsoid-Associated Reticular Cells of the Chicken. Cel Tissue Res. 291, 107–115. 10.1007/s004410050984 PubMed DOI
Matthiesen S., Jahnke R., Knittler M. R. (2021). A Straightforward Hypoxic Cell Culture Method Suitable for Standard Incubators. MPs 4, 25. 10.3390/mps4020025 PubMed DOI PMC
McNeilly F., Adair B. M., McNulty M. S. (1994). In Vitroinfection of Mononuclear Cells Derived from Various Chicken Lymphoid Tissues by Chicken Anaemia Virus. Avian Pathol. 23, 547–556. 10.1080/03079459408419024 PubMed DOI
Mendelson A., Frenette P. S. (2014). Hematopoietic Stem Cell Niche Maintenance during Homeostasis and Regeneration. Nat. Med. 20, 833–846. 10.1038/nm.3647 PubMed DOI PMC
Mousavi S. H., Abroun S., Soleimani M., Mowla S. J. (2018). 3-Dimensional Nano-Fibre Scaffold for Ex Vivo Expansion of Cord Blood Haematopoietic Stem Cells. Artif. Cell Nanomedicine, Biotechnol. 46, 740–748. 10.1080/21691401.2017.1337026 PubMed DOI
Müller C., Kowenz-Leutz E., Grieser-Ade S., Graf T., Leutz A. (1995). NF-M (Chicken C/EBP Beta) Induces Eosinophilic Differentiation and Apoptosis in a Hematopoietic Progenitor Cell Line. EMBO J. 14, 6127–6135. PubMed PMC
Murakami J. L., Xu B., Franco C. B., Hu X., Galli S. J., Weissman I. L., et al. (2016). Evidence that β7 Integrin Regulates Hematopoietic Stem Cell Homing and Engraftment through Interaction with MAdCAM-1. Stem Cell Develop. 25, 18–26. 10.1089/scd.2014.0551 PubMed DOI PMC
Nagy N., Bódi I., Oláh I. (2016). Avian Dendritic Cells: Phenotype and Ontogeny in Lymphoid Organs. Develop. Comp. Immunol. 58, 47–59. 10.1016/j.dci.2015.12.020 PubMed DOI
Nagy N., Busalt F., Halasy V., Kohn M., Schmieder S., Fejszak N., et al. (2020). In and Out of the Bursa-The Role of CXCR4 in Chicken B Cell Development. Front. Immunol. 11, 1468. 10.3389/fimmu.2020.01468 PubMed DOI PMC
Nazifi S., Tadjalli M., Mohaghgheghzadeh M. (1999). Normal Haematopoiesis Cellular Components and M/E Ratio in the Bone Marrow of Japanese Quail (Coturnix coturnix Japonica). Comp. Haematol. Int. 9, 188–192. 10.1007/BF02585504 DOI
Nickerson C. A., Richter E. G., Ott C. M. (2007). Studying Host-Pathogen Interactions in 3-D: Organotypic Models for Infectious Disease and Drug Development. Jrnl Neuroimmune Pharm. 2, 26–31. 10.1007/s11481-006-9047-x PubMed DOI
Oláh I., Nagy N., Vervelde L. (2014). “Structure of the Avian Lymphoid System,” in Avian Immunology. Editors Schat K., Kaspers B., Kaiser P. (London: Elsevier; ), 11–44. 10.1016/b978-0-12-396965-1.00002-9 DOI
Oldenhof S., Mytnyk S., Arranja A., de Puit M., van Esch J. H. (2020). Imaging-assisted Hydrogel Formation for Single Cell Isolation. Sci. Rep. 10, 6595. 10.1038/s41598-020-62623-6 PubMed DOI PMC
Oliveira M., Conceição P., Kant K., Ainla A., Diéguez L. (2021). Electrochemical Sensing in 3D Cell Culture Models: New Tools for Developing Better Cancer Diagnostics and Treatments. Cancers 13, 1381. 10.3390/cancers13061381 PubMed DOI PMC
Ortega-Prieto A. M., Skelton J. K., Wai S. N., Large E., Lussignol M., Vizcay-Barrena G., et al. (2018). 3D Microfluidic Liver Cultures as a Physiological Preclinical Tool for Hepatitis B Virus Infection. Nat. Commun. 9, 682. 10.1038/s41467-018-02969-8 PubMed DOI PMC
