The combination of immunotherapy and a glutamine metabolism inhibitor represents an effective therapeutic strategy for advanced and metastatic murine pancreatic adenocarcinoma
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Z01 HD008735
Intramural NIH HHS - United States
PubMed
37030115
PubMed Central
PMC10182763
DOI
10.1016/j.intimp.2023.110150
PII: S1567-5769(23)00471-X
Knihovny.cz E-zdroje
- Klíčová slova
- Cancer, Glutamine antagonist, Immunotherapy, Intratumoral, Pancreatic adenocarcinoma,
- MeSH
- adenokarcinom * farmakoterapie MeSH
- glutamin terapeutické užití MeSH
- imunoterapie metody MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádory slinivky břišní * farmakoterapie metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- glutamin MeSH
Despite constant advances in cancer research, the treatment of pancreatic adenocarcinoma remains extremely challenging. The intratumoral immunotherapy approach that was developed by our research group and was based on a combination of mannan-BAM, TLR ligands, and anti-CD40 antibody (MBTA) showed promising therapeutic effects in various murine tumor models, including a pancreatic adenocarcinoma model (Panc02). However, the efficacy of MBTA therapy in the Panc02 model was negatively correlated with tumor size at the time of therapy initiation. Here, we aimed to further improve the outcome of MBTA therapy in the Panc02 model using the glutamine antagonist 6-diazo-5-oxo-L-norleucine (DON). The combination of intratumoral MBTA therapy and intraperitoneal administration of DON resulted in the complete elimination of advanced Panc02 subcutaneous tumors (140.8 ± 46.8 mm3) in 50% of treated animals and was followed by development of long-term immune memory. In the bilateral Panc02 subcutaneous tumor model, we observed a significant reduction in tumor growth in both tumors as well as prolonged survival of treated animals. The appropriate timing and method of administration of DON were also addressed to maximize its therapeutic effects and minimize its side effects. In summary, our findings demonstrate that the intraperitoneal application of DON significantly improves the efficacy of intratumoral MBTA therapy in both advanced and bilateral Panc02 subcutaneous tumor murine models.
Immunoaction LLC Charlotte VT 05445 USA
Neuro Oncology Branch National Cancer Institute National Institutes of Health Bethesda MD 20814 USA
Zobrazit více v PubMed
Neesse A, Bauer CA, Öhlund D, Lauth M, Buchholz M, Michl P, Tuveson DA, Gress TM. Stromal biology and therapy in pancreatic cancer: ready for clinical translation? Gut. 2019;68:159–171. PubMed
Caisová V, Uher O, Nedbalová P, Jochmanová I, Kvardová K, Masáková K, Krejčová G, Pad’ouková L, Chmelař J, Kopecký J, et al. Effective cancer immunotherapy based on combination of TLR agonists with stimulation of phagocytosis. Int Immunopharmacol. 2018;59:86–96. PubMed
Uher O, Caisova V, Padoukova L, Kvardova K, Masakova K, Lencova R, Frejlachova A, Skalickova M, Venhauerova A, Chlastakova A, et al. Mannan-BAM, TLR ligands, and anti-CD40 immunotherapy in established murine pancreatic adenocarcinoma: Understanding therapeutic potentials and limitations. Cancer Immunol Immun. 2021; doi: 10.1007/s00262-021-02920-9. PubMed DOI PMC
Janotová T, Jalovecká M, Auerová M, Švecová I, Bruzlová P, Maierová V, Kumžáková Z, Čunátová Š, Vlčková Z, Caisová V, et al. The use of anchored agonists of phagocytic receptors for cancer immunotherapy: B16-F10 murine melanoma model. PLoS ONE. 2014;9: e85222. doi:10.1371/journal.pone.0085222. PubMed DOI PMC
Waldmannová E, Caisová V, Fáberová J, Sváčková P, Kovářová M, Sváčková D, Kumžáková Z, Jačková A, Vácová N, Nedbalová P, et al. The use of Zymosan A and bacteria anchored to tumor cells for effective cancer immunotherapy: B16-F10 murine melanoma model. Int Immunopharmacol. 2016;39:295–306. PubMed
