• This record comes from PubMed

Advancement in Nanostructure-Based Tissue-Engineered Biomaterials for Retinal Degenerative Diseases

. 2021 Aug 13 ; 9 (8) : . [epub] 20210813

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article, Review

Grant support
KAPPA - TO01000107 Technology Agency of the Czech Republic

Links

PubMed 34440209
PubMed Central PMC8393745
DOI 10.3390/biomedicines9081005
PII: biomedicines9081005
Knihovny.cz E-resources

The review intends to overview a wide range of nanostructured natural, synthetic and biological membrane implants for tissue engineering to help in retinal degenerative diseases. Herein, we discuss the transplantation strategies and the new development of material in combination with cells such as induced pluripotent stem cells (iPSC), mature retinal cells, adult stem cells, retinal progenitors, fetal retinal cells, or retinal pigment epithelial (RPE) sheets, etc. to be delivered into the subretinal space. Retinitis pigmentosa and age-related macular degeneration (AMD) are the most common retinal diseases resulting in vision impairment or blindness by permanent loss in photoreceptor cells. Currently, there are no therapies that can repair permanent vision loss, and the available treatments can only delay the advancement of retinal degeneration. The delivery of cell-based nanostructure scaffolds has been presented to enrich cell survival and direct cell differentiation in a range of retinal degenerative models. In this review, we sum up the research findings on different types of nanostructure scaffolds/substrate or material-based implants, with or without cells, used to deliver into the subretinal space for retinal diseases. Though, clinical and pre-clinical trials are still needed for these transplants to be used as a clinical treatment method for retinal degeneration.

See more in PubMed

Zhu S., Gong L., Li Y., Xu H., Gu Z., Zhao Y. Safety Assessment of Nanomaterials to Eyes: An Important but Neglected Issue. Adv. Sci. 2019;6:1802289. doi: 10.1002/advs.201802289. PubMed DOI PMC

Heller J.P., Martin K.R. Enhancing RPE Cell-Based Therapy Outcomes for AMD: The Role of Bruch’s Membrane. Transl. Vis. Sci. Technol. 2014;3:4. doi: 10.1167/tvst.3.4.4. PubMed DOI PMC

Alexander P., Thomson H.A.J., Luff A.J., Lotery A.J. Retinal pigment epithelium transplantation: Concepts, challenges, and future prospects. Eye. 2015;29:992–1002. doi: 10.1038/eye.2015.89. PubMed DOI PMC

Xiang P., Wu K.-C., Zhu Y., Xiang L., Li C., Chen D.-L., Chen F., Xu G., Wang A., Li M., et al. A novel Bruch’s membrane-mimetic electrospun substrate scaffold for human retinal pigment epithelium cells. Biomaterials. 2014;35:9777–9788. doi: 10.1016/j.biomaterials.2014.08.040. PubMed DOI

Treharne A.J., Thomson H.A.J., Grossel M.C., Lotery A.J. Developing methacrylate-based copolymers as an artificial Bruch’s membrane substitute. J. Biomed. Mater. Res. Part A. 2012;100:2358–2364. doi: 10.1002/jbm.a.34178. PubMed DOI

Kim S.Y., Sadda S., Pearlman J., Humayun M.S., De Juan E., Melia B.M., Green W.R. Morphometric analysis of the macula in eyes with disciform age-related macular degeneration. Retina. 2002;22:471–477. doi: 10.1097/00006982-200208000-00012. PubMed DOI

Ikeya M., Toyooka Y., Eiraku M. Pluripotent stem cells in developmental biology. Dev. Growth Differ. 2021;63:3–4. doi: 10.1111/dgd.12712. PubMed DOI

Zarbin M. Cell-Based Therapy for Degenerative Retinal Disease. Trends Mol. Med. 2016;22:115–134. doi: 10.1016/j.molmed.2015.12.007. PubMed DOI

Vecino E., Rodriguez F.D., Ruzafa N., Pereiro X., Sharma S.C. Glia–neuron interactions in the mammalian retina. Prog. Retin. Eye Res. 2016;51:1–40. doi: 10.1016/j.preteyeres.2015.06.003. PubMed DOI

Inana G., Murat C., An W., Yao X., Harris I.R., Cao J. RPE phagocytic function declines in age-related macular degeneration and is rescued by human umbilical tissue derived cells. J. Transl. Med. 2018;16:63. doi: 10.1186/s12967-018-1434-6. PubMed DOI PMC

Okamoto F., Sugiura Y., Okamoto Y., Hiraoka T., Oshika T. Associations between Metamorphopsia and Foveal Microstructure in Patients with Epiretinal Membrane. Investig. Opthalmol. Vis. Sci. 2012;53:6770–6775. doi: 10.1167/iovs.12-9683. PubMed DOI

Patel B.B., Sharma A.D., Mammadova N., Sandquist E.J., Uz M., Mallapragada S.K., Sakaguchi D.S. Nanoengineered Biomaterials for Regenerative Medicine. Elsevier; Amsterdam, The Netherlands: 2019. Nanoengineered biomaterials for retinal repair. DOI

Simó R., Villarroel M., Corraliza L., Hernández C., García-Ramírez M. The Retinal Pigment Epithelium: Something More than a Constituent of the Blood-Retinal Barrier—Implications for the Pathogenesis of Diabetic Retinopathy. J. Biomed. Biotechnol. 2010;2010:190724. doi: 10.1155/2010/190724. PubMed DOI PMC

Boulton M., Dayhaw-Barker P. The role of the retinal pigment epithelium: Topographical variation and ageing changes. Eye. 2001;15:384–389. doi: 10.1038/eye.2001.141. PubMed DOI

