Three-Dimensional Avian Hematopoietic Stem Cell Cultures as a Model for Studying Disease Pathogenesis

. 2021 ; 9 () : 730804. [epub] 20220120

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35127695

Three-dimensional (3D) cell culture is attracting increasing attention today because it can mimic tissue environments and provide more realistic results than do conventional cell cultures. On the other hand, very little attention has been given to using 3D cell cultures in the field of avian cell biology. Although mimicking the bone marrow niche is a classic challenge of mammalian stem cell research, experiments have never been conducted in poultry on preparing in vitro the bone marrow niche. It is well known, however, that all diseases cause immunosuppression and target immune cells and their development. Hematopoietic stem cells (HSC) reside in the bone marrow and constitute a source for immune cells of lymphoid and myeloid origins. Disease prevention and control in poultry are facing new challenges, such as greater use of alternative breeding systems and expanding production of eggs and chicken meat in developing countries. Moreover, the COVID-19 pandemic will draw greater attention to the importance of disease management in poultry because poultry constitutes a rich source of zoonotic diseases. For these reasons, and because they will lead to a better understanding of disease pathogenesis, in vivo HSC niches for studying disease pathogenesis can be valuable tools for developing more effective disease prevention, diagnosis, and control. The main goal of this review is to summarize knowledge about avian hematopoietic cells, HSC niches, avian immunosuppressive diseases, and isolation of HSC, and the main part of the review is dedicated to using 3D cell cultures and their possible use for studying disease pathogenesis with practical examples. Therefore, this review can serve as a practical guide to support further preparation of 3D avian HSC niches to study the pathogenesis of avian diseases.

Zobrazit více v PubMed

Adhikari R., Chen C., Kim W. K. (2020). Effect of 20(S)-hydroxycholesterol on Multilineage Differentiation of Mesenchymal Stem Cells Isolated from Compact Bones in Chicken. Genes 11, 1360. 10.3390/genes11111360 PubMed DOI PMC

Adhikari R., Chen C., Waters E., West F. D., Kim W. K. (2019). Isolation and Differentiation of Mesenchymal Stem Cells from Broiler Chicken Compact Bones. Front. Physiol. 9, 1892. 10.3389/fphys.2018.01892 PubMed DOI PMC

Agrawal G., Ramesh A., Aishwarya P., Sally J., Ravi M. (2021). Devices and Techniques Used to Obtain and Analyze Three‐dimensional Cell Cultures. Biotechnol. Prog. 37, e3126. 10.1002/btpr.3126 PubMed DOI

Annamalai T., Selvaraj R. K. (2010). Chicken Chemokine Receptors in T Cells Isolated from Lymphoid Organs and in Splenocytes Cultured with Concanavalin A. Poult. Sci. 89, 2419–2425. 10.3382/ps.2010-00968 PubMed DOI

Arai F., Suda T. (2007). Maintenance of Quiescent Hematopoietic Stem Cells in the Osteoblastic Niche. Ann. N.Y Acad. Sci. 1106, 41–53. 10.1196/annals.1392.005 PubMed DOI

Baldridge M. T., King K. Y., Goodell M. A. (2011). Inflammatory Signals Regulate Hematopoietic Stem Cells. Trends Immunol. 32, 57–65. 10.1016/j.it.2010.12.003 PubMed DOI PMC

Baldwin J., Antille M., Bonda U., De-Juan-Pardo E. M., Khosrotehrani K., Ivanovski S., et al. (2014). In Vitro pre-vascularisation of Tissue-Engineered Constructs A Co-culture Perspective. Vasc. Cel 6, 13. 10.1186/2045-824X-6-13 PubMed DOI PMC

Barrila J., Crabbé A., Yang J., Franco K., Nydam S. D., Forsyth R. J., et al. (2018). Modeling Host-Pathogen Interactions in the Context of the Microenvironment: Three-Dimensional Cell Culture Comes of Age. Infect. Immun. 86, e00282–18. 10.1128/IAI.00282-18 PubMed DOI PMC

Bellis S. L. (2011). Advantages of RGD Peptides for Directing Cell Association with Biomaterials. Biomaterials 32 (18), 4205–4210. 10.1016/j.biomaterials.2011.02.029 PubMed DOI PMC

Bello A. B., Park H., Lee S.-H. (2018). Current Approaches in Biomaterial-Based Hematopoietic Stem Cell Niches. Acta Biomater. 72, 1–15. 10.1016/j.actbio.2018.03.028 PubMed DOI

Bhatia S. N., Ingber D. E. (2014). Microfluidic Organs-On-Chips. Nat. Biotechnol. 32, 760–772. 10.1038/nbt.2989 PubMed DOI

Bílková B., Bainová Z., Janda J., Zita L., Vinkler M. (2017). Different Breeds, Different Blood: Cytometric Analysis of Whole Blood Cellular Composition in Chicken Breeds. Vet. Immunol. Immunopathology 188, 71–77. 10.1016/j.vetimm.2017.05.001 PubMed DOI

Blank U., Karlsson S. (2015). TGF-β Signaling in the Control of Hematopoietic Stem Cells. Blood 125, 3542–3550. 10.1182/blood-2014-12-618090 PubMed DOI

Bosworth L. A., HuShi W. Y., Shi Y., Cartmell S. H. (2019). Enhancing Biocompatibility without Compromising Material Properties: an Optimised Naoh Treatment for Electrospun Polycaprolactone Fibres. J. Nanomater. 2019, 1–11. 10.1155/2019/4605092 DOI

Brandon C., Eisenberg L. M., Eisenberg C. A. (2000). WNT Signaling Modulates the Diversification of Hematopoietic Cells. Blood 96, 4132–4141. 10.1182/blood.v96.13.4132 PubMed DOI

Caliari S. R., Burdick J. A. (2016). A Practical Guide to Hydrogels for Cell Culture. Nat. Methods 13, 405–414. 10.1038/nmeth.3839 PubMed DOI PMC

Canoville A., Schweitzer M. H., Zanno L. E. (2019). Systemic Distribution of Medullary Bone in the Avian Skeleton: Ground Truthing Criteria for the Identification of Reproductive Tissues in Extinct Avemetatarsalia. BMC Evol. Biol. 19, 71. 10.1186/s12862-019-1402-7 PubMed DOI PMC

Carthew J., Frith J. E., Forsythe J. S., Truong V. X. (2018). Polyethylene Glycol-Gelatin Hydrogels with Tuneable Stiffness Prepared by Horseradish Peroxidase-Activated Tetrazine-Norbornene Ligation. J. Mater. Chem. B 6, 1394–1401. 10.1039/c7tb02764h PubMed DOI

Castiaux A. D., Spence D. M., Martin R. S. (2019). Review of 3D Cell Culture with Analysis in Microfluidic Systems. Anal. Methods 11, 4220–4232. 10.1039/c9ay01328h PubMed DOI PMC

Çelebi B., Mantovani D., Pineault N. (2011). Effects of Extracellular Matrix Proteins on the Growth of Haematopoietic Progenitor Cells. Biomed. Mater. 6, 055011. 10.1088/1748-6041/6/5/055011 PubMed DOI

Chattopadhyay P. K., Roederer M., Bolton D. L. (2018). A Deadly Dance: the Choreography of Host-Pathogen Interactions, as Revealed by Single-Cell Technologies. Nat. Commun. 9, 4638. 10.1038/s41467-018-06214-0 PubMed DOI PMC

