Identification of Immune Cell Infiltration in Murine Pheochromocytoma during Combined Mannan-BAM, TLR Ligand, and Anti-CD40 Antibody-Based Immunotherapy

. 2021 Aug 05 ; 13 (16) : . [epub] 20210805

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34439097

Immunotherapy has become an essential component in cancer treatment. However, the majority of solid metastatic cancers, such as pheochromocytoma, are resistant to this approach. Therefore, understanding immune cell composition in primary and distant metastatic tumors is important for therapeutic intervention and diagnostics. Combined mannan-BAM, TLR ligand, and anti-CD40 antibody-based intratumoral immunotherapy (MBTA therapy) previously resulted in the complete eradication of murine subcutaneous pheochromocytoma and demonstrated a systemic antitumor immune response in a metastatic model. Here, we further evaluated this systemic effect using a bilateral pheochromocytoma model, performing MBTA therapy through injection into the primary tumor and using distant (non-injected) tumors to monitor size changes and detailed immune cell infiltration. MBTA therapy suppressed the growth of not only injected but also distal tumors and prolonged MBTA-treated mice survival. Our flow cytometry analysis showed that MBTA therapy led to increased recruitment of innate and adaptive immune cells in both tumors and the spleen. Moreover, adoptive CD4+ T cell transfer from successfully MBTA-treated mice (i.e., subcutaneous pheochromocytoma) demonstrates the importance of these cells in long-term immunological memory. In summary, this study unravels further details on the systemic effect of MBTA therapy and its use for tumor and metastasis reduction or even elimination.

Zobrazit více v PubMed

Ventola C.L. Cancer Immunotherapy, Part 2: Efficacy, Safety, and Other Clinical Considerations. Pharm. Ther. 2017;42:452–463. PubMed PMC

Ascierto P.A., Del Vecchio M., Robert C., Mackiewicz A., Chiarion-Sileni V., Arance A., Lebbe C., Bastholt L., Hamid O., Rutkowski P., et al. Ipilimumab 10 mg/kg versus ipilimumab 3 mg/kg in patients with unresectable or metastatic melanoma: A randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol. 2017;18:611–622. doi: 10.1016/S1470-2045(17)30231-0. PubMed DOI

Marabelle A., Tselikas L., de Baere T., Houot R. Intratumoral immunotherapy: Using the tumor as the remedy. Ann. Oncol. 2017;28:xii33–xii43. doi: 10.1093/annonc/mdx683. PubMed DOI

Hamid O., Ismail R., Puzanov I. Intratumoral Immunotherapy-Update 2019. Oncologist. 2020;25:e423–e438. doi: 10.1634/theoncologist.2019-0438. PubMed DOI PMC

Lenders J.W., Eisenhofer G., Mannelli M., Pacak K. Phaeochromocytoma. Lancet. 2005;366:665–675. doi: 10.1016/S0140-6736(05)67139-5. PubMed DOI

Crona J., Taieb D., Pacak K. New Perspectives on Pheochromocytoma and Paraganglioma: Toward a Molecular Classification. Endocr. Rev. 2017;38:489–515. doi: 10.1210/er.2017-00062. PubMed DOI PMC

Fishbein L., Leshchiner I., Walter V., Danilova L., Robertson A.G., Johnson A.R., Lichtenberg T.M., Murray B.A., Ghayee H.K., Else T., et al. Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma. Cancer Cell. 2017;31:181–193. doi: 10.1016/j.ccell.2017.01.001. PubMed DOI PMC

Wood M.A., Paralkar M., Paralkar M.P., Nguyen A., Struck A.J., Ellrott K., Margolin A., Nellore A., Thompson R.F. Population-level distribution and putative immunogenicity of cancer neoepitopes. BMC Cancer. 2018;18:414. doi: 10.1186/s12885-018-4325-6. PubMed DOI PMC

Thorsson V., Gibbs D.L., Brown S.D., Wolf D., Bortone D.S., Ou Yang T.H., Porta-Pardo E., Gao G.F., Plaisier C.L., Eddy J.A., et al. The Immune Landscape of Cancer. Immunity. 2018;48:812–830. doi: 10.1016/j.immuni.2018.03.023. PubMed DOI PMC

Nolting S., Ullrich M., Pietzsch J., Ziegler C.G., Eisenhofer G., Grossman A., Pacak K. Current Management of Pheochromocytoma/Paraganglioma: A Guide for the Practicing Clinician in the Era of Precision Medicine. Cancers. 2019;11:1505. doi: 10.3390/cancers11101505. PubMed DOI PMC

Figueiredo R.T., Carneiro L.A., Bozza M.T. Fungal surface and innate immune recognition of filamentous fungi. Front. Microbiol. 2011;2:248. doi: 10.3389/fmicb.2011.00248. PubMed DOI PMC