Lund R.D., Kwan A.S.L., Keegan D.J., Sauvé Y., Coffey P.J., Lawrence J.M. Cell Transplantation as a Treatment for Retinal Disease. Prog. Retin. Eye Res. 2001;20:415–449. doi: 10.1016/S1350-9462(01)00003-9. PubMed DOI

Ballios B.G., Cooke M.J., van der Kooy D., Shoichet M.S. A hydrogel-based stem cell delivery system to treat retinal degenerative diseases. Biomaterials. 2010;31:2555–2564. doi: 10.1016/j.biomaterials.2009.12.004. PubMed DOI

Lavik E.B., Klassen H., Warfvinge K., Scherfig E., Kiilgaard J.F., Proust J.U., Langer R.S., Young M.J. Polymer Scaffolds Provide Support and Guidance for Retinal Stem Cells in Retinal Degeneration Models. Investig. Ophthalmol. Vis. Sci. 2003;44:508.

Malafaya P.B., Silva G.A., Reis R.L. Natural–origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv. Drug Deliv. Rev. 2007;59:207–233. doi: 10.1016/j.addr.2007.03.012. PubMed DOI

Hotaling N.A., Khristov V., Wan Q., Sharma R., Jha B.S., Lotfi M., Maminishkis A., Simon C.G., Bharti K. Nanofiber Scaffold-Based Tissue-Engineered Retinal Pigment Epithelium to Treat Degenerative Eye Diseases. J. Ocul. Pharmacol. Ther. 2016;32:272–285. doi: 10.1089/jop.2015.0157. PubMed DOI PMC

Lavik E., Langer R. Tissue engineering: Current state and perspectives. Appl. Microbiol. Biotechnol. 2004;65:1–8. doi: 10.1007/s00253-004-1580-z. PubMed DOI

Del Priore L.V., Tezel T.H., Kaplan H.J. Survival of allogeneic porcine retinal pigment epithelial sheets after subretinal transplantation. Investig. Opthalmol. Vis. Sci. 2004;45:985–992. doi: 10.1167/iovs.03-0662. PubMed DOI

Ho T.-C., Del Priore L.V., Kaplan H.J. En bloc transfer of extracellular matrix in vitro. Curr. Eye Res. 1996;15:991–997. doi: 10.3109/02713689609017645. PubMed DOI

Silverman M.S., Hughes S.E. Transplantation of Photoreceptors to Light-Damaged Retina. Investig. Ophthalmol. Vis. Sci. 1989;30:1684–1689. PubMed

Ghosh F., Juliusson B., Arnér K., Ehinger B. Partial and Full-Thickness Neuroretinal Transplants. Exp. Eye Res. 1999;68:67–74. doi: 10.1006/exer.1998.0582. PubMed DOI

Hsiue G.-H., Lai J.-Y., Lin P.-K. Absorbable sandwich-like membrane for retinal-sheet transplantation. J. Biomed. Mater. Res. 2002;61:19–25. doi: 10.1002/jbm.2000. PubMed DOI

Khodair M.A., Zarbin M.A., Townes-Anderson E. Synaptic Plasticity in Mammalian Photoreceptors Prepared as Sheets for Retinal Transplantation. Investig. Opthalmol. Vis. Sci. 2003;44:4976–4988. doi: 10.1167/iovs.03-0036. PubMed DOI

Noorani B., Tabandeh F., Yazdian F., Soheili Z.-S., Shakibaie M., Rahmani S. Thin natural gelatin/chitosan nanofibrous scaffolds for retinal pigment epithelium cells. Int. J. Polym. Mater. Polym. Biomater. 2018;67:754–763. doi: 10.1080/00914037.2017.1362639. DOI

Shakibaie M., Tabandeh F., Shariati P., Norouzy A. Synthesis of a thin-layer gelatin nanofiber mat for cultivating retinal cell. J. Bioact. Compat. Polym. 2018;33:371–381. doi: 10.1177/0883911518776337. DOI

Glowacki J., Mizuno S. Collagen scaffolds for tissue engineering. Biopolymers. 2008;89:338–344. doi: 10.1002/bip.20871. PubMed DOI

Bhatt N.S., Newsome D.A., Fenech T., Hessburg T.P., Diamond J.G., Miceli M.V., Kratz K.E., Oliver P.D. Experimental Transplantation of Human Retinal Pigment Epithelial Cells on Collagen Substrates. Am. J. Ophthalmol. 1994;117:214–221. doi: 10.1016/S0002-9394(14)73079-X. PubMed DOI

Thumann G., Hueber A., Dinslage S., Schaefer F., Yasukawa T., Kirchhof B., Yafai Y., Eichler W., Bringmann A., Wiedemann P. Characteristics of Iris and Retinal Pigment Epithelial Cells Cultured on Collagen Type I Membranes. Curr. Eye Res. 2006;31:241–249. doi: 10.1080/02713680600556966. PubMed DOI

Lu J.T., Lee C.J., Bent S.F., Fishman H.A., Sabelman E.E. Thin collagen film scaffolds for retinal epithelial cell culture. Biomaterials. 2007;28:1486–1494. doi: 10.1016/j.biomaterials.2006.11.023. PubMed DOI

Imai H., Honda S., Kondo N., Ishibashi K., Tsukahara Y., Negi A. The Upregulation of Angiogenic Gene Expression in Cultured Retinal Pigment Epithelial Cells Grown on Type I Collagen. Curr. Eye Res. 2007;32:903–910. doi: 10.1080/02713680701604749. PubMed DOI