Oswald J., Steudel C., Salchert K., Joergensen B., Thiede C., Ehninger G., et al. (2006). Gene‐Expression Profiling of CD34 + Hematopoietic Cells Expanded in a Collagen I Matrix. Stem Cells 24, 494–500. 10.1634/stemcells.2005-0276 PubMed DOI
Peng L., van den Biggelaar R. H. G. A., Jansen C. A., Haagsman H. P., Veldhuizen E. J. A. (2020). A Method to Differentiate Chicken Monocytes into Macrophages with Proinflammatory Properties. Immunobiology 225, 152004. 10.1016/j.imbio.2020.152004 PubMed DOI
Pierzchalska M., Panek M., Czyrnek M., Grabacka M. (2016). The Three-Dimensional Culture of Epithelial Organoids Derived from Embryonic Chicken Intestine. Methods Mol. Biol. 1576, 135–144. 10.1007/7651_2016_15 PubMed DOI
Pinho S., Marchand T., Yang E., Wei Q., Nerlov C., Frenette P. S. (2018). Lineage-Biased Hematopoietic Stem Cells Are Regulated by Distinct Niches. Develop. Cel 44, 634–641. e4. 10.1016/j.devcel.2018.01.016 PubMed DOI PMC
Radtke A. L., Herbst-Kralovetz M. M. (2012). Culturing and Applications of Rotating wall Vessel Bioreactor Derived 3D Epithelial Cell Models. JoVE 62, 3868. 10.3791/3868 PubMed DOI PMC
Raic A., Rödling L., Kalbacher H., Lee-Thedieck C. (2014). Biomimetic Macroporous PEG Hydrogels as 3D Scaffolds for the Multiplication of Human Hematopoietic Stem and Progenitor Cells. Biomaterials 35, 929–940. 10.1016/j.biomaterials.2013.10.038 PubMed DOI
Rajput I. R., Hussain A., Li Y. L., Zhang X., Xu X., Long M. Y., et al. (2014). Saccharomyces boulardiiandBacillus subtilisB10 Modulate TLRs Mediated Signaling to Induce Immunity by Chicken BMDCs. J. Cel. Biochem. 115, 189–198. 10.1002/jcb.24650 PubMed DOI
Redondo P. A., Pavlou M., Loizidou M., Cheema U. (2017). Elements of the Niche for Adult Stem Cell Expansion. J. Tissue Eng. 8, 204173141772546. 10.1177/2041731417725464 PubMed DOI PMC
Rizwan M., Baker A. E. G., Shoichet M. S. (2021). Designing Hydrogels for 3D Cell Culture Using Dynamic Covalent Crosslinking. Adv. Healthc. Mater. 10, 2100234. 10.1002/adhm.202100234 PubMed DOI
Rödling L., Schwedhelm I., Kraus S., Bieback K., Hansmann J., Lee-Thedieck C. (2017). 3D Models of the Hematopoietic Stem Cell Niche under Steady-State and Active Conditions. Sci. Rep. 7, 4625. 10.1038/s41598-017-04808-0 PubMed DOI PMC
Sagar B. M. M., Rentala S., Gopal P. N. V., Sharma S., Mukhopadhyay A. (2006). Fibronectin and Laminin Enhance Engraftibility of Cultured Hematopoietic Stem Cells. Biochem. Biophysical Res. Commun. 350, 1000–1005. 10.1016/j.bbrc.2006.09.140 PubMed DOI
Sawyer A. A., Hennessy K. M., Bellis S. L. (2005). Regulation of Mesenchymal Stem Cell Attachment and Spreading on Hydroxyapatite by RGD Peptides and Adsorbed Serum Proteins. Biomaterials 26, 1467–1475. 10.1016/j.biomaterials.2004.05.008 PubMed DOI
Sayegh C. E., Demaries S. L., Pike K. A., Friedman J. E., Ratcliffe M. J. H. (2000). The Chicken B-Cell Receptor Complex and its Role in Avian B-Cell Development. Immunol. Rev. 175, 187–200. 10.1111/j.1600-065x.2000.imr017507.x PubMed DOI
Schat K. A., Skinner M. A. (2014). “Avian Immunosuppressive Diseases and Immunoevasion,” in The Avian Immunology. Editors Schat K., Kaspers B., Kaiser P. (London: Elsevier; ), 275–297. 10.1016/b978-0-12-396965-1.00016-9 DOI