Chen B., Clark C., Chou T. (1988). Granulocyte/macrophage colony-stimulating Factor Stimulates Monocyte and Tissue Macrophage Proliferation and Enhances Their Responsiveness to Macrophage colony-stimulating Factor. Blood 71, 997–1002. 10.1182/blood.v71.4.997.bloodjournal714997 PubMed DOI

Chen C. H., Göbel T. W. F., Kubota T., Cooper M. D. (1994). T Cell Development in the Chicken. Poult. Sci. 73, 1012–1018. 10.3382/ps.0731012 PubMed DOI

Chen H.-W., Lin M.-F. (2020). Characterization, Biocompatibility, and Optimization of Electrospun SF/PCL/CS Composite Nanofibers. Polymers 12, 1439. 10.3390/polym12071439 PubMed DOI PMC

Chen Y.-C., Chang W.-C., Lin S.-P., Minami M., Jean C., Hayashi H., et al. (2018). Three-dimensional Culture of Chicken Primordial Germ Cells (cPGCs) in Defined media Containing the Functional Polymer FP003. PLoS One 13, e0200515. 10.1371/journal.pone.0200515 PubMed DOI PMC

Chitteti B. R., Kacena M. A., Voytik-Harbin S. L., Srour E. F. (2015). Modulation of Hematopoietic Progenitor Cell Fate In Vitro by Varying Collagen Oligomer Matrix Stiffness in the Presence or Absence of Osteoblasts. J. Immunological Methods 425, 108–113. 10.1016/j.jim.2015.07.001 PubMed DOI

Choi J. S., Harley B. A. C. (2017). Marrow-inspired Matrix Cues Rapidly Affect Early Fate Decisions of Hematopoietic Stem and Progenitor Cells. Sci. Adv. 3, e1600455. 10.1126/sciadv.1600455 PubMed DOI PMC

Chow A., Lucas D., Hidalgo A., Méndez-Ferrer S., Hashimoto D., Scheiermann C., et al. (2011). Bone Marrow CD169+ Macrophages Promote the Retention of Hematopoietic Stem and Progenitor Cells in the Mesenchymal Stem Cell Niche. J. Exp. Med. 208, 261–271. 10.1084/jem.20101688 PubMed DOI PMC

Coulombel L., Auffray I., Gaugler M.-H., Rosemblatt M. (1997). Expression and Function of Integrins on Hematopoietic Progenitor Cells. Acta Haematol. 97, 13–21. 10.1159/000203655 PubMed DOI

Cui Z., Sun S., Zhang Z., Meng S. (2009). Simultaneous Endemic Infections with Subgroup J Avian Leukosis Virus and Reticuloendotheliosis Virus in Commercial and Local Breeds of Chickens. Avian Pathol. 38, 443–448. 10.1080/03079450903349188 PubMed DOI

Darvish M., Payandeh Z., Soleimanifar F., Taheri B., Soleimani M., Islami M. (2019). Umbilical Cord Blood Mesenchymal Stem Cells Application in Hematopoietic Stem Cells Expansion on Nanofiber Three‐dimensional Scaffold. J. Cel Biochem 120, 12018–12026. 10.1002/jcb.28487 PubMed DOI

Dehdilani N., Shamsasenjan K., Movassaghpour A., Akbarzadehlaleh P., Amoughli Tabrizi B., Parsa H., et al. (2016). Improved Survival and Hematopoietic Differentiation of Murine Embryonic Stem Cells on Electrospun Polycaprolactone Nanofiber. Cell J 17, 629–638. 10.22074/cellj.2016.3835 PubMed DOI PMC

Deinhardt-Emmer S., Rennert K., Schicke E., Cseresnyés Z., Windolph M., Nietzsche S., et al. (2020). Co-infection with Staphylococcus aureus after Primary Influenza Virus Infection Leads to Damage of the Endothelium in a Human Alveolus-On-A-Chip Model. Biofabrication 12, 025012. 10.1088/1758-5090/ab7073 PubMed DOI

Di Maggio N., Piccinini E., Jaworski M., Trumpp A., Wendt D. J., Martin I. (2011). Toward Modeling the Bone Marrow Niche Using Scaffold-Based 3D Culture Systems. Biomaterials 32, 321–329. 10.1016/j.biomaterials.2010.09.041 PubMed DOI

Ding L., Saunders T. L., Enikolopov G., Morrison S. J. (2012). Endothelial and Perivascular Cells Maintain Haematopoietic Stem Cells. Nature 481, 457–462. 10.1038/nature10783 PubMed DOI PMC

Dunon D., Kaufman J., Salomonsen J., Skjoedt K., Vainio O., Thiery J. P., et al. (1990). T Cell Precursor Migration towards Beta 2-microglobulin Is Involved in Thymus Colonization of Chicken Embryos. EMBO J. 9, 3315–3322. 10.1002/j.1460-2075.1990.tb07531.x PubMed DOI PMC

Dutta P., Hoyer F. F., Grigoryeva L. S., Sager H. B., Leuschner F., Courties G., et al. (2015). Macrophages Retain Hematopoietic Stem Cells in the Spleen via VCAM-1. J. Exp. Med. 212, 497–512. 10.1084/jem.20141642 PubMed DOI PMC

Farzaneh M., Attari F., Mozdziak P. E., Khoshnam S. E. (2017). The Evolution of Chicken Stem Cell Culture Methods. Br. Poult. Sci. 58, 681–686. 10.1080/00071668.2017.1365354 PubMed DOI

Feaugas T., Sauvonnet N. (2021). Organ‐on‐chip to Investigate Host‐pathogens Interactions. Cell Microbiol. 23, e13336. 10.1111/cmi.13336 PubMed DOI

Fellah J. S., Jaffredo T., Nagy N., Dunon D. (2014). “Development of the Avian Immune System,” in Avian Immunology. Editors Schat K., Kaspers B., Kaiser P. (London: Elsevier; ), 45–63. 10.1016/b978-0-12-396965-1.00003-0 DOI

Ferreira M. S. V., Mousavi S. H. (2018). Nanofiber Technology in the Ex Vivo Expansion of Cord Blood-Derived Hematopoietic Stem Cells. Nanomedicine: Nanotechnology, Biol. Med. 14, 1707–1718. 10.1016/j.nano.2018.04.017 PubMed DOI

Frantz C., Stewart K. M., Weaver V. M. (2010). The Extracellular Matrix at a Glance. J. Cel Sci 123, 4195–4200. 10.1242/jcs.023820 PubMed DOI PMC

Garceau V., Balic A., Garcia-Morales C., Sauter K. A., McGrew M. J., Smith J., et al. (2015). The Development and Maintenance of the Mononuclear Phagocyte System of the Chick Is Controlled by Signals from the Macrophage colony-stimulating Factor Receptor. BMC Biol. 13, 12. 10.1186/s12915-015-0121-9 PubMed DOI PMC

Garcia-Morales C., Rothwell L., Moffat L., Garceau V., Balic A., Sang H. M., et al. (2014). Production and Characterisation of a Monoclonal Antibody that Recognises the Chicken CSF1 Receptor and Confirms that Expression Is Restricted to Macrophage-Lineage Cells. Develop. Comp. Immunol. 42, 278–285. 10.1016/j.dci.2013.09.011 PubMed DOI

Gibson M. S., Kaiser P., Fife M. (2009). Identification of Chicken Granulocyte colony-stimulating Factor (G-CSF/CSF3): the Previously Described Myelomonocytic Growth Factor Is Actually CSF3. J. Interferon Cytokine Res. 29, 339–344. 10.1089/jir.2008.0103 PubMed DOI