Warnke P.H., Alamein M., Skabo S., Stephens S., Bourke R., Heiner P., Liu Q. Primordium of an artificial Bruch’s membrane made of nanofibers for engineering of retinal pigment epithelium cell monolayers. Acta Biomater. 2013;9:9414–9422. doi: 10.1016/j.actbio.2013.07.029. PubMed DOI

Oganesian A., Gabrielian K., Ernest J.T., Patel S.C. A new model of retinal pigment epithelium transplantation with microspheres. Arch. Ophthalmol. 1999;117:1192–1200. doi: 10.1001/archopht.117.9.1192. PubMed DOI

Ahmed T.A.E., Giulivi A., Griffith M., Hincke M. Fibrin Glues in Combination with Mesenchymal Stem Cells to Develop a Tissue-Engineered Cartilage Substitute. Tissue Eng. Part A. 2011;17:323–335. doi: 10.1089/ten.tea.2009.0773. PubMed DOI

Ahmed T.A.E., Ringuette R., Wallace V.A., Griffith M. Autologous Fibrin Glue as an Encapsulating Scaffold for Delivery of Retinal Progenitor Cells. Front. Bioeng. Biotechnol. 2015;2:85. doi: 10.3389/fbioe.2014.00085. PubMed DOI PMC

Yurchenco P.D., Amenta P.S., Patton B.L. Basement membrane assembly, stability and activities observed through a developmental lens. Matrix Biol. 2004;22:521–538. doi: 10.1016/j.matbio.2003.10.006. PubMed DOI

Pritchard C.D., Arnér K.M., Langer R.S., Ghosh F.K. Retinal transplantation using surface modified poly(glycerol-co-sebacic acid) membranes. Biomaterials. 2010;31:7978–7984. doi: 10.1016/j.biomaterials.2010.07.026. PubMed DOI PMC

Pritchard C.D., Arnér K.M., Neal R.A., Neeley W.L., Bojo P., Bachelder E., Holz J., Watson N., Botchwey E.A., Langer R.S. The use of surface modified poly (glycerol-co-sebacic acid) in retinal transplantation. Biomaterials. 2010;31:2153–2162. doi: 10.1016/j.biomaterials.2009.11.074. PubMed DOI PMC

Anderson J.M., Rodriguez A., Chang D.T. Foreign body reaction to biomaterials. Semin. Immunol. 2008;20:86–100. doi: 10.1016/j.smim.2007.11.004. PubMed DOI PMC

Garg K., Pullen N.A., Oskeritzian C.A., Ryan J.J., Bowlin G.L. Macrophage functional polarization (M1/M2) in response to varying fiber and pore dimensions of electrospun scaffolds. Biomaterials. 2013;34:4439–4451. doi: 10.1016/j.biomaterials.2013.02.065. PubMed DOI PMC

Wang K., Hou W.-D., Wang X., Han C., Vuletic I., Su N., Zhang W.-X., Ren Q.-S., Chen L., Luo Y. Overcoming foreign-body reaction through nanotopography: Biocompatibility and immunoisolation properties of a nanofibrous membrane. Biomaterials. 2016;102:249–258. doi: 10.1016/j.biomaterials.2016.06.028. PubMed DOI

Van Wijngaarden P., Qureshi S.H. Inhibitors of vascular endothelial growth factor (VEGF) in the management of neovascular age-related macular degeneration: A review of current practice. Clin. Exp. Optom. 2008;91:427–437. doi: 10.1111/j.1444-0938.2008.00305.x. PubMed DOI

Carrasquillo K.G., Ricker J.A., Rigas I.K., Miller J.W., Gragoudas E.S., Adamis A.P. Controlled delivery of the anti-VEGF aptamer EYE001 with poly(lactic-co-glycolic) acid microspheres. Investig. Opthalmol. Vis. Sci. 2003;44:290–299. doi: 10.1167/iovs.01-1156. PubMed DOI

Green W.R., Wilson D.J. Choroidal Neovascularization. Ophthalmology. 1986;93:1169–1176. doi: 10.1016/S0161-6420(86)33609-1. PubMed DOI

Del Priore L.V., Kaplan H.J., Silverman M.S., Valentino T., Mason G., Hornbeck R. Experimental and Surgical Aspects of Retinal Pigment Epithelial Cell Transplantation. Eur. J. Implant. Refract. Surg. 1993;5:128–132. doi: 10.1016/S0955-3681(13)80263-8. DOI

Christiansen A.T., Kiilgaard J.F., Smith M., Ejstrup R., Wnek G.E., Prause J.U., Young M.J., Klassen H., Kaplan H., de la Cour M.D. The Influence of Brightness on Functional Assessment by mfERG: A Study on Scaffolds Used in Retinal Cell Transplantation in Pigs. Stem Cells Int. 2012;2012:263264. doi: 10.1155/2012/263264. PubMed DOI PMC

Popelka Š., Studenovská H., Abelová L., Ardan T., Studený P., Straňák Z., Klíma J., Dvořánková B., Kotek J., Hodan J., et al. A frame-supported ultrathin electrospun polymer membrane for transplantation of retinal pigment epithelial cells. Biomed. Mater. 2015;10:045022. doi: 10.1088/1748-6041/10/4/045022. PubMed DOI

Tao S., Young C., Redenti S., Zhang Y., Klassen H., Desai T., Young M.J. Survival, migration and differentiation of retinal progenitor cells transplanted on micro-machined poly (methyl methacrylate) scaffolds to the subretinal space. Lab Chip. 2007;7:695–701. doi: 10.1039/b618583e. PubMed DOI

Wang Y., Kim Y.M., Langer R. In vivo degradation characteristics of poly (glycerol sebacate) J. Biomed. Mater. Res. 2003;66:192–197. doi: 10.1002/jbm.a.10534. PubMed DOI