Schwartz D., Guzman D. S. M., Beaufrere H., Ammersbach M., Paul‐Murphy J., Tully T. N., Jr, et al. (2019). Morphologic and Quantitative Evaluation of Bone Marrow Aspirates from Hispaniolan Amazon Parrots ( Amazona ventralis ). Vet. Clin. Pathol. 48, 645–651. 10.1111/vcp.12799 PubMed DOI
Sekelova Z., Stepanova H., Polansky O., Varmuzova K., Faldynova M., Fedr R., et al. (2017). Differential Protein Expression in Chicken Macrophages and Heterophils In Vivo Following Infection with Salmonella Enteritidis. Vet. Res. 48, 35. 10.1186/s13567-017-0439-0 PubMed DOI PMC
Mousavi S. H., Saeid A., Masoud S., Seyed Javad M. (2019). Potential of Polycaprolactone Nanofiber Scaffold for Ex Vivo Expansion of Cord Blood-Derived CD34+ Hematopoietic Stem Cells. Int. J. Stem Cel Res. Ther. 6, 1–8. 10.23937/2469-570X/1410059 DOI
Shah P., Fritz J. V., Glaab E., Desai M. S., Greenhalgh K., Frachet A., et al. (2016). A Microfluidics-Based In Vitro Model of the Gastrointestinal Human-Microbe Interface. Nat. Commun. 7, 11535. 10.1038/ncomms11535 PubMed DOI PMC
Shanmugasundaram R., Kogut M. H., Arsenault R. J., Swaggerty C. L., Cole K., Reddish J. M., et al. (2015). Effect of Salmonella Infection on Cecal Tonsil Regulatory T Cell Properties in Chickens. Poult. Sci. 94, 1828–1835. 10.3382/ps/pev161 PubMed DOI
Shin D.-S., You J., Rahimian A., Vu T., Siltanen C., Ehsanipour A., et al. (2014). Photodegradable Hydrogels for Capture, Detection, and Release of Live Cells. Angew. Chem. Int. Ed. 53, 8221–8224. 10.1002/anie.201404323 PubMed DOI PMC
Shrestha K. R., Yoo S. Y. (2019). Phage-based Artificial Niche: the Recent Progress and Future Opportunities in Stem Cell Therapy. Stem Cell Int. 2019, 1–14. 10.1155/2019/4038560 PubMed DOI PMC
Si L., Prantil-Baun R., Benam K. H., Bai H., Rodas M., Burt M., et al. (2019). Discovery of Influenza Drug Resistance Mutations and Host Therapeutic Targets Using a Human Airway Chip. bioRxiv, 685552. 10.1101/685552 DOI
Siatskas C., Boyd R. (2000). Regulation of Chicken Haemopoiesis by Cytokines. Develop. Comp. Immunol. 24, 37–59. 10.1016/s0145-305x(99)00051-8 PubMed DOI
Sieber S., Wirth L., Cavak N., Koenigsmark M., Marx U., Lauster R., et al. (2018). Bone Marrow‐on‐a‐chip: Long‐term Culture of Human Haematopoietic Stem Cells in a Three‐dimensional Microfluidic Environment. J. Tissue Eng. Regen. Med. 12, 479–489. 10.1002/term.2507 PubMed DOI
Simsek T., Kocabas F., Zheng J., Deberardinis R. J., Mahmoud A. I., Olson E. N., et al. (2010). The Distinct Metabolic Profile of Hematopoietic Stem Cells Reflects Their Location in a Hypoxic Niche. Cell stem cell 7, 380–390. 10.1016/j.stem.2010.07.011 PubMed DOI PMC
Singhal N., Kumar M., Kanaujia P. K., Virdi J. S. (2015). MALDI-TOF Mass Spectrometry: an Emerging Technology for Microbial Identification and Diagnosis. Front. Microbiol. 6, 791. 10.3389/fmicb.2015.00791 PubMed DOI PMC
Skardal A., Sarker S. F., Crabbé A., Nickerson C. A., Prestwich G. D. (2010). The Generation of 3-D Tissue Models Based on Hyaluronan Hydrogel-Coated Microcarriers within a Rotating wall Vessel Bioreactor. Biomaterials 31, 8426–8435. 10.1016/j.biomaterials.2010.07.047 PubMed DOI