Gimeno I. M., Schat K. A. (2018). Virus-induced Immunosuppression in Chickens. Avian Dis. 62, 272–285. 10.1637/11841-041318-Review.1 PubMed DOI

Glick B. (1987). Cellular Composition of the Bone Marrow in the Chicken, a Comparison of Femur, Tibia and Humerus. Comp. Biochem. Physiol. A: Physiol. 86, 709–712. 10.1016/0300-9629(87)90629-3 PubMed DOI

Glick B., Rosse C. (1981). Cellular Composition of the Bone Marrow in the Chicken: II. The Effect of Age and the Influence of the Bursa of Fabricius on the Size of Cellular Compartments. Anat. Rec. 200, 471–479. 10.1002/ar.1092000410 PubMed DOI

Gong Y., Zhao M., Yang W., Gao A., Yin X., Hu L., et al. (2018). Megakaryocyte-derived Excessive Transforming Growth Factor β1 Inhibits Proliferation of normal Hematopoietic Stem Cells in Acute Myeloid Leukemia. Exp. Hematol. 60, 40–46. e2. 10.1016/j.exphem.2017.12.010 PubMed DOI

Grassart A., Malardé V., Gobaa S., Sartori-Rupp A., Kerns J., Karalis K., et al. (2019). Bioengineered Human Organ-On-Chip Reveals Intestinal Microenvironment and Mechanical Forces Impacting Shigella Infection. Cell Host & Microbe 26, 435–444. e4. 10.1016/j.chom.2019.08.007 PubMed DOI

Guedes P. T., Oliveira B. C. E. P. D. d., Manso P. P. d. A., Caputo L. F. G., Cotta-Pereira G., Pelajo-Machado M. (2014). Histological Analyses Demonstrate the Temporary Contribution of Yolk Sac, Liver, and Bone Marrow to Hematopoiesis during Chicken Development. PLoS One 9, e90975. 10.1371/journal.pone.0090975 PubMed DOI PMC

Gurung A., Kamble N., Kaufer B. B., Pathan A., Behboudi S. (2017). Association of Marek's Disease Induced Immunosuppression with Activation of a Novel Regulatory T Cells in Chickens. Plos Pathog. 13, e1006745. 10.1371/journal.ppat.1006745 PubMed DOI PMC

Hao X., Li S., Chen L., Dong M., Wang J., Hu J., et al. (2020). Establishing a Multicolor Flow Cytometry to Characterize Cellular Immune Response in Chickens Following H7N9 Avian Influenza Virus Infection. Viruses 12, 1396. 10.3390/v12121396 PubMed DOI PMC

He B., Chen G., Zeng Y. (2016). Three-dimensional Cell Culture Models for Investigating Human Viruses. Virol. Sin. 31, 363–379. 10.1007/s12250-016-3889-z PubMed DOI PMC

Hirata Y., Furuhashi K., Ishii H., Li H. W., Pinho S., Ding L., et al. (2018). CD150high Bone Marrow Tregs Maintain Hematopoietic Stem Cell Quiescence and Immune Privilege via Adenosine. Cell stem cell 22, 445–453. e5. 10.1016/j.stem.2018.01.017 PubMed DOI PMC

Holst J., Watson S., Lord M. S., Eamegdool S. S., Bax D. V., Nivison-Smith L. B., et al. (2010). Substrate Elasticity Provides Mechanical Signals for the Expansion of Hemopoietic Stem and Progenitor Cells. Nat. Biotechnol. 28, 1123–1128. 10.1038/nbt.1687 PubMed DOI

Hosokawa K., Imai K., Dong H. V., Ogawa H., Suzutou M., Linn S. H., et al. (2020). Pathological and Virological Analysis of Concurrent Disease of Chicken Anemia Virus Infection and Infectious Bronchitis in Japanese Native Chicks. J. Vet. Med. Sci. 82, 422–430. 10.1292/jvms.20-0006 PubMed DOI PMC

Huang X., Ma S., Wang L., Zhou H., Jiang Y., Cui W., et al. (2020). Lactobacillus Johnsonii-Activated Chicken Bone Marrow-Derived Dendritic Cells Exhibit Maturation and Increased Expression of Cytokines and Chemokines In Vitro . Cytokine 136, 155269. 10.1016/j.cyto.2020.155269 PubMed DOI

Hur J., Choi J.-I., Lee H., Nham P., Kim T.-W., Chae C.-W., et al. (2016). CD82/KAI1 Maintains the Dormancy of Long-Term Hematopoietic Stem Cells through Interaction with DARC-Expressing Macrophages. Cell stem cell 18, 508–521. 10.1016/j.stem.2016.01.013 PubMed DOI

Jahandideh B., Derakhshani M., Abbaszadeh H., Akbar Movassaghpour A., Mehdizadeh A., Talebi M., et al. (2020). The Pro-inflammatory Cytokines Effects on Mobilization, Self-Renewal and Differentiation of Hematopoietic Stem Cells. Hum. Immunol. 81, 206–217. 10.1016/j.humimm.2020.01.004 PubMed DOI

Jansen C. A., van de Haar P. M., van Haarlem D., van Kooten P., de Wit S., van Eden W., et al. (2010). Identification of New Populations of Chicken Natural Killer (NK) Cells. Develop. Comp. Immunol. 34, 759–767. 10.1016/j.dci.2010.02.009 PubMed DOI

Jansen L. E., Birch N. P., Schiffman J. D., Crosby A. J., Peyton S. R. (2015). Mechanics of Intact Bone Marrow. J. Mech. Behav. Biomed. Mater. 50, 299–307. 10.1016/j.jmbbm.2015.06.023 PubMed DOI PMC

Kalaiyarasu S., Bhatia S., Mishra N., Sood R., Kumar M., SenthilKumar D., et al. (2016). Elevated Level of Pro Inflammatory Cytokine and Chemokine Expression in Chicken Bone Marrow and Monocyte Derived Dendritic Cells Following LPS Induced Maturation. Cytokine 85, 140–147. 10.1016/j.cyto.2016.06.022 PubMed DOI

Kamble N. M., Jawale C. V., Lee J. H. (2016a). Activation of Chicken Bone Marrow-Derived Dendritic Cells Induced by a Salmonella Enteritidis Ghost Vaccine Candidate. Poult. Sci. 95, 2274–2280. 10.3382/ps/pew158 PubMed DOI

Kamble N. M., Jawale C. V., Lee J. H. (2016b). Interaction of a Live attenuatedSalmonellaGallinarum Vaccine Candidate with Chicken Bone Marrow-Derived Dendritic Cells. Avian Pathol. 45, 235–243. 10.1080/03079457.2016.1144919 PubMed DOI

Kandow C. E., Georges P. C., Janmey P. A., Beningo K. A. (2007). Polyacrylamide Hydrogels for Cell Mechanics: Steps toward Optimization and Alternative Uses. Methods Cel Biol 83, 29–46. 10.1016/S0091-679X(07)83002-0 PubMed DOI

Kang Y. G., Shin J. W., Park S. H., Kim Y. M., Gu S. R., Wu Y., et al. (2016). A Three-Dimensional Hierarchical Scaffold Fabricated by a Combined Rapid Prototyping Technique and Electrospinning Process to Expand Hematopoietic Stem/progenitor Cells. Biotechnol. Lett. 38, 175–181. 10.1007/s10529-015-1952-8 PubMed DOI