Niklason L.E., Gao J., Abbott W.M., Hirschi K.K., Houser S., Marini R., Langer R. Functional Arteries Grown in Vitro. Science. 1999;284:489–493. doi: 10.1126/science.284.5413.489. PubMed DOI

Redenti S., Neeley W.L., Rompani S., Saigal S., Yang J., Klassen H., Langer R., Young M.J. Engineering retinal progenitor cell and scrollable poly(glycerol-sebacate) composites for expansion and subretinal transplantation. Biomaterials. 2009;30:3405–3414. doi: 10.1016/j.biomaterials.2009.02.046. PubMed DOI PMC

Wollensak G., Spoerl E. Biomechanical characteristics of retina. Retina. 2004;24:967–970. doi: 10.1097/00006982-200412000-00021. PubMed DOI

Zdrahala R.J. Small Caliber Vascular Grafts. Part II: Polyurethanes Revisited. J. Biomater. Appl. 1996;11:37–61. doi: 10.1177/088532829601100102. PubMed DOI

Martin D.J., Poole Warren L.A., Gunatillake P.A., McCarthy S.J., Meijs G.F., Schindhelm K. New methods for the assessment of in vitro and in vivo stress cracking in biomedical polyurethanes. Biomaterials. 2001;22:973–978. doi: 10.1016/S0142-9612(00)00262-3. PubMed DOI

How T.V., Annis D. Viscoelastic behavior of polyurethane vascular prostheses. J. Biomed. Mater. Res. 1987;21:1093–1108. doi: 10.1002/jbm.820210904. PubMed DOI

Da Silva G.R., Armando D.S.C., Saliba J.B., Berdugo M., Goldenberg B.T., Naud M.C., Ayres E., Oréfce R.L., Cohen F.B., Armando J.D.S.C. Polyurethanes as supports for human retinal pigment epithelium cell growth. Int. J. Artif. Organs. 2011;34:198–209. doi: 10.5301/IJAO.2011.6398. PubMed DOI

Da Silva G.R., da Silva-Cunha A., Vieira L.C., Silva L.M., Ayres E., Oréfice R.L., Fialho S.L., Saliba J.B., Behar-Cohen F., Da Silva-Cunha A. Montmorillonite clay based polyurethane nanocomposite as substrate for retinal pigment epithelial cell growth. J. Mater. Sci. Mater. Med. 2013;24:1309–1317. doi: 10.1007/s10856-013-4885-6. PubMed DOI

Von Recum H., Kikuchi A., Okuhara M., Sakurai Y., Okano T., Kim S.W. Retinal pigmented epithelium cultures on thermally responsive polymer porous substrates. J. Biomater. Sci. Polym. Ed. 1998;9:1241–1253. doi: 10.1163/156856298X00758. PubMed DOI

Fitzpatrick S.D., Mazumder M.A.J., Lasowski F., Fitzpatrick L., Sheardown H. PNIPAAm-Grafted-Collagen as an Injectable, In Situ Gelling, Bioactive Cell Delivery Scaffold. Biomacromolecules. 2010;11:2261–2267. doi: 10.1021/bm100299j. PubMed DOI

Grayson A.C., Voskerician G., Lynn A., Anderson J.M., Cima M.J., Langer R. Differential degradation rates in vivo and in vitro of biocompatible poly(lactic acid) and poly(glycolic acid) homo- and co-polymers for a polymeric drug-delivery microchip. J. Biomater. Sci. Polym. Ed. 2004;15:1281–1304. doi: 10.1163/1568562041959991. PubMed DOI

Christiansen A.T., Tao S.L., Smith M., Wnek G.E., Prause J.U., Young M.J., Klassen H., Kaplan H.J., La Cour M., Kiilgaard J.F. Subretinal Implantation of Electrospun, Short Nanowire, and Smooth Poly(ε-caprolactone) Scaffolds to the Subretinal Space of Porcine Eyes. Stem Cells Int. 2012;2012:454295. doi: 10.1155/2012/454295. PubMed DOI PMC

Tao S.L., Desai T.A. Aligned Arrays of Biodegradable Poly(ε-caprolactone) Nanowires and Nanofibers by Template Synthesis. Nano Lett. 2007;7:1463–1468. doi: 10.1021/nl0700346. PubMed DOI

Redenti S., Tao S., Yang J., Gu P., Klassen H., Saigal S., Desai T., Young M.J. Retinal tissue engineering using mouse retinal progenitor cells and a novel biodegradable, thin-film poly(e-caprolactone) nanowire scaffold. J. Ocul. Biol. Dis. Inform. 2008;1:19–29. doi: 10.1007/s12177-008-9005-3. PubMed DOI PMC

Chen H., Fan X., Xia J., Chen P., Zhou X., Huang J., Yu J., Gu P. Electrospun chitosan-graft-poly (ε-caprolactone)/poly (ε-caprolactone) nanofibrous scaffolds for retinal tissue engineering. Int. J. Nanomed. 2011;2011:453–461. doi: 10.2147/IJN.S17057. PubMed DOI PMC

Peng Y.-J., Lu Y.-T., Liu K.-S., Liu S.-J., Fan L., Huang W.-C. Biodegradable balloon-expandable self-locking polycaprolactone stents as buckling explants for the treatment of retinal detachment: An in vitro and in vivo study. J. Biomed. Mater. Res. Part A. 2013;101A:167–175. doi: 10.1002/jbm.a.34315. PubMed DOI