Janotova T., Jalovecka M., Auerova M., Svecova I., Bruzlova P., Maierova V., Kumzakova Z., Cunatova S., Vlckova Z., Caisova V., et al. The use of anchored agonists of phagocytic receptors for cancer immunotherapy: B16-F10 murine melanoma model. PLoS ONE. 2014;9:e85222. doi: 10.1371/journal.pone.0085222. PubMed DOI PMC

Garred P., Genster N., Pilely K., Bayarri-Olmos R., Rosbjerg A., Ma Y.J., Skjoedt M.O. A journey through the lectin pathway of complement-MBL and beyond. Immunol. Rev. 2016;274:74–97. doi: 10.1111/imr.12468. PubMed DOI

Wu J.J., Huang D.B., Tyring S.K. Resiquimod: A new immune response modifier with potential as a vaccine adjuvant for Th1 immune responses. Antiviral Res. 2004;64:79–83. doi: 10.1016/j.antiviral.2004.07.002. PubMed DOI

Matsumoto M., Seya T. TLR3: Interferon induction by double-stranded RNA including poly(I:C) Adv. Drug Deliv. Rev. 2008;60:805–812. doi: 10.1016/j.addr.2007.11.005. PubMed DOI

Seo H.S., Michalek S.M., Nahm M.H. Lipoteichoic acid is important in innate immune responses to gram-positive bacteria. Infect. Immun. 2008;76:206–213. doi: 10.1128/IAI.01140-07. PubMed DOI PMC

Khong A., Nelson D.J., Nowak A.K., Lake R.A., Robinson B.W.S. The Use of Agonistic Anti-CD40 Therapy in Treatments for Cancer. Int. Rev. Immunol. 2012;31:246–266. doi: 10.3109/08830185.2012.698338. PubMed DOI

Rakhmilevich A.L., Alderson K.L., Sondel P.M. T-cell-independent antitumor effects of CD40 ligation. Int. Rev. Immunol. 2012;31:267–278. doi: 10.3109/08830185.2012.698337. PubMed DOI PMC

Vonderheide R.H., Glennie M.J. Agonistic CD40 antibodies and cancer therapy. Clin. Cancer Res. 2013;19:1035–1043. doi: 10.1158/1078-0432.CCR-12-2064. PubMed DOI PMC

Caisova V., Uher O., Nedbalova P., Jochmanova I., Kvardova K., Masakova K., Krejcova G., Padoukova L., Chmelar J., Kopecky J., et al. Effective cancer immunotherapy based on combination of TLR agonists with stimulation of phagocytosis. Int. Immunopharmacol. 2018;59:86–96. doi: 10.1016/j.intimp.2018.03.038. PubMed DOI

Caisova V., Vieru A., Kumzakova Z., Glaserova S., Husnikova H., Vacova N., Krejcova G., Padoukova L., Jochmanova I., Wolf K.I., et al. Innate immunity based cancer immunotherapy: B16-F10 murine melanoma model. BMC Cancer. 2016;16:940. doi: 10.1186/s12885-016-2982-x. PubMed DOI PMC

Uher O., Caisova V., Hansen P., Kopecky J., Chmelar J., Zhuang Z., Zenka J., Pacak K. Coley’s immunotherapy revived: Innate immunity as a link in priming cancer cells for an attack by adaptive immunity. Semin. Oncol. 2019 doi: 10.1053/j.seminoncol.2019.10.004. PubMed DOI PMC

Medina R., Wang H.R., Caisova V., Cui J., Indig I.H., Uher O., Ye J., Nwankwo A., Sanchez V., Wu T.X., et al. Induction of Immune Response against Metastatic Tumors via Vaccination of Mannan-BAM, TLR Ligands, and Anti-CD40 Antibody (MBTA) Adv. Ther. Ger. 2020 doi: 10.1002/adtp.202000044. PubMed DOI PMC

Caisova V., Li L., Gupta G., Jochmanova I., Jha A., Uher O., Huynh T.T., Miettinen M., Pang Y., Abunimer L., et al. The Significant Reduction or Complete Eradication of Subcutaneous and Metastatic Lesions in a Pheochromocytoma Mouse Model after Immunotherapy Using Mannan-BAM, TLR Ligands, and Anti-CD40. Cancers. 2019;11:654. doi: 10.3390/cancers11050654. PubMed DOI PMC

Haabeth O.A.W., Blake T.R., McKinlay C.J., Tveita A.A., Sallets A., Waymouth R.M., Wender P.A., Levy R. Local Delivery of Ox40l, Cd80, and Cd86 mRNA Kindles Global Anticancer Immunity. Cancer Res. 2019;79:1624–1634. doi: 10.1158/0008-5472.CAN-18-2867. PubMed DOI PMC