Kapałczyńska M., Kolenda T., Przybyła W., Zajączkowska M., Teresiak A., Filas V., et al. (2018). 2D and 3D Cell Cultures - a Comparison of Different Types of Cancer Cell Cultures. aoms 14, 910–919. 10.5114/aoms.2016.63743 PubMed DOI PMC

Kefallinou D., Grigoriou M., Boumpas D. T., Gogolides E., Tserepi A. (2020). Fabrication of a 3D Microfluidic Cell Culture Device for Bone Marrow-On-A-Chip. Micro Nano Eng. 9, 100075. 10.1016/j.mne.2020.100075 DOI

Khatri M., Sharma J. M. (2009). Susceptibility of Chicken Mesenchymal Stem Cells to Infectious Bursal Disease Virus. J. Virol. Methods 160, 197–199. 10.1016/j.jviromet.2009.05.008 PubMed DOI

Kim H. J., Oh D. X., ChoyNguyen S. H. L., Nguyen H.-L., Cha H. J., Hwang D. S. (2018). 3D Cellulose Nanofiber Scaffold with Homogeneous Cell Population and Long-Term Proliferation. Cellulose 25, 7299–7314. 10.1007/s10570-018-2058-y DOI

Kim J. H., Park J. Y., Jin S., Yoon S., Kwak J.-Y., Jeong Y. H. (2019). A Microfluidic Chip Embracing a Nanofiber Scaffold for 3D Cell Culture and Real-Time Monitoring. Nanomaterials 9, 588. 10.3390/nano9040588 PubMed DOI PMC

Kim T. E., Kim C. G., Kim J. S., Jin S., Yoon S., Bae H. R., et al. (2016). Three-dimensional Culture and Interaction of Cancer Cells and Dendritic Cells in an Electrospun Nano-Submicron Hybrid Fibrous Scaffold. Int. J. Nanomedicine 11, 823–835. 10.2147/IJN.S101846 PubMed DOI PMC

Kim H. J., Li H., Collins J. J., Ingber D. E. (2016). Contributions of Microbiome and Mechanical Deformation to Intestinal Bacterial Overgrowth and Inflammation in a Human Gut-On-A-Chip. Proc. Natl. Acad. Sci. USA 113, E7–E15. 10.1073/pnas.1522193112 PubMed DOI PMC

Ko K. H., Jeong Y. H., Kwak J. Y., Gu M. J., Kim H. Y., Park B. C., et al. (2018). Changes in Bursal B Cells in Chicken during Embryonic Development and Early Life after Hatching. Sci. Rep. 8, 16905. 10.1038/s41598-018-34897-4 PubMed DOI PMC

Kobayashi H., Morikawa T., Okinaga A., Hamano F., Hashidate-Yoshida T., Watanuki S., et al. (2019). Environmental Optimization Enables Maintenance of Quiescent Hematopoietic Stem Cells Ex Vivo . Cel Rep. 28, 145–158. e9. 10.1016/j.celrep.2019.06.008 PubMed DOI

Kogut M. H. (2000). Cytokines and Prevention of Infectious Diseases in Poultry: a Review. Avian Pathol. 29, 395–404. 10.1080/030794500750047135 PubMed DOI

Kogut M. H., Moyes R., Deloach J. R. (1997). Neutralization of G-CSF Inhibits ILK-Induced Heterophil Influx: Granulocyte-colony Stimulating Factor Mediates the Salmonella Enteritidis-Immune Lymphokine Potentiation of the Acute Avian Inflammatory Response. Inflammation 21, 9–25. 10.1023/a:1027382523535 PubMed DOI

Kozai M., Kubo Y., Katakai T., Kondo H., Kiyonari H., Schaeuble K., et al. (2017). Essential Role of CCL21 in Establishment of central Self-Tolerance in T Cells. J. Exp. Med. 214, 1925–1935. 10.1084/jem.20161864 PubMed DOI PMC

Kramer A. C., Blake A. L., Taisto M. E., Lehrke M. J., Webber B. R., Lund T. C. (2017). Dermatopontin in Bone Marrow Extracellular Matrix Regulates Adherence but Is Dispensable for Murine Hematopoietic Cell Maintenance. Stem Cel Rep. 9, 770–778. 10.1016/j.stemcr.2017.07.021 PubMed DOI PMC

Kräter M., Jacobi A., Otto O., Tietze S., Müller K., Poitz D. M., et al. (2017). Bone Marrow Niche-Mimetics Modulate HSPC Function via Integrin Signaling. Sci. Rep. 7, 2549. 10.1038/s41598-017-02352-5 PubMed DOI PMC

Lampisuo M., Katevuo K., Lassila O. (1998). Antigenic Phenotype of Early Intra‐Embryonic Lymphoid Progenitors in the Chicken. Scand. J. Immunol. 48, 52–58. 10.1046/j.1365-3083.1998.00361.x PubMed DOI

Larsen F. T., Guldbrandtsen B., Christensen D., Pitcovski J., Kjærup R. B., Dalgaard T. S. (2020). Pustulan Activates Chicken Bone Marrow-Derived Dendritic Cells In Vitro and Promotes Ex Vivo CD4+ T Cell Recall Response to Infectious Bronchitis Virus. Vaccines 8, 226. 10.3390/vaccines8020226 PubMed DOI PMC

Lazzari G., Vinciguerra D., Balasso A., Nicolas V., Goudin N., Garfa-Traore M., et al. (2019). Light Sheet Fluorescence Microscopy versus Confocal Microscopy: in Quest of a Suitable Tool to Assess Drug and Nanomedicine Penetration into Multicellular Tumor Spheroids. Eur. J. Pharmaceutics Biopharmaceutics 142, 195–203. 10.1016/j.ejpb.2019.06.019 PubMed DOI

Lee J. B., Jeong S. I., Bae M. S., Yang D. H., Heo D. N., Kim C. H., et al. (2011). Highly Porous Electrospun Nanofibers Enhanced by Ultrasonication for Improved Cellular Infiltration. Tissue Eng. A 17, 2695–2702. 10.1089/ten.TEA.2010.0709 PubMed DOI

Lee S.-J., Maza P. A. M. A., Sun G.-M., Slama P., Lee I.-J., Kwak J.-Y. (2021). Bacterial Infection-Mimicking Three-Dimensional Phagocytosis and Chemotaxis in Electrospun Poly(ε-Caprolactone) Nanofibrous Membrane. Membranes 11, 569. 10.3390/membranes11080569 PubMed DOI PMC

Leisten I., Kramann R., Ventura Ferreira M. S., Bovi M., Neuss S., Ziegler P., et al. (2012). 3D Co-culture of Hematopoietic Stem and Progenitor Cells and Mesenchymal Stem Cells in Collagen Scaffolds as a Model of the Hematopoietic Niche. Biomaterials 33, 1736–1747. 10.1016/j.biomaterials.2011.11.034 PubMed DOI

Li T., Wu Y. (2011). Paracrine Molecules of Mesenchymal Stem Cells for Hematopoietic Stem Cell Niche. Bone Marrow Res. 2011, 1–8. 10.1155/2011/353878 PubMed DOI PMC

Liang J., Yin Y., Qin T., Yang Q. (2015). Chicken Bone Marrow-Derived Dendritic Cells Maturation in Response to Infectious Bursal Disease Virus. Vet. Immunol. Immunopathology 164, 51–55. 10.1016/j.vetimm.2014.12.012 PubMed DOI