Liu Z., Yu N., Holz F.G., Yang F., Stanzel B.V. Enhancement of retinal pigment epithelial culture characteristics and subretinal space tolerance of scaffolds with 200 nm fiber topography. Biomaterials. 2014;35:2837–2850. doi: 10.1016/j.biomaterials.2013.12.069. PubMed DOI

McHugh K.J., Tao S.L., Saint-Geniez M. Porous Poly(ε-Caprolactone) Scaffolds for Retinal Pigment Epithelium Transplantation. Investig. Opthalmol. Vis. Sci. 2014;55:1754–1762. doi: 10.1167/iovs.13-12833. PubMed DOI PMC

Sorkio A., Hongisto H., Kaarniranta K., Uusitalo H., Juuti-Uusitalo K., Skottman H. Structure and Barrier Properties of Human Embryonic Stem Cell–Derived Retinal Pigment Epithelial Cells Are Affected by Extracellular Matrix Protein Coating. Tissue Eng. Part A. 2014;20:622–634. doi: 10.1089/ten.tea.2013.0049. PubMed DOI PMC

Lawley E., Baranov P., Young M. Hybrid vitronectin-mimicking polycaprolactone scaffolds for human retinal progenitor cell differentiation and transplantation. J. Biomater. Appl. 2015;29:894–902. doi: 10.1177/0885328214547751. PubMed DOI

Shahmoradi S., Yazdian F., Tabandeh F., Soheili Z.-S., Zarami A.S.H., Navaei-Nigjeh M. Controlled surface morphology and hydrophilicity of polycaprolactone toward human retinal pigment epithelium cells. Mater. Sci. Eng. C. 2017;73:300–309. doi: 10.1016/j.msec.2016.11.076. PubMed DOI

Nazemroaya F., Soheili Z., Samiei S., Deezagi A., Ahmadieh H., Davari M., Heidari R., Bagheri A., Darvishalipour-Astaneh S. Induced Retro-Differentiation of Human Retinal Pigment Epithelial Cells on PolyHEMA. J. Cell. Biochem. 2017;118:3080–3089. doi: 10.1002/jcb.26014. PubMed DOI

Lim J.-M., Byun S., Chung S., Park T.H., Seo J.-M., Joo C.-K., Cho D.-I. Retinal Pigment Epithelial Cell Behavior is Modulated by Alterations in Focal Cell–Substrate Contacts. Investig. Opthalmol. Vis. Sci. 2004;45:4210–4216. doi: 10.1167/iovs.03-1036. PubMed DOI

Krishna Y., Sheridan C.M., Kent D.L., Grierson I., Williams R.L. Polydimethylsiloxane as a substrate for retinal pigment epithelial cell growth. J. Biomed. Mater. Res. Part A. 2007;80:669–678. doi: 10.1002/jbm.a.30953. PubMed DOI

Tezel T.H., Del Priore L.V. Reattachment to a substrate prevents apoptosis of human retinal pigment epithelium. Graefe’s Arch. Clin. Exp. Ophthalmol. 1997;235:41–47. doi: 10.1007/BF01007836. PubMed DOI

Farrokh-Siar L., Rezai K.A., Patel S.C., Ernest J.T. HFRPE Attached to Cryo-Membrane Cryoprecipitate: An Autologous Substrate for Human Fetal Retinal Pigment Epithelium. Curr. Eye Res. 1999;19:89–94. doi: 10.1076/ceyr.19.2.89.5331. PubMed DOI

Guenther E., Tröger B., Schlosshauer B., Zrenner E. Long-term survival of retinal cell cultures on retinal implant materials. Vis. Res. 1999;39:3988–3994. doi: 10.1016/S0042-6989(99)00128-5. PubMed DOI

Wu H.-J., Li X.-X., Dong J.-Q., Pei W.-H., Chen H.-D. Effects of subretinal implant materials on the viability, apoptosis and barrier function of cultured RPE cells. Graefe’s Arch. Clin. Exp. Ophthalmol. 2006;245:135–142. doi: 10.1007/s00417-006-0296-4. PubMed DOI

Singh S., Woerly S., Mclaughlin B.J. Natural and artificial substrates for retinal pigment epithelial monolayer transplantation. Biomaterials. 2001;22:3337–3343. doi: 10.1016/S0142-9612(01)00171-5. PubMed DOI

Binder S., Stanzel B.V., Krebs I., Glittenberg C. Transplantation of the RPE in AMD. Prog. Retin. Eye Res. 2007;26:516–554. doi: 10.1016/j.preteyeres.2007.02.002. PubMed DOI

Hynes S.R., Lavik E.B. A tissue-engineered approach towards retinal repair: Scaffolds for cell transplantation to the subretinal space. Graefe’s Arch. Clin. Exp. Ophthalmol. 2010;248:763–778. doi: 10.1007/s00417-009-1263-7. PubMed DOI

Grueterich M. Human Limbal Progenitor Cells Expanded on Intact Amniotic Membrane Ex Vivo. Arch. Ophthalmol. 2002;120:783–790. doi: 10.1001/archopht.120.6.783. PubMed DOI

Capeáns C., Pineiro-Ces A., Pardo M., Sueiro-López C., Blanco M.J., Domínguez F., Sánchez-Salorio M. Amniotic membrane as support for human retinal pigment epithelium (RPE) cell growth. Acta Ophthalmol. Scand. 2003;81:271–277. doi: 10.1034/j.1600-0420.2003.00076.x. PubMed DOI

Shimazaki J., Aiba M., Goto E., Kato N., Shimmura S., Tsubota K. Transplantation of human limbal epithelium cultivated on amniotic membrane for the treatment of severe ocular surface disorders. Ophthalmology. 2002;109:1285–1290. doi: 10.1016/S0161-6420(02)01089-8. PubMed DOI