Caisová V, Vieru A, Kumžáková Z, Glaserová S, Husníková H, Vácová N, Krejčová G, Pad’ouková L, Jochmanová I, Wolf KI, et al. Innate immunity based cancer immunotherapy: B16-F10 murine melanoma model. BMC Cancer. 2016;16:940 doi:10.1186/s12885-016-2982-x. PubMed DOI PMC
Caisova V, Li L, Gupta G, Jochmanova I, Jha I, Uher O, Huynh TT, Miettinen M, Pang Y, Abunimer L, et al. The significant reduction or complete eradication of subcutaneous and metastatic lesions in a pheochromocytoma mouse model after immunotherapy using mannan-BAM, TLR ligands, and-anti-CD40. Cancers. 2019;11:654; doi:10.3390/cancers11050654. PubMed DOI PMC
Uher O, Caisova V, Hansen P, Kopecky J, Chmelar J, Zhuang Z, Zenka J, Pacak K. Coley's immunotherapy revived: Innate immunity as a link in priming cancer cells for an attack by adaptive immunity. Semin Oncol. 2019; doi:10.1053/j.seminoncol.2019.10.004. PubMed DOI PMC
Choi YK, Park KG. Targeting glutamine metabolism for cancer treatment. Biomol Ther. 2018;26:19–28. PubMed PMC
Lemberg KM, Vornov JJ, Rais R, Slusher BS. We’re not „DON“ yet: Optimal dosing and prodrug delivery of 6-Diazo-5-oxo-L-norleucine. Mol Cancer Ther. 2018;17:1824–1832. PubMed PMC
Yuneva M, Zamboni N, Oefner P, Sachidanandam R, Lazebnik Y. Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J Cell Biol. 2007;178:93–105. PubMed PMC
Sharma SN, Gupta VK, Garrido VT, Hadad R, Durden BC, Kesh K, Giri B, Ferrantella A, Dudeja V, Saluja A, et al. Targeting tumor-intrinsic hexosamine biosynthesis sensitizes pancreatic cancer to anti-PD1 therapy. J Clin Invest. 2020;130:451–465. PubMed PMC
Coutts IGC, Saint RE. The reaction of lithium trimemethylsilyldiazomethane with pyroglutamates – a facile synthesis of 6-diazo-5-oxo-norleucine and derivatives. Tetrahedron Lett. 1998;39:3242–3246.
Li J, Piao YF, Jiang Z, Chen Li, Sun HB. Silencing of signal transducer and activator of transcription 3 expression by RNA interference suppresses the growth of human hepatocellular carcinoma in tumor-bearing nude mice. World J Gastroenterol. 2009;15:2602–2608. PubMed PMC
Hidalgo M. New insights into pancreatic cancer biology. Annals of Oncology. 2012;23:135–138. PubMed
Qin C, Yang G, Yang J, Ren B, Wang H, Chen G, Zhao F, You L, Wang W, Zhao Y. Metabolism of pancreatic cancer: paving the way to better anticancer strategies. Mol Cancer. 2020;19:50. PubMed PMC
Farkona S, Diamandis E, Blasutig M. Cancer immunotherapy: the beginning of the end of cancer? MBC Medicine. 2016;14:1–18. PubMed PMC
Rais R, Jančařík A, Tenora L, Nedelcovych M, Alt J, Englert J, Rojas C, Le A, Elgogary A, Tan J, et al. Discovery of 6-Diazo-5-oxo- l -norleucine (DON) Prodrugs with Enhanced CSF Delivery in Monkeys: A Potential Treatment for Glioblastoma. J Med Chem. 2016;59:8621–8633. PubMed
Coffey GL, Ehrlich J, Fisher MW, Hillegas AB, Kohberger DL, Machamer HE, Rightsel WA, Roegner FR. 6-Diazo-5-oxoL-norleucine, a new tumor-inhibitory substance. I. Biologic studies. Antibiot Chemother (Northfield). 1956;6:487–497. PubMed
Magill GB, Myers WP, Reilly HC, Putnam RC, Magill JW, Sykes MP, Escher GC, Karnofsky DA, Burchenal JH. Pharmacological and initial therapeutic observations on 6-diazo-5-oxo-1-norleucine (DON) in human neoplastic disease. Cancer. 1957;10:1138–1150. PubMed
Leone RD, Zhao L, Englert JM, Sun IM, Oh MH, Sun IH, Arwood ML, Bettencourt IA, Patel CH, Wen J, et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science.2019;366:1013–21. doi:10.1126/science.aav2588. Epub 2019 Nov 7. PubMed DOI PMC
Uher O, Huynh TT, Zhu B, Horn LA, Caisova V, Vanova KH, Medina R, Wang H, Palena C, Chmelar J, et al. Identification of immune cell infiltration in murine pheochromocytoma during combined mannan-BAM, TLR ligand, and anti-CD40 antibody-based immunotherapy. Cancers. 2021;13:3942; doi:10.3390/cancers13163942. PubMed DOI PMC
Darwich AS, Aslam U, Ashcroft DM, Rostami-Hodjegan A. Meta-analysis of the turnover of intestinal epithelia in preclinical animal species and humans. Drug Metab Dispos. 2014;42:2016–2022. PubMed