Spencer J. A., Ferraro F., Roussakis E., Klein A., Wu J., Runnels J. M., et al. (2014). Direct Measurement of Local Oxygen Concentration in the Bone Marrow of Live Animals. Nature 508, 269–273. 10.1038/nature13034 PubMed DOI PMC
Sunuwar L., Yin J., Kasendra M., Karalis K., Kaper J., Fleckenstein J., et al. (2020). Mechanical Stimuli Affect Escherichia coli Heat-Stable Enterotoxin-Cyclic GMP Signaling in a Human Enteroid Intestine-Chip Model. Infect. Immun. 88, e00866–19. 10.1128/IAI.00866-19 PubMed DOI PMC
Tadjalli M., Nazifi S., Haghjoo R. (2013). Evaluation of Hematopoietic Cells and Myeloid/erythroid Ratio in the Bone Marrow of the Pheasant (Phasianus colchicus). Vet. Res. Forum 4, 119–122. PubMed PMC
Tadjalli M., Hadipoor M. M. (2002). Haematopoiesis N. Cellular Components and M/E Ratio in the Bone Marrow of the Black‐headed Gull (Larus Ridibundus). Comp. Clin. Pathol. 11, 6. 10.1007/s005800200022 DOI
Tadjalli M., Nazifi S., Saedi M. S. (1997). Morphological Study and Determination of M/E Ratio of the Haematopoietic Cells of the Duck. Comp. Haematol. Int. 7, 117–121. 10.1007/bf02652579 DOI
Tadjalli M., Nazifi S., Haghjoo R. (2011). Evaluation of Haematopoietic Cells and M/E Ratio in the Bone Marrow of the Partridge (Alectoris chukar). Int. J. Poult. Sci. 11, 23–27. 10.3923/ijps.2012.23.27 DOI
Takubo K., Goda N., Yamada W., Iriuchishima H., Ikeda E., Kubota Y., et al. (2010). Regulation of the HIF-1α Level Is Essential for Hematopoietic Stem Cells. Cell stem cell 7, 391–402. 10.1016/j.stem.2010.06.020 PubMed DOI
Tallawi M., Rosellini E., Barbani N., Cascone M. G., Rai R., Saint-Pierre G., et al. (2015). Strategies for the Chemical and Biological Functionalization of Scaffolds for Cardiac Tissue Engineering: a Review. J. R. Soc. Interf. 12, 20150254. 10.1098/rsif.2015.0254 PubMed DOI PMC
Tamma R., Ribatti D. (2017). Bone Niches, Hematopoietic Stem Cells, and Vessel Formation. Ijms 18, 151. 10.3390/ijms18010151 PubMed DOI PMC
Thacker V. V., Dhar N., Sharma K., Barrile R., Karalis K., McKinney J. D. (2020). A Lung-On-Chip Model of Early Mycobacterium tuberculosis Infection Reveals an Essential Role for Alveolar Epithelial Cells in Controlling Bacterial Growth. eLife 9, e59961. 10.7554/eLife.59961 PubMed DOI PMC
Tibbitt M. W., Anseth K. S. (2009). Hydrogels as Extracellular Matrix Mimics for 3D Cell Culture. Biotechnol. Bioeng. 103, 655–663. 10.1002/bit.22361 PubMed DOI PMC
Tsou Y.-H., Khoneisser J., Huang P.-C., Xu X. (2016). Hydrogel as a Bioactive Material to Regulate Stem Cell Fate. Bioactive Mater. 1, 39–55. 10.1016/j.bioactmat.2016.05.001 PubMed DOI PMC
Ulyanova T., Scott L. M., Priestley G. V., Jiang Y., Nakamoto B., Koni P. A., et al. (2005). VCAM-1 Expression in Adult Hematopoietic and Nonhematopoietic Cells Is Controlled by Tissue-Inductive Signals and Reflects Their Developmental Origin. Blood 106, 86–94. 10.1182/blood-2004-09-3417 PubMed DOI PMC
Vainio O., Dunon D., Aïssi F., Dangy J. P., McNagny K. M., Imhof B. A. (1996). HEMCAM, an Adhesion Molecule Expressed by C-Kit+ Hemopoietic Progenitors. J. Cel Biol 135, 1655–1668. 10.1083/jcb.135.6.1655 PubMed DOI PMC
Vaithiyanathan M., Safa N., Melvin A. T. (2019). FluoroCellTrack: An Algorithm for Automated Analysis of High-Throughput Droplet Microfluidic Data. PloS one 14, e0215337. 10.1371/journal.pone.0215337 PubMed DOI PMC