Schwartz S.D., Regillo C.D., Lam B.L., Eliott D., Rosenfeld P.J., Gregori N.Z., Hubschman J.-P., Davis J.L., Heilwell G., Spirn M., et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: Follow-up of two open-label phase 1/2 studies. Lancet. 2015;385:509–516. doi: 10.1016/S0140-6736(14)61376-3. PubMed DOI

Kiilgaard J.F., Scherfig E., Prause J.U., de la Cour M.D. Transplantation of Amniotic Membrane to the Subretinal Space in Pigs. Stem Cells Int. 2012;2012:716968. doi: 10.1155/2012/716968. PubMed DOI PMC

Curcio C.A., Johnson M. Structure, Function, and Pathology of Bruch’s Membrane. Retina. 2013;1:466–481. doi: 10.1016/B978-1-4557-0737-9.00020-5. DOI

Sugino I.K., Sun Q., Cheewatrakoolpong N., Malcuit C., Zarbin M.A. Biochemical Restoration of Aged Human Bruch’s Membrane: Experimental Studies to Improve Retinal Pigment Epithelium Transplant Survival and Differentiation. Cell Based Ther. Retin. Degener. Dis. 2014;53:133–142. doi: 10.1159/000358531. PubMed DOI

Moreira E.F., Cai H., Tezel T.H., Fields M.A., Del Priore L.V. Reengineering Human Bruch’s Membrane Increases Rod Outer Segment Phagocytosis by Human Retinal Pigment Epithelium. Transl. Vis. Sci. Technol. 2015;4:10. doi: 10.1167/tvst.4.5.10. PubMed DOI PMC

Phillips S.J., Sadda S.R., Tso M.O.M., Humayan M.S., De Juan E., Binder S. Autologous transplantation of retinal pigment epithelium after mechanical debridement of Bruch’s membrane. Curr. Eye Res. 2003;26:81–88. doi: 10.1076/ceyr.26.2.81.14508. PubMed DOI

Wang H., Ninomiya Y., Sugino I.K., Zarbin M.A. Retinal Pigment Epithelium Wound Healing in Human Bruch’s Membrane Explants. Investig. Opthalmol. Vis. Sci. 2003;44:2199–2210. doi: 10.1167/iovs.02-0435. PubMed DOI

Hartmann U., Sistani F., Steinhorst U.H. Human and porcine anterior lens capsule as support for growing and grafting retinal pigment epithelium and iris pigment epithelium. Graefe’s Arch. Clin. Exp. Ophthalmol. 1999;237:940–945. doi: 10.1007/s004170050390. PubMed DOI

Nicolini J., Kiilgaard J.F., Wiencke A.K., Heegaard S., Scherfig E., Prause J.U., de la Cour M.D. The anterior lens capsule used as support material in RPE cell-transplantation. Acta Ophthalmol. Scand. 2000;78:527–531. doi: 10.1034/j.1600-0420.2000.078005527.x. PubMed DOI

Lee C.J., Huie P., Leng T., Peterman M.C., Marmor M.F., Blumenkranz M.S., Bent S.F., Fishman H.A. Microcontact Printing on Human Tissue for Retinal Cell Transplantation. Arch. Ophthalmol. 2002;120:1714–1718. doi: 10.1001/archopht.120.12.1714. PubMed DOI

Lee C.J., Fishman H.A., Bent S.F. Spatial cues for the enhancement of retinal pigment epithelial cell function in potential transplants. Biomaterials. 2007;28:2192–2201. doi: 10.1016/j.biomaterials.2007.01.018. PubMed DOI

Ben M’Barek K., Monville C. Cell Therapy for Retinal Dystrophies: From Cell Suspension Formulation to Complex Retinal Tissue Bioengineering. Stem Cells Int. 2019;2019:4568979. doi: 10.1155/2019/4568979. PubMed DOI PMC

Gater R. Development of Better Treatments for Retinal Disease Using Stem Cell Therapies. Int. J. Stem Cell Res. Ther. 2016;3:32. doi: 10.23937/2469-570X/1410032. DOI

Zarbin M. The promise of stem cells for age-related macular degeneration and other retinal degenerative diseases. Drug Discov. Today Ther. Strat. 2012;10:e25–e33. doi: 10.1016/j.ddstr.2012.08.001. DOI

Pera M.F., Reubinoff B., Trounson A. Human Embryonic Stem Cells. J. Cell Sci. 2000;113:5–10. doi: 10.1242/jcs.113.1.5. PubMed DOI

Klassen H., Sakaguchi D.S., Young M.J. Stem cells and retinal repair. Prog. Retin. Eye Res. 2004;23:149–181. doi: 10.1016/j.preteyeres.2004.01.002. PubMed DOI

Teotia P., Mir Q., Ahmad I. Chemically Defined and Retinal Conditioned Medium-Based Directed Differentiation of Embryonic Stem and Induced Pluripotent Stem Cells into Retinal Ganglion Cells. Investig. Ophthalmol. Vis. Sci. 2015;56:3606.