Zemek R.M., Fear V.S., Forbes C., de Jong E., Casey T.H., Boon L., Lassmann T., Bosco A., Millward M.J., Nowak A.K., et al. Bilateral murine tumor models for characterizing the response to immune checkpoint blockade. Nat. Protoc. 2020;15:1628–1648. doi: 10.1038/s41596-020-0299-3. PubMed DOI

Kato K., Itoh C., Yasukouchi T., Nagamune T. Rapid protein anchoring into the membranes of Mammalian cells using oleyl chain and poly(ethylene glycol) derivatives. Biotechnol. Prog. 2004;20:897–904. doi: 10.1021/bp0342093. PubMed DOI

Korpershoek E., Pacak K., Martiniova L. Murine models and cell lines for the investigation of pheochromocytoma: Applications for future therapies? Endocr. Pathol. 2012;23:43–54. doi: 10.1007/s12022-012-9194-y. PubMed DOI PMC

Martiniova L., Lai E.W., Elkahloun A.G., Abu-Asab M., Wickremasinghe A., Solis D.C., Perera S.M., Huynh T.T., Lubensky I.A., Tischler A.S., et al. Characterization of an animal model of aggressive metastatic pheochromocytoma linked to a specific gene signature. Clin. Exp. Metastasis. 2009;26:239–250. doi: 10.1007/s10585-009-9236-0. PubMed DOI PMC

Gordon D.L., Rice J.L., McDonald P.J. Regulation of human neutrophil type 3 complement receptor (iC3b receptor) expression during phagocytosis of Staphylococcus aureus and Escherichia coli. Immunology. 1989;67:460–465. PubMed PMC

Holers V.M. Complement and its receptors: New insights into human disease. Annu. Rev. Immunol. 2014;32:433–459. doi: 10.1146/annurev-immunol-032713-120154. PubMed DOI

Lin Y., Xu J., Lan H. Tumor-associated macrophages in tumor metastasis: Biological roles and clinical therapeutic applications. J. Hematol. Oncol. 2019;12:76. doi: 10.1186/s13045-019-0760-3. PubMed DOI PMC

Sato-Kaneko F., Yao S., Ahmadi A., Zhang S.S., Hosoya T., Kaneda M.M., Varner J.A., Pu M., Messer K.S., Guiducci C., et al. Combination immunotherapy with TLR agonists and checkpoint inhibitors suppresses head and neck cancer. JCI Insight. 2017;2:e93397. doi: 10.1172/jci.insight.93397. PubMed DOI PMC

Lu C.H., Lai C.Y., Yeh D.W., Liu Y.L., Su Y.W., Hsu L.C., Chang C.H., Catherine Jin S.L., Chuang T.H. Involvement of M1 Macrophage Polarization in Endosomal Toll-Like Receptors Activated Psoriatic Inflammation. Mediat. Inflamm. 2018;2018:3523642. doi: 10.1155/2018/3523642. PubMed DOI PMC

Lin A.A., Tripathi P.K., Sholl A., Jordan M.B., Hildeman D.A. Gamma interferon signaling in macrophage lineage cells regulates central nervous system inflammation and chemokine production. J. Virol. 2009;83:8604–8615. doi: 10.1128/JVI.02477-08. PubMed DOI PMC

Bogen B., Fauskanger M., Haabeth O.A., Tveita A. CD4(+) T cells indirectly kill tumor cells via induction of cytotoxic macrophages in mouse models. Cancer Immunol. Immunother. 2019;68:1865–1873. doi: 10.1007/s00262-019-02374-0. PubMed DOI PMC

Uher O., Caisova V., Padoukova L., Kvardova K., Masakova K., Lencova R., Frejlachova A., Skalickova M., Venhauerova A., Chlastakova A., et al. Mannan-BAM, TLR ligands, and anti-CD40 immunotherapy in established murine pancreatic adenocarcinoma: Understanding therapeutic potentials and limitations. Cancer Immunol. Immunother. 2021 doi: 10.1007/s00262-021-02920-9. PubMed DOI PMC

Sprent J., Zhang X., Sun S., Tough D. T-cell proliferation in vivo and the role of cytokines. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2000;355:317–322. doi: 10.1098/rstb.2000.0568. PubMed DOI PMC

Berner V., Liu H., Zhou Q., Alderson K.L., Sun K., Weiss J.M., Back T.C., Longo D.L., Blazar B.R., Wiltrout R.H., et al. IFN-gamma mediates CD4+ T-cell loss and impairs secondary antitumor responses after successful initial immunotherapy. Nat. Med. 2007;13:354–360. doi: 10.1038/nm1554. PubMed DOI

Yuen G.J., Demissie E., Pillai S. B lymphocytes and cancer: A love-hate relationship. Trends Cancer. 2016;2:747–757. doi: 10.1016/j.trecan.2016.10.010. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...