Ferreira M. S. V., Jahnen-Dechent W., Labude N., Bovi M., Hieronymus T., Zenke M., et al. (2012). Cord Blood-Hematopoietic Stem Cell Expansion in 3D Fibrin Scaffolds with Stromal Support. Biomaterials 33, 6987–6997. 10.1016/j.biomaterials.2012.06.029 PubMed DOI
Vervelde L., Reemers S. S., van Haarlem D. A., Post J., Claassen E., Rebel J. M. J., et al. (2013). Chicken Dendritic Cells Are Susceptible to Highly Pathogenic Avian Influenza Viruses Which Induce strong Cytokine Responses. Develop. Comp. Immunol. 39, 198–206. 10.1016/j.dci.2012.10.011 PubMed DOI
Villenave R., Wales S. Q., Hamkins-Indik T., Papafragkou E., Weaver J. C., Ferrante T. C., et al. (2017). Human Gut-On-A-Chip Supports Polarized Infection of Coxsackie B1 Virus In Vitro . PloS one 12, e0169412. 10.1371/journal.pone.0169412 PubMed DOI PMC
Virumbrales-Muñoz M., Ayuso J. M., Lacueva A., Randelovic T., Livingston M. K., Beebe D. J., et al. (2019). Enabling Cell Recovery from 3D Cell Culture Microfluidic Devices for Tumour Microenvironment Biomarker Profiling. Sci. Rep. 9, 6199. 10.1038/s41598-019-42529-8 PubMed DOI PMC
von Bülow V., Klasen A. (1983a). Effects of Avian Viruses on Cultured Chicken Bone‐marrow‐derived Macrophages. Avian Pathol. 12, 179–198. 10.1080/03079458308436162 PubMed DOI
von Bülow V., Klasen A. (1983b). Growth Inhibition of Marek's Disease T‐lymphoblastoid Cell Lines by Chicken Bone‐marrow‐derived Macrophages Activated In Vitro . Avian Pathol. 12, 161–178. 10.1080/03079458308436161 PubMed DOI
Walenda T., Bokermann G., Ventura Ferreira M. S., Piroth D. M., Hieronymus T., Neuss S., et al. (2011). Synergistic Effects of Growth Factors and Mesenchymal Stromal Cells for Expansion of Hematopoietic Stem and Progenitor Cells. Exp. Hematol. 39, 617–628. 10.1016/j.exphem.2011.02.011 PubMed DOI
Walenda T., Bork S., Horn P., Wein F., Saffrich R., Diehlmann A., et al. (2010). Co-culture with Mesenchymal Stromal Cells Increases Proliferation and Maintenance of Haematopoietic Progenitor Cells. J. Cel Mol Med 14, 337–350. 10.1111/j.1582-4934.2009.00776.x PubMed DOI PMC
Weber W. T., Foglia L. M. (1980). Evidence for the Presence of Precursor B Cells in normal and in Hormonally Bursectomized Chick Embryos. Cell Immunol. 52, 84–94. 10.1016/0008-8749(80)90402-5 PubMed DOI
Wen J. H., Vincent L. G., Fuhrmann A., Choi Y. S., Hribar K. C., Taylor-Weiner H., et al. (2014). Interplay of Matrix Stiffness and Protein Tethering in Stem Cell Differentiation. Nat. Mater 13, 979–987. 10.1038/nmat4051 PubMed DOI PMC
Wigley P., Kaiser P. (2003). Avian Cytokines in Health and Disease. Rev. Bras. Cienc. Avic. 5, 1–14. 10.1590/S1516-635X2003000100001 DOI
Winkler I. G., Barbier V., Nowlan B., Jacobsen R. N., Forristal C. E., Patton J. T., et al. (2012). Vascular Niche E-Selectin Regulates Hematopoietic Stem Cell Dormancy, Self Renewal and Chemoresistance. Nat. Med. 18, 1651–1657. 10.1038/nm.2969 PubMed DOI
Winkler I. G., Sims N. A., Pettit A. R., Barbier V., Nowlan B., Helwani F., et al. (2010). Bone Marrow Macrophages Maintain Hematopoietic Stem Cell (HSC) Niches and Their Depletion Mobilizes HSCs. Blood 116, 4815–4828. 10.1182/blood-2009-11-253534 PubMed DOI