Lin J., Xia J., Zhang K., Yang Q. (2016). Genome-wide Profiling of Chicken Dendritic Cell Response to Infectious Bursal Disease. BMC Genomics 17, 878. 10.1186/s12864-016-3157-5 PubMed DOI PMC

Liu D., Qiu Q., Zhang X., Dai M., Qin J., Hao J., et al. (2016a). Infection of Chicken Bone Marrow Mononuclear Cells with Subgroup J Avian Leukosis Virus Inhibits Dendritic Cell Differentiation and Alters Cytokine Expression. Infect. Genet. Evol. 44, 130–136. 10.1016/j.meegid.2016.06.045 PubMed DOI

Liu D., Dai M., Zhang X., Cao W., Liao M. (2016b). Subgroup J Avian Leukosis Virus Infection of Chicken Dendritic Cells Induces Apoptosis via the Aberrant Expression of microRNAs. Sci. Rep. 6, 20188. 10.1038/srep20188 PubMed DOI PMC

Liu H., Wang Y., Cui K., Guo Y., Zhang X., Qin J. (2019). Advances in Hydrogels in Organoids and Organs‐on‐a‐Chip. Adv. Mater. 31, 1902042. 10.1002/adma.201902042 PubMed DOI

Liu Q., Yang J., Huang X., Liu Y., Han K., Zhao D., et al. (2020). Transcriptomic Profile of Chicken Bone Marrow-Derive Dendritic Cells in Response to H9N2 Avian Influenza A Virus. Vet. Immunol. Immunopathology 220, 109992. 10.1016/j.vetimm.2019.109992 PubMed DOI

Luis T. C., Naber B. A. E., Roozen P. P. C., Brugman M. H., de Haas E. F. E., Ghazvini M., et al. (2011). Canonical Wnt Signaling Regulates Hematopoiesis in a Dosage-dependent Fashion. Cell Stem Cell 9, 345–356. 10.1016/j.stem.2011.07.017 PubMed DOI

Ma K., Chan C. K., Liao S., Hwang W. Y. K., Feng Q., Ramakrishna S. (2008). Electrospun Nanofiber Scaffolds for Rapid and Rich Capture of Bone Marrow-Derived Hematopoietic Stem Cells. Biomaterials 29, 2096–2103. 10.1016/j.biomaterials.2008.01.024 PubMed DOI

Machálková M., Pavlatovská B., Michálek J., Pruška A., Štěpka K., Nečasová T., et al. (2019). Drug Penetration Analysis in 3D Cell Cultures Using Fiducial-Based Semiautomatic Coregistration of MALDI MSI and Immunofluorescence Images. Anal. Chem. 91, 13475–13484. 10.1021/acs.analchem.9b02462 PubMed DOI

Mahadik B. P., Wheeler T. D., Skertich L. J., Kenis P. J. A., Harley B. A. C. (2014). Microfluidic Generation of Gradient Hydrogels to Modulate Hematopoietic Stem Cell Culture Environment. Adv. Healthc. Mater. 3 (3), 449–458. 10.1002/adhm.201300263 PubMed DOI

Man Y., Yao X., Yang T., Wang Y. (2021). Hematopoietic Stem Cell Niche during Homeostasis, Malignancy, and Bone Marrow Transplantation. Front. Cel Dev. Biol. 9, 621214. 10.3389/fcell.2021.621214 PubMed DOI PMC

Mansikka A., Sandberg M., Lassila O., Toivanen P. (1990). Rearrangement of Immunoglobulin Light Chain Genes in the Chicken Occurs Prior to Colonization of the Embryonic Bursa of Fabricius. Proc. Natl. Acad. Sci. 87, 9416–9420. 10.1073/pnas.87.23.9416 PubMed DOI PMC

Mast J., Goddeeris B. M. (1997). CD57, a Marker for B-Cell Activation and Splenic Ellipsoid-Associated Reticular Cells of the Chicken. Cel Tissue Res. 291, 107–115. 10.1007/s004410050984 PubMed DOI

Matthiesen S., Jahnke R., Knittler M. R. (2021). A Straightforward Hypoxic Cell Culture Method Suitable for Standard Incubators. MPs 4, 25. 10.3390/mps4020025 PubMed DOI PMC

McNeilly F., Adair B. M., McNulty M. S. (1994). In Vitroinfection of Mononuclear Cells Derived from Various Chicken Lymphoid Tissues by Chicken Anaemia Virus. Avian Pathol. 23, 547–556. 10.1080/03079459408419024 PubMed DOI

Mendelson A., Frenette P. S. (2014). Hematopoietic Stem Cell Niche Maintenance during Homeostasis and Regeneration. Nat. Med. 20, 833–846. 10.1038/nm.3647 PubMed DOI PMC

Mousavi S. H., Abroun S., Soleimani M., Mowla S. J. (2018). 3-Dimensional Nano-Fibre Scaffold for Ex Vivo Expansion of Cord Blood Haematopoietic Stem Cells. Artif. Cell Nanomedicine, Biotechnol. 46, 740–748. 10.1080/21691401.2017.1337026 PubMed DOI

Müller C., Kowenz-Leutz E., Grieser-Ade S., Graf T., Leutz A. (1995). NF-M (Chicken C/EBP Beta) Induces Eosinophilic Differentiation and Apoptosis in a Hematopoietic Progenitor Cell Line. EMBO J. 14, 6127–6135. PubMed PMC

Murakami J. L., Xu B., Franco C. B., Hu X., Galli S. J., Weissman I. L., et al. (2016). Evidence that β7 Integrin Regulates Hematopoietic Stem Cell Homing and Engraftment through Interaction with MAdCAM-1. Stem Cell Develop. 25, 18–26. 10.1089/scd.2014.0551 PubMed DOI PMC

Nagy N., Bódi I., Oláh I. (2016). Avian Dendritic Cells: Phenotype and Ontogeny in Lymphoid Organs. Develop. Comp. Immunol. 58, 47–59. 10.1016/j.dci.2015.12.020 PubMed DOI

Nagy N., Busalt F., Halasy V., Kohn M., Schmieder S., Fejszak N., et al. (2020). In and Out of the Bursa-The Role of CXCR4 in Chicken B Cell Development. Front. Immunol. 11, 1468. 10.3389/fimmu.2020.01468 PubMed DOI PMC

Nazifi S., Tadjalli M., Mohaghgheghzadeh M. (1999). Normal Haematopoiesis Cellular Components and M/E Ratio in the Bone Marrow of Japanese Quail (Coturnix coturnix Japonica). Comp. Haematol. Int. 9, 188–192. 10.1007/BF02585504 DOI

Nickerson C. A., Richter E. G., Ott C. M. (2007). Studying Host-Pathogen Interactions in 3-D: Organotypic Models for Infectious Disease and Drug Development. Jrnl Neuroimmune Pharm. 2, 26–31. 10.1007/s11481-006-9047-x PubMed DOI

Oláh I., Nagy N., Vervelde L. (2014). “Structure of the Avian Lymphoid System,” in Avian Immunology. Editors Schat K., Kaspers B., Kaiser P. (London: Elsevier; ), 11–44. 10.1016/b978-0-12-396965-1.00002-9 DOI

Oldenhof S., Mytnyk S., Arranja A., de Puit M., van Esch J. H. (2020). Imaging-assisted Hydrogel Formation for Single Cell Isolation. Sci. Rep. 10, 6595. 10.1038/s41598-020-62623-6 PubMed DOI PMC