Lamba D.A., Gust J., Reh T.A. Transplantation of Human Embryonic Stem Cell-Derived Photoreceptors Restores Some Visual Function in Crx-Deficient Mice. Cell Stem Cell. 2009;4:73–79. doi: 10.1016/j.stem.2008.10.015. PubMed DOI PMC

Stern J.H., Temple S. Stem Cells for Retinal Replacement Therapy. Neurotherapeutics. 2011;8:736–743. doi: 10.1007/s13311-011-0077-6. PubMed DOI PMC

Reynolds J., Lamba D.A. Human embryonic stem cell applications for retinal degenerations. Exp. Eye Res. 2014;123:151–160. doi: 10.1016/j.exer.2013.07.010. PubMed DOI

Bongso A., Fong C.-Y., Gauthaman K. Taking stem cells to the clinic: Major challenges. J. Cell. Biochem. 2008;105:1352–1360. doi: 10.1002/jcb.21957. PubMed DOI

Venugopalan P., Wang Y., Nguyen T., Huang A., Muller K.J., Goldberg J.L. Transplanted neurons integrate into adult retinas and respond to light. Nat. Commun. 2016;7:10472. doi: 10.1038/ncomms10472. PubMed DOI PMC

Aramant R. Progress in retinal sheet transplantation. Prog. Retin. Eye Res. 2004;23:475–494. doi: 10.1016/j.preteyeres.2004.05.003. PubMed DOI

Radtke N.D., Aramant R.B., Petry H.M., Green P.T., Pidwell D.J., Seiler M.J. Vision Improvement in Retinal Degeneration Patients by Implantation of Retina Together with Retinal Pigment Epithelium. Am. J. Ophthalmol. 2008;146:172–182.e1. doi: 10.1016/j.ajo.2008.04.009. PubMed DOI

Aramant R.B., Seiler M.J., Ball S.L. Successful Cotransplantation of Intact Sheets of Fetal Retina with Retinal Pigment Epithelium. Investig. Ophthalmol. Vis. Sci. 1999;40:1557–1564. PubMed

Tansley K. The formation of rosettes in the rat retina. Br. J. Ophthalmol. 1933;17:321–336. doi: 10.1136/bjo.17.6.321. PubMed DOI PMC

Caplan A.I. Mesenchymal stem cells. J. Orthop. Res. 1991;9:641–650. doi: 10.1002/jor.1100090504. PubMed DOI

Luo J., Baranov P., Patel S., Ouyang H., Quach J., Wu F., Qiu A., Luo H., Hicks C., Zeng J., et al. Human Retinal Progenitor Cell Transplantation Preserves Vision. J. Biol. Chem. 2014;289:6362–6371. doi: 10.1074/jbc.M113.513713. PubMed DOI PMC

ReNeuron Phase I/II Clinical Trial in Retinitis Pigmentosa. [(accessed on 8 July 2021)]; Available online: https://www.reneuron.com/media-list/?categories=trial-rp-iii.

ReNeuron Group First Patient Treated in RP Clinical Trial. [(accessed on 8 July 2021)];2016 Available online: http://www.reneuron.com/news-list/reneuron-announces-first-patient-treated-in-us-phase-iii-clinical-trial-in-blindness-causing-disease-retinitis-pigmentosa/

Gage F.H. Mammalian Neural Stem Cells. Science. 2000;287:1433–1438. doi: 10.1126/science.287.5457.1433. PubMed DOI

Wang S., Girman S., Lu B., Bischoff N., Holmes T., Shearer R., Wright L.S., Svendsen C.N., Gamm D.M., Lund R.D. Long-term Vision Rescue by Human Neural Progenitors in a Rat Model of Photoreceptor Degeneration. Investig. Opthalmol. Vis. Sci. 2008;49:3201–3206. doi: 10.1167/iovs.08-1831. PubMed DOI PMC

Young M.J., Ray J., Whiteley S.J.O., Klassen H., Gage F.H. Neuronal Differentiation and Morphological Integration of Hippocampal Progenitor Cells Transplanted to the Retina of Immature and Mature Dystrophic Rats. Mol. Cell. Neurosci. 2000;16:197–205. doi: 10.1006/mcne.2000.0869. PubMed DOI

Mizumoto H., Mizumoto K., Shatos M.A., Klassen H., Young M.J. Retinal transplantation of neural progenitor cells derived from the brain of GFP transgenic mice. Vis. Res. 2003;43:1699–1708. doi: 10.1016/S0042-6989(03)00235-9. PubMed DOI

García-Bermúdez M.Y., Freude K.K., Mouhammad Z.A., van Wijngaarden P., Martin K.K., Kolko M. Glial Cells in Glaucoma: Friends, Foes, and Potential Therapeutic Targets. Front. Neurol. 2021;12 doi: 10.3389/fneur.2021.624983. PubMed DOI PMC

Nicoară S.D., Șușman S., Tudoran O., Bărbos O., Cherecheș G., Aștilean S., Potara M., Sorițău O. Novel Strategies for the Improvement of Stem Cells’ Transplantation in Degenerative Retinal Diseases. Stem Cells Int. 2016;2016:1236721. doi: 10.1155/2016/1236721. PubMed DOI PMC

MacLaren R.E., Pearson R.A., MacNeil A., Douglas R.H., Salt T.E., Akimoto M., Swaroop A., Sowden J.C., Ali R.R. Retinal repair by transplantation of photoreceptor precursors. Nature. 2006;444:203–207. doi: 10.1038/nature05161. PubMed DOI

Djojosubroto M.W., Arsenijevic Y. Retinal stem cells: Promising candidates for retina transplantation. Cell Tissue Res. 2008;331:347–357. doi: 10.1007/s00441-007-0501-8. PubMed DOI

MacLaren R.E., Pearson R.A. Stem cell therapy and the retina. Eye. 2007;21:1352–1359. doi: 10.1038/sj.eye.6702842. PubMed DOI

Xu W., Xu G.-X. Mesenchymal stem cells for retinal diseases. Int. J. Ophthalmol. 2011;4:413–421. doi: 10.3980/j.issn.2222-3959.2011.04.19. PubMed DOI PMC

