A New Approach to the Structure-Properties Relationships Determination for Porous Filled Reinforced Materials
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FCH-S-22-8012
Brno University of Technology
PubMed
36297967
PubMed Central
PMC9608482
DOI
10.3390/polym14204390
PII: polym14204390
Knihovny.cz E-zdroje
- Klíčová slova
- composite, porosity, reinforcement, tensile modulus, tensile strength,
- Publikační typ
- časopisecké články MeSH
This study describes a new mathematical approach to the relationship between mechanical properties (tensile modulus, ultimate strength, and strain), composition as well as structure of porous-filled reinforced composites. The composite system consisted of a polyurethane matrix, a rubber filler, and a small amount of polyethylene terephthalate as a reinforcement. The newly proposed equations are based on a special mixing rule with the same basic form for all studied properties. The mixing rule contains a correction parameter η, which differs in different filler content in the filled part of the composite. Here, a cubic exponential function including the product of suitable structural parameters and exponents ensuring the best fitting and describable by matrix properties were successfully defined to fit the different values of correction parameter. The proposed equations should be a suitable step to obtain a relationship for describing the mechanical behavior of porous-filled and reinforced composites in the case of a small amount of reinforcement.
Zobrazit více v PubMed
Chyliński F., Michalik A., Kozicki M. Effectiveness of Curing Compounds for Concrete. Materials. 2022;15:2699. doi: 10.3390/ma15072699. PubMed DOI PMC
Dojka M., Stawarz M. Bifilm Defects in Ti-Inoculated Chromium White Cast Iron. Materials. 2020;13:3124. doi: 10.3390/ma13143124. PubMed DOI PMC
Amer A.A.R., Abdullah M.M.A.B., Liew Y.M., Aziz I.H., Wysłocki J.J., Tahir M.F.M., Sochacki W., Garus S., Gondro J., Amer H.A.R. Optimizing of the Cementitious Composite Matrix by Addition of Steel Wool Fibers (Chopped) Based on Physical and Mechanical Analysis. Materials. 2021;14:1094. doi: 10.3390/ma14051094. PubMed DOI PMC
Choren J.A., Heinrich S.M., Silver-Thorn M.B. Young’s modulus and volume porosity relationships for additive manufacturing applications. J. Mater. Sci. 2013;48:5103–5112. doi: 10.1007/s10853-013-7237-5. DOI
Lian C., Zhuge Y., Beecham S. The relationship between porosity and strength for porous concrete, Constr. Build. Mater. 2011;25:4294–4298. doi: 10.1016/j.conbuildmat.2011.05.005. DOI
Krzesinska M. Influence of the raw material on the pore structure and elastic properties of compressed expanded graphite blocks. Mater. Chem. Phys. 2004;87:336–344. doi: 10.1016/j.matchemphys.2004.05.030. DOI
Phani K.K., Mukerjee R.N. Elastic properties of porous thermosetting polymers. J. Mater. Sci. 1987;22:3453–3458. doi: 10.1007/BF01161441. DOI
Phani K.K., Niyogi S.K. Elastic modulus-porosity relationship for Si3N4. J. Mater. Sci. Lett. 1987;6:511–515. doi: 10.1007/BF01739269. DOI
Phani K.K., Niyogi S.K. Young’s modulus of porous brittle solids. J. Mater. Sci. 1987;22:257–263. doi: 10.1007/BF01160581. DOI
Wagh A.S., Poeppel R.B., Singh J.P. Open pore description of mechanical properties of ceramics. J. Mater. Sci. 1991;26:3862–3868. doi: 10.1007/BF01184983. DOI
Zhang L., Gao K., Elias A., Dong Z., Chen W. Porosity dependence of elastic modulus of porous Cr3C2 ceramics. Ceram. Int. 2014;40:191–198. doi: 10.1016/j.ceramint.2013.05.122. DOI
Ignatova A.V., Sapozhnikov S.B., Dolganina N.Y. Development of microstructural and voxel based models of deformation and failure of the porous ceramics for assessment of ballistic performance. Int. J. Mech. Sci. 2017;131:672–682. doi: 10.1016/j.ijmecsci.2017.07.036. DOI
Dean E.A., Lopez J.A. Empirical Dependence of Elastic Moduli on Porosity for Ceramic Materials. J. Am. Ceram. Soc. 1983;66:366–370. doi: 10.1111/j.1151-2916.1983.tb10051.x. DOI