Oliveira M., Conceição P., Kant K., Ainla A., Diéguez L. (2021). Electrochemical Sensing in 3D Cell Culture Models: New Tools for Developing Better Cancer Diagnostics and Treatments. Cancers 13, 1381. 10.3390/cancers13061381 PubMed DOI PMC

Ortega-Prieto A. M., Skelton J. K., Wai S. N., Large E., Lussignol M., Vizcay-Barrena G., et al. (2018). 3D Microfluidic Liver Cultures as a Physiological Preclinical Tool for Hepatitis B Virus Infection. Nat. Commun. 9, 682. 10.1038/s41467-018-02969-8 PubMed DOI PMC

Oswald J., Steudel C., Salchert K., Joergensen B., Thiede C., Ehninger G., et al. (2006). Gene‐Expression Profiling of CD34 + Hematopoietic Cells Expanded in a Collagen I Matrix. Stem Cells 24, 494–500. 10.1634/stemcells.2005-0276 PubMed DOI

Peng L., van den Biggelaar R. H. G. A., Jansen C. A., Haagsman H. P., Veldhuizen E. J. A. (2020). A Method to Differentiate Chicken Monocytes into Macrophages with Proinflammatory Properties. Immunobiology 225, 152004. 10.1016/j.imbio.2020.152004 PubMed DOI

Pierzchalska M., Panek M., Czyrnek M., Grabacka M. (2016). The Three-Dimensional Culture of Epithelial Organoids Derived from Embryonic Chicken Intestine. Methods Mol. Biol. 1576, 135–144. 10.1007/7651_2016_15 PubMed DOI

Pinho S., Marchand T., Yang E., Wei Q., Nerlov C., Frenette P. S. (2018). Lineage-Biased Hematopoietic Stem Cells Are Regulated by Distinct Niches. Develop. Cel 44, 634–641. e4. 10.1016/j.devcel.2018.01.016 PubMed DOI PMC

Radtke A. L., Herbst-Kralovetz M. M. (2012). Culturing and Applications of Rotating wall Vessel Bioreactor Derived 3D Epithelial Cell Models. JoVE 62, 3868. 10.3791/3868 PubMed DOI PMC

Raic A., Rödling L., Kalbacher H., Lee-Thedieck C. (2014). Biomimetic Macroporous PEG Hydrogels as 3D Scaffolds for the Multiplication of Human Hematopoietic Stem and Progenitor Cells. Biomaterials 35, 929–940. 10.1016/j.biomaterials.2013.10.038 PubMed DOI

Rajput I. R., Hussain A., Li Y. L., Zhang X., Xu X., Long M. Y., et al. (2014). Saccharomyces boulardiiandBacillus subtilisB10 Modulate TLRs Mediated Signaling to Induce Immunity by Chicken BMDCs. J. Cel. Biochem. 115, 189–198. 10.1002/jcb.24650 PubMed DOI

Redondo P. A., Pavlou M., Loizidou M., Cheema U. (2017). Elements of the Niche for Adult Stem Cell Expansion. J. Tissue Eng. 8, 204173141772546. 10.1177/2041731417725464 PubMed DOI PMC

Rizwan M., Baker A. E. G., Shoichet M. S. (2021). Designing Hydrogels for 3D Cell Culture Using Dynamic Covalent Crosslinking. Adv. Healthc. Mater. 10, 2100234. 10.1002/adhm.202100234 PubMed DOI

Rödling L., Schwedhelm I., Kraus S., Bieback K., Hansmann J., Lee-Thedieck C. (2017). 3D Models of the Hematopoietic Stem Cell Niche under Steady-State and Active Conditions. Sci. Rep. 7, 4625. 10.1038/s41598-017-04808-0 PubMed DOI PMC

Sagar B. M. M., Rentala S., Gopal P. N. V., Sharma S., Mukhopadhyay A. (2006). Fibronectin and Laminin Enhance Engraftibility of Cultured Hematopoietic Stem Cells. Biochem. Biophysical Res. Commun. 350, 1000–1005. 10.1016/j.bbrc.2006.09.140 PubMed DOI

Sawyer A. A., Hennessy K. M., Bellis S. L. (2005). Regulation of Mesenchymal Stem Cell Attachment and Spreading on Hydroxyapatite by RGD Peptides and Adsorbed Serum Proteins. Biomaterials 26, 1467–1475. 10.1016/j.biomaterials.2004.05.008 PubMed DOI

Sayegh C. E., Demaries S. L., Pike K. A., Friedman J. E., Ratcliffe M. J. H. (2000). The Chicken B-Cell Receptor Complex and its Role in Avian B-Cell Development. Immunol. Rev. 175, 187–200. 10.1111/j.1600-065x.2000.imr017507.x PubMed DOI

Schat K. A., Skinner M. A. (2014). “Avian Immunosuppressive Diseases and Immunoevasion,” in The Avian Immunology. Editors Schat K., Kaspers B., Kaiser P. (London: Elsevier; ), 275–297. 10.1016/b978-0-12-396965-1.00016-9 DOI

Schwartz D., Guzman D. S. M., Beaufrere H., Ammersbach M., Paul‐Murphy J., Tully T. N., Jr, et al. (2019). Morphologic and Quantitative Evaluation of Bone Marrow Aspirates from Hispaniolan Amazon Parrots ( Amazona ventralis ). Vet. Clin. Pathol. 48, 645–651. 10.1111/vcp.12799 PubMed DOI

Sekelova Z., Stepanova H., Polansky O., Varmuzova K., Faldynova M., Fedr R., et al. (2017). Differential Protein Expression in Chicken Macrophages and Heterophils In Vivo Following Infection with Salmonella Enteritidis. Vet. Res. 48, 35. 10.1186/s13567-017-0439-0 PubMed DOI PMC

Mousavi S. H., Saeid A., Masoud S., Seyed Javad M. (2019). Potential of Polycaprolactone Nanofiber Scaffold for Ex Vivo Expansion of Cord Blood-Derived CD34+ Hematopoietic Stem Cells. Int. J. Stem Cel Res. Ther. 6, 1–8. 10.23937/2469-570X/1410059 DOI

Shah P., Fritz J. V., Glaab E., Desai M. S., Greenhalgh K., Frachet A., et al. (2016). A Microfluidics-Based In Vitro Model of the Gastrointestinal Human-Microbe Interface. Nat. Commun. 7, 11535. 10.1038/ncomms11535 PubMed DOI PMC

Shanmugasundaram R., Kogut M. H., Arsenault R. J., Swaggerty C. L., Cole K., Reddish J. M., et al. (2015). Effect of Salmonella Infection on Cecal Tonsil Regulatory T Cell Properties in Chickens. Poult. Sci. 94, 1828–1835. 10.3382/ps/pev161 PubMed DOI

Shin D.-S., You J., Rahimian A., Vu T., Siltanen C., Ehsanipour A., et al. (2014). Photodegradable Hydrogels for Capture, Detection, and Release of Live Cells. Angew. Chem. Int. Ed. 53, 8221–8224. 10.1002/anie.201404323 PubMed DOI PMC

Shrestha K. R., Yoo S. Y. (2019). Phage-based Artificial Niche: the Recent Progress and Future Opportunities in Stem Cell Therapy. Stem Cell Int. 2019, 1–14. 10.1155/2019/4038560 PubMed DOI PMC