Wu Z., Harne R., Chintoan-Uta C., Hu T.-J., Wallace R., MacCallum A., et al. (2020). Regulation and Function of Macrophage colony-stimulating Factor (CSF1) in the Chicken Immune System. Develop. Comp. Immunol. 105, 103586. 10.1016/j.dci.2019.103586 PubMed DOI PMC
Wu Z., Rothwell L., Young J. R., Kaufman J., Butter C., Kaiser P. (2010). Generation and Characterization of Chicken Bone Marrow‐derived Dendritic Cells. Immunology 129, 133–145. 10.1111/j.1365-2567.2009.03129.x PubMed DOI PMC
Xiang B., Zhu W., Li Y., Gao P., Liang J., Liu D., et al. (2018). Immune Responses of Mature Chicken Bone-Marrow-Derived Dendritic Cells Infected with Newcastle Disease Virus Strains with Differing Pathogenicity. Arch. Virol. 163, 1407–1417. 10.1007/s00705-018-3745-6 PubMed DOI
Xu C., Gao X., Wei Q., Nakahara F., Zimmerman S. E., Mar J., et al. (2018). Stem Cell Factor Is Selectively Secreted by Arterial Endothelial Cells in Bone Marrow. Nat. Commun. 9, 2449. 10.1038/s41467-018-04726-3 PubMed DOI PMC
Yamazaki S., Ema H., Karlsson G., Yamaguchi T., Miyoshi H., Shioda S., et al. (2011). Nonmyelinating Schwann Cells Maintain Hematopoietic Stem Cell Hibernation in the Bone Marrow Niche. Cell 147, 1146–1158. 10.1016/j.cell.2011.09.053 PubMed DOI
Yang W. S., Kim W. J., Ahn J. Y., Lee J., Ko D. W., Park S., et al. (2020). New Bioink Derived from Neonatal Chicken Bone Marrow Cells and its 3D-Bioprinted Niche for Osteogenic Stimulators. ACS Appl. Mater. Inter. 12, 49386–49397. 10.1021/acsami.0c13905 PubMed DOI
Yasmin A. R., Yeap S. K., Tan S. W., Hair-Bejo M., Fakurazi S., Kaiser P., et al. (2015). In Vitrocharacterization of Chicken Bone Marrow-Derived Dendritic Cells Following Infection with Very Virulent Infectious Bursal Disease Virus. Avian Pathol. 44, 452–462. 10.1080/03079457.2015.1084997 PubMed DOI
Yvernogeau L., Robin C. (2017). Restricted Intra-embryonic Origin of Bona Fide Hematopoietic Stem Cells in the Chicken. Development 144, 2352–2363. 10.1242/dev.151613 PubMed DOI PMC
Zhai P., Peng X., Li B., Liu Y., Sun H., Li X. (2020). The Application of Hyaluronic Acid in Bone Regeneration. Int. J. Biol. Macromolecules 151, 1224–1239. 10.1016/j.ijbiomac.2019.10.169 PubMed DOI
Zhang P., Zhang C., Li J., Han J., Liu X., Yang H. (2019). The Physical Microenvironment of Hematopoietic Stem Cells and its Emerging Roles in Engineering Applications. Stem Cel Res Ther 10, 327. 10.1186/s13287-019-1422-7 PubMed DOI PMC
Zhang Y., Tong Y., Pan X., Cai H., Gao Y., Zhang W. (2019). Promoted Proliferation of Hematopoietic Stem Cells Enabled by a Hyaluronic Acid/carbon Nanotubes Antioxidant Hydrogel. Macromol. Mater. Eng. 304, 1800630. 10.1002/mame.201800630 DOI
Zhao M., Perry J. M., Marshall H., Venkatraman A., Qian P., He X. C., et al. (2014). Megakaryocytes Maintain Homeostatic Quiescence and Promote post-injury Regeneration of Hematopoietic Stem Cells. Nat. Med. 20, 1321–1326. 10.1038/nm.3706 PubMed DOI
Zhou B. O., Yu H., Yue R., Zhao Z., Rios J. J., Naveiras O., et al. (2017). Bone Marrow Adipocytes Promote the Regeneration of Stem Cells and Haematopoiesis by Secreting SCF. Nat. Cel Biol 19, 891–903. 10.1038/ncb3570 PubMed DOI PMC