Kicic A., Shen W.-Y., Wilson A.S., Constable I.J., Robertson T., Rakoczy P.E. Differentiation of Marrow Stromal Cells into Photoreceptors in the Rat Eye. J. Neurosci. 2003;23:7742–7749. doi: 10.1523/JNEUROSCI.23-21-07742.2003. PubMed DOI PMC

Inoue Y., Iriyama A., Ueno S., Takahashi H., Kondo M., Tamaki Y., Araie M., Yanagi Y. Subretinal transplantation of bone marrow mesenchymal stem cells delay retinal degeneration in the RCS rat model of retinal degeneration. Exp. Eye Res. 2007;85:234–241. doi: 10.1016/j.exer.2007.04.007. PubMed DOI

Machalinska A., Kawa M., Pius-Sadowska E., Stepniewski J., Nowak W., Roginska D., Kaczynska K., Baumert B., Wiszniewska B., Józkowicz A., et al. Long-Term Neuroprotective Effects of NT-4–Engineered Mesenchymal Stem Cells Injected Intravitreally in a Mouse Model of Acute Retinal Injury. Investig. Opthalmol. Vis. Sci. 2013;54:8292–8305. doi: 10.1167/iovs.13-12221. PubMed DOI

Kokkinaki M., Sahibzada N., Golestaneh N. Human Induced Pluripotent Stem-Derived Retinal Pigment Epithelium (RPE) Cells Exhibit Ion Transport, Membrane Potential, Polarized Vascular Endothelial Growth Factor Secretion, and Gene Expression Pattern Similar to Native RPE. Stem Cells. 2011;29:825–835. doi: 10.1002/stem.635. PubMed DOI PMC

Schwartz S.D., Hubschman J.-P., Heilwell G., Franco-Cardenas V., Pan C.K., Ostrick R.M., Mickunas E., Gay R., Klimanskaya I., Lanza R. Embryonic stem cell trials for macular degeneration: A preliminary report. Lancet. 2012;379:713–720. doi: 10.1016/S0140-6736(12)60028-2. PubMed DOI

Van Meurs J.C., Ter Averst E., Hofland L.J., Van Hagen P.M., Mooy C.M., Baarsma G.S., Kuijpers R.W., Boks T., Stalmans P. Autologous peripheral retinal pigment epithelium translocation in patients with subfoveal neovascular membranes. Br. J. Ophthalmol. 2004;88:110–113. doi: 10.1136/bjo.88.1.110. PubMed DOI PMC

Rezai K.A., Lappas A., Kohen L., Wiedemann P., Heimann K. Comparison of tight junction permeability for albumin in iris pigment epithelium and retinal pigment epithelium in vitro. Graefe’s Arch. Clin. Exp. Ophthalmol. 1997;235:48–55. doi: 10.1007/BF01007837. PubMed DOI

Sheng Y., Gouras P., Cao H., Berglin L., Kjeldbye H., Lopez R., Rosskothen H. Patch Transplants of Human Fetal Retinal Pigment Epithelium in Rabbit and Monkey Retina. Investig. Ophthalmol. Vis. Sci. 1995;36:381–390. PubMed

Gir P., Oni G., Brown S.A., Mojallal A., Rohrich R.J. Human Adipose Stem Cells. Plast. Reconstr. Surg. 2012;129:1277–1290. doi: 10.1097/PRS.0b013e31824ecae6. PubMed DOI

Haddad-Mashadrizeh A., Bahrami A.R., Matin M.M., Edalatmanesh M.A., Zomorodipour A., Gardaneh M., Farshchian M., Momeni-Moghaddam M. Human adipose-derived mesenchymal stem cells can survive and integrate into the adult rat eye following xenotransplantation. Xenotransplantation. 2013;20:165–176. doi: 10.1111/xen.12033. PubMed DOI

Margalit E., Maia M., Weiland J.D., Greenberg R.J., Fujii G.Y., Torres G., Piyathaisere D.V., O’Hearn T.M., Liu W., Lazzi G., et al. Retinal Prosthesis for the Blind. Surv. Ophthalmol. 2002;47:335–356. doi: 10.1016/S0039-6257(02)00311-9. PubMed DOI

Chen K., Rowley A.P., Weiland J.D. Elastic properties of porcine ocular posterior soft tissues. J. Biomed. Mater. Res. Part A. 2010;93A:634–645. doi: 10.1002/jbm.a.32571. PubMed DOI

Lötters J.C., Olthuis W., Veltink P.H., Bergveld P. The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications. J. Micromech. Microeng. 1997;7:145–147. doi: 10.1088/0960-1317/7/3/017. DOI

Ghosh M.K., Mittal K.L. Polyimides-Fundamentals-and-Applications. Dekker; New York, NY, USA: 1996.

Kazemi M., Basham E., Sivaprakasam M., Wang G., Rodger D., Weiland J., Tai Y.C., Liu W., Humayun M. A Test Microchip for Evaluation of Hermetic Packaging Technology for Biomedical Prosthetic Implants; Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; San Francisco, CA, USA. 1–5 September 2004. PubMed

Montezuma S.R., Loewenstein J., Scholz C., Rizzo J.F. Biocompatibility of Materials Implanted into the Subretinal Space of Yucatan Pigs. Investig. Opthalmol. Vis. Sci. 2006;47:3514–3522. doi: 10.1167/iovs.06-0106. PubMed DOI

Weiland J.D., Humayun M.S. Retinal Prosthesis. IEEE Trans. Biomed. Eng. 2014;61:1412–1424. doi: 10.1109/TBME.2014.2314733. PubMed DOI PMC

Scholz C. Perspectives on: Materials Aspects for Retinal Prostheses. J. Bioact. Compat. Polym. 2007;22:539–568. doi: 10.1177/0883911507082160. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...