Si L., Prantil-Baun R., Benam K. H., Bai H., Rodas M., Burt M., et al. (2019). Discovery of Influenza Drug Resistance Mutations and Host Therapeutic Targets Using a Human Airway Chip. bioRxiv, 685552. 10.1101/685552 DOI

Siatskas C., Boyd R. (2000). Regulation of Chicken Haemopoiesis by Cytokines. Develop. Comp. Immunol. 24, 37–59. 10.1016/s0145-305x(99)00051-8 PubMed DOI

Sieber S., Wirth L., Cavak N., Koenigsmark M., Marx U., Lauster R., et al. (2018). Bone Marrow‐on‐a‐chip: Long‐term Culture of Human Haematopoietic Stem Cells in a Three‐dimensional Microfluidic Environment. J. Tissue Eng. Regen. Med. 12, 479–489. 10.1002/term.2507 PubMed DOI

Simsek T., Kocabas F., Zheng J., Deberardinis R. J., Mahmoud A. I., Olson E. N., et al. (2010). The Distinct Metabolic Profile of Hematopoietic Stem Cells Reflects Their Location in a Hypoxic Niche. Cell stem cell 7, 380–390. 10.1016/j.stem.2010.07.011 PubMed DOI PMC

Singhal N., Kumar M., Kanaujia P. K., Virdi J. S. (2015). MALDI-TOF Mass Spectrometry: an Emerging Technology for Microbial Identification and Diagnosis. Front. Microbiol. 6, 791. 10.3389/fmicb.2015.00791 PubMed DOI PMC

Skardal A., Sarker S. F., Crabbé A., Nickerson C. A., Prestwich G. D. (2010). The Generation of 3-D Tissue Models Based on Hyaluronan Hydrogel-Coated Microcarriers within a Rotating wall Vessel Bioreactor. Biomaterials 31, 8426–8435. 10.1016/j.biomaterials.2010.07.047 PubMed DOI

Spencer J. A., Ferraro F., Roussakis E., Klein A., Wu J., Runnels J. M., et al. (2014). Direct Measurement of Local Oxygen Concentration in the Bone Marrow of Live Animals. Nature 508, 269–273. 10.1038/nature13034 PubMed DOI PMC

Sunuwar L., Yin J., Kasendra M., Karalis K., Kaper J., Fleckenstein J., et al. (2020). Mechanical Stimuli Affect Escherichia coli Heat-Stable Enterotoxin-Cyclic GMP Signaling in a Human Enteroid Intestine-Chip Model. Infect. Immun. 88, e00866–19. 10.1128/IAI.00866-19 PubMed DOI PMC

Tadjalli M., Nazifi S., Haghjoo R. (2013). Evaluation of Hematopoietic Cells and Myeloid/erythroid Ratio in the Bone Marrow of the Pheasant (Phasianus colchicus). Vet. Res. Forum 4, 119–122. PubMed PMC

Tadjalli M., Hadipoor M. M. (2002). Haematopoiesis N. Cellular Components and M/E Ratio in the Bone Marrow of the Black‐headed Gull (Larus Ridibundus). Comp. Clin. Pathol. 11, 6. 10.1007/s005800200022 DOI

Tadjalli M., Nazifi S., Saedi M. S. (1997). Morphological Study and Determination of M/E Ratio of the Haematopoietic Cells of the Duck. Comp. Haematol. Int. 7, 117–121. 10.1007/bf02652579 DOI

Tadjalli M., Nazifi S., Haghjoo R. (2011). Evaluation of Haematopoietic Cells and M/E Ratio in the Bone Marrow of the Partridge (Alectoris chukar). Int. J. Poult. Sci. 11, 23–27. 10.3923/ijps.2012.23.27 DOI

Takubo K., Goda N., Yamada W., Iriuchishima H., Ikeda E., Kubota Y., et al. (2010). Regulation of the HIF-1α Level Is Essential for Hematopoietic Stem Cells. Cell stem cell 7, 391–402. 10.1016/j.stem.2010.06.020 PubMed DOI

Tallawi M., Rosellini E., Barbani N., Cascone M. G., Rai R., Saint-Pierre G., et al. (2015). Strategies for the Chemical and Biological Functionalization of Scaffolds for Cardiac Tissue Engineering: a Review. J. R. Soc. Interf. 12, 20150254. 10.1098/rsif.2015.0254 PubMed DOI PMC

Tamma R., Ribatti D. (2017). Bone Niches, Hematopoietic Stem Cells, and Vessel Formation. Ijms 18, 151. 10.3390/ijms18010151 PubMed DOI PMC

Thacker V. V., Dhar N., Sharma K., Barrile R., Karalis K., McKinney J. D. (2020). A Lung-On-Chip Model of Early Mycobacterium tuberculosis Infection Reveals an Essential Role for Alveolar Epithelial Cells in Controlling Bacterial Growth. eLife 9, e59961. 10.7554/eLife.59961 PubMed DOI PMC

Tibbitt M. W., Anseth K. S. (2009). Hydrogels as Extracellular Matrix Mimics for 3D Cell Culture. Biotechnol. Bioeng. 103, 655–663. 10.1002/bit.22361 PubMed DOI PMC

Tsou Y.-H., Khoneisser J., Huang P.-C., Xu X. (2016). Hydrogel as a Bioactive Material to Regulate Stem Cell Fate. Bioactive Mater. 1, 39–55. 10.1016/j.bioactmat.2016.05.001 PubMed DOI PMC

Ulyanova T., Scott L. M., Priestley G. V., Jiang Y., Nakamoto B., Koni P. A., et al. (2005). VCAM-1 Expression in Adult Hematopoietic and Nonhematopoietic Cells Is Controlled by Tissue-Inductive Signals and Reflects Their Developmental Origin. Blood 106, 86–94. 10.1182/blood-2004-09-3417 PubMed DOI PMC

Vainio O., Dunon D., Aïssi F., Dangy J. P., McNagny K. M., Imhof B. A. (1996). HEMCAM, an Adhesion Molecule Expressed by C-Kit+ Hemopoietic Progenitors. J. Cel Biol 135, 1655–1668. 10.1083/jcb.135.6.1655 PubMed DOI PMC

Vaithiyanathan M., Safa N., Melvin A. T. (2019). FluoroCellTrack: An Algorithm for Automated Analysis of High-Throughput Droplet Microfluidic Data. PloS one 14, e0215337. 10.1371/journal.pone.0215337 PubMed DOI PMC

Ferreira M. S. V., Jahnen-Dechent W., Labude N., Bovi M., Hieronymus T., Zenke M., et al. (2012). Cord Blood-Hematopoietic Stem Cell Expansion in 3D Fibrin Scaffolds with Stromal Support. Biomaterials 33, 6987–6997. 10.1016/j.biomaterials.2012.06.029 PubMed DOI

Vervelde L., Reemers S. S., van Haarlem D. A., Post J., Claassen E., Rebel J. M. J., et al. (2013). Chicken Dendritic Cells Are Susceptible to Highly Pathogenic Avian Influenza Viruses Which Induce strong Cytokine Responses. Develop. Comp. Immunol. 39, 198–206. 10.1016/j.dci.2012.10.011 PubMed DOI

Villenave R., Wales S. Q., Hamkins-Indik T., Papafragkou E., Weaver J. C., Ferrante T. C., et al. (2017). Human Gut-On-A-Chip Supports Polarized Infection of Coxsackie B1 Virus In Vitro . PloS one 12, e0169412. 10.1371/journal.pone.0169412 PubMed DOI PMC

Virumbrales-Muñoz M., Ayuso J. M., Lacueva A., Randelovic T., Livingston M. K., Beebe D. J., et al. (2019). Enabling Cell Recovery from 3D Cell Culture Microfluidic Devices for Tumour Microenvironment Biomarker Profiling. Sci. Rep. 9, 6199. 10.1038/s41598-019-42529-8 PubMed DOI PMC

von Bülow V., Klasen A. (1983a). Effects of Avian Viruses on Cultured Chicken Bone‐marrow‐derived Macrophages. Avian Pathol. 12, 179–198. 10.1080/03079458308436162 PubMed DOI

von Bülow V., Klasen A. (1983b). Growth Inhibition of Marek's Disease T‐lymphoblastoid Cell Lines by Chicken Bone‐marrow‐derived Macrophages Activated In Vitro . Avian Pathol. 12, 161–178. 10.1080/03079458308436161 PubMed DOI

Walenda T., Bokermann G., Ventura Ferreira M. S., Piroth D. M., Hieronymus T., Neuss S., et al. (2011). Synergistic Effects of Growth Factors and Mesenchymal Stromal Cells for Expansion of Hematopoietic Stem and Progenitor Cells. Exp. Hematol. 39, 617–628. 10.1016/j.exphem.2011.02.011 PubMed DOI

Walenda T., Bork S., Horn P., Wein F., Saffrich R., Diehlmann A., et al. (2010). Co-culture with Mesenchymal Stromal Cells Increases Proliferation and Maintenance of Haematopoietic Progenitor Cells. J. Cel Mol Med 14, 337–350. 10.1111/j.1582-4934.2009.00776.x PubMed DOI PMC

Weber W. T., Foglia L. M. (1980). Evidence for the Presence of Precursor B Cells in normal and in Hormonally Bursectomized Chick Embryos. Cell Immunol. 52, 84–94. 10.1016/0008-8749(80)90402-5 PubMed DOI

Wen J. H., Vincent L. G., Fuhrmann A., Choi Y. S., Hribar K. C., Taylor-Weiner H., et al. (2014). Interplay of Matrix Stiffness and Protein Tethering in Stem Cell Differentiation. Nat. Mater 13, 979–987. 10.1038/nmat4051 PubMed DOI PMC

Wigley P., Kaiser P. (2003). Avian Cytokines in Health and Disease. Rev. Bras. Cienc. Avic. 5, 1–14. 10.1590/S1516-635X2003000100001 DOI

Winkler I. G., Barbier V., Nowlan B., Jacobsen R. N., Forristal C. E., Patton J. T., et al. (2012). Vascular Niche E-Selectin Regulates Hematopoietic Stem Cell Dormancy, Self Renewal and Chemoresistance. Nat. Med. 18, 1651–1657. 10.1038/nm.2969 PubMed DOI

Winkler I. G., Sims N. A., Pettit A. R., Barbier V., Nowlan B., Helwani F., et al. (2010). Bone Marrow Macrophages Maintain Hematopoietic Stem Cell (HSC) Niches and Their Depletion Mobilizes HSCs. Blood 116, 4815–4828. 10.1182/blood-2009-11-253534 PubMed DOI

Wu Z., Harne R., Chintoan-Uta C., Hu T.-J., Wallace R., MacCallum A., et al. (2020). Regulation and Function of Macrophage colony-stimulating Factor (CSF1) in the Chicken Immune System. Develop. Comp. Immunol. 105, 103586. 10.1016/j.dci.2019.103586 PubMed DOI PMC

Wu Z., Rothwell L., Young J. R., Kaufman J., Butter C., Kaiser P. (2010). Generation and Characterization of Chicken Bone Marrow‐derived Dendritic Cells. Immunology 129, 133–145. 10.1111/j.1365-2567.2009.03129.x PubMed DOI PMC

Xiang B., Zhu W., Li Y., Gao P., Liang J., Liu D., et al. (2018). Immune Responses of Mature Chicken Bone-Marrow-Derived Dendritic Cells Infected with Newcastle Disease Virus Strains with Differing Pathogenicity. Arch. Virol. 163, 1407–1417. 10.1007/s00705-018-3745-6 PubMed DOI

Xu C., Gao X., Wei Q., Nakahara F., Zimmerman S. E., Mar J., et al. (2018). Stem Cell Factor Is Selectively Secreted by Arterial Endothelial Cells in Bone Marrow. Nat. Commun. 9, 2449. 10.1038/s41467-018-04726-3 PubMed DOI PMC

Yamazaki S., Ema H., Karlsson G., Yamaguchi T., Miyoshi H., Shioda S., et al. (2011). Nonmyelinating Schwann Cells Maintain Hematopoietic Stem Cell Hibernation in the Bone Marrow Niche. Cell 147, 1146–1158. 10.1016/j.cell.2011.09.053 PubMed DOI

Yang W. S., Kim W. J., Ahn J. Y., Lee J., Ko D. W., Park S., et al. (2020). New Bioink Derived from Neonatal Chicken Bone Marrow Cells and its 3D-Bioprinted Niche for Osteogenic Stimulators. ACS Appl. Mater. Inter. 12, 49386–49397. 10.1021/acsami.0c13905 PubMed DOI

Yasmin A. R., Yeap S. K., Tan S. W., Hair-Bejo M., Fakurazi S., Kaiser P., et al. (2015). In Vitrocharacterization of Chicken Bone Marrow-Derived Dendritic Cells Following Infection with Very Virulent Infectious Bursal Disease Virus. Avian Pathol. 44, 452–462. 10.1080/03079457.2015.1084997 PubMed DOI

Yvernogeau L., Robin C. (2017). Restricted Intra-embryonic Origin of Bona Fide Hematopoietic Stem Cells in the Chicken. Development 144, 2352–2363. 10.1242/dev.151613 PubMed DOI PMC

Zhai P., Peng X., Li B., Liu Y., Sun H., Li X. (2020). The Application of Hyaluronic Acid in Bone Regeneration. Int. J. Biol. Macromolecules 151, 1224–1239. 10.1016/j.ijbiomac.2019.10.169 PubMed DOI

Zhang P., Zhang C., Li J., Han J., Liu X., Yang H. (2019). The Physical Microenvironment of Hematopoietic Stem Cells and its Emerging Roles in Engineering Applications. Stem Cel Res Ther 10, 327. 10.1186/s13287-019-1422-7 PubMed DOI PMC

Zhang Y., Tong Y., Pan X., Cai H., Gao Y., Zhang W. (2019). Promoted Proliferation of Hematopoietic Stem Cells Enabled by a Hyaluronic Acid/carbon Nanotubes Antioxidant Hydrogel. Macromol. Mater. Eng. 304, 1800630. 10.1002/mame.201800630 DOI

Zhao M., Perry J. M., Marshall H., Venkatraman A., Qian P., He X. C., et al. (2014). Megakaryocytes Maintain Homeostatic Quiescence and Promote post-injury Regeneration of Hematopoietic Stem Cells. Nat. Med. 20, 1321–1326. 10.1038/nm.3706 PubMed DOI

Zhou B. O., Yu H., Yue R., Zhao Z., Rios J. J., Naveiras O., et al. (2017). Bone Marrow Adipocytes Promote the Regeneration of Stem Cells and Haematopoiesis by Secreting SCF. Nat. Cel Biol 19, 891–903. 10.1038/ncb3570 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...