Xie F., He X.M., Yu J., Wu M., He X.B., Qu X. Fabrication and characterization of porous Ti–4Mo alloy for biomedical applications. J. Porous Mat. 2016;23:783–790. doi: 10.1007/s10934-016-0133-z. DOI
Xie F., He X.M., Ji X., Wu M., He X.B., Qu X.H. Structural characterisation and mechanical behaviour of porous Ti-7.5Mo alloy fabricated by selective laser sintering for biomedical applications. Mater. Technol. 2017;32:219–224. doi: 10.1080/10667857.2016.1173169. DOI
Fey T., Stumpf M., Chmielarz A., Colombo P., Greil P., Potoczek M. Microstructure, thermal conductivity and simulation of elastic modulus of MAX-phase (Ti2AlC) gel-cast foams. J. Eur. Ceram. Soc. 2018;38:3424–3432. doi: 10.1016/j.jeurceramsoc.2018.04.012. DOI
Smolin I.Y., Eremin M.O., Makarov P.V., Evtushenko E.P., Kulkov S.N., Buyakova S.P. Brittle Porous Material Mesovolume Structure Models and Simulation of their Mechanical Properties. Int. Conf. Phys. Mesomech. Multilevel Syst. 2014;1623:595–598. doi: 10.1063/1.4899015. DOI
Ryshkewitch E. Compression Strength of Porous Sintered Alumina and Zirconia. 9. To ceramography. J. Am. Ceram. Soc. 1953;36:65–68. doi: 10.1111/j.1151-2916.1953.tb12837.x. DOI
Chen Y., Xu Y.F. Compressive Strength of Fractal-Textured Foamed Concrete. Fractals. 2019;27:1940003. doi: 10.1142/S0218348X19400036. DOI
Bruck H.A., Rabin B.H. Evaluating microstructural and damage effects in rule-of-mixtures predictions of the mechanical properties of Ni-Al2O3 composites. J. Mater. Sci. 1999;34:2241–2251. doi: 10.1023/A:1004509220648. DOI
Chao X.J., Tian W.L., Xu F., Shou D.H. A fractal model of effective mechanical properties of porous composites. Compos. Sci. Technol. 2021;213:108957. doi: 10.1016/j.compscitech.2021.108957. DOI
Khoroshun L.P., Shikula E.N. Nonlinear Straining of Porous Composite Materials. Int. Appl. Mech. 1993;29:983–988. doi: 10.1007/BF00862495. DOI
Choi H.K., Son M.J., Shin E.S., Yu J. Prediction of thermos-poro-elastic properties of porous composites using an expanded unmixing-mixing model. Compos. Struct. 2018;188:387–393. doi: 10.1016/j.compstruct.2018.01.003. DOI
Chan C., Naguib H.E. Development and Characterization of Polypyrrole-Polylactide Conductive Open-Porous Composites. J. Appl. Polym. Sci. 2010;117:3187–3195. doi: 10.1002/app.32197. DOI
Tran A.T., Le Quang H., He Q.-C. Computation of the size-dependent elastic moduli of nano-fibrous and nano-porous composites by FFT. Compos. Sci. Technol. 2016;135:159–171. doi: 10.1016/j.compscitech.2016.09.012. DOI
Katsube N., Wu Y.N. A constitutive theory for porous composite materials. Int. J. Solids Struct. 1998;35:4587–4596. doi: 10.1016/S0020-7683(98)00085-7. DOI
Xu H., Li Q. Effect of carbon nanofiber concentration on mechanical properties of porous magnesium composites: Experimental and theoretical analysis. Mater. Sci. Eng. A. 2017;706:249–255. doi: 10.1016/j.msea.2017.09.024. DOI
Odhiambo J.O., Yoshida M., Otsu A., Yi L.-F., Onda T., Chen Z.-C. Microstructure and tensile properties of in-situ synthesized and hot-extruded aluminum-matrix composites reinforced with hybrid submicron-sized ceramic particles. J. Compos. Mater. 2022;56:1987–2001. doi: 10.1177/00219983221087334. DOI
Poh L., Della C., Ying S., Goh C., Li Y. Micromechanics model for predicting effective elastic moduli of porous ceramic matrices with randomly oriented carbon nanotube reinforcements. AIP Adv. 2015;5:097153. doi: 10.1063/1.4931453. DOI
Alam P. A mixtures model for porous particle-polymer composites. Mech. Res. Commun. 2010;37:389–393. doi: 10.1016/j.mechrescom.2010.04.002. DOI
Cerny M., Jancar J. Composites based on polyurethane-urea and ground rubber from car tyres: Relation between structure and properties. Chem. Pap. 2017;71:1119–1127. doi: 10.1007/s11696-016-0060-0. DOI
Cerny M., Petrus J., Kucera F., Pavlinakova V., Kupka V., Polacek P., Chamradova I. A new approach to the structure-properties relationship evaluation for porous polymer composites. SN App. Sci. 2020;2:640. doi: 10.1007/s42452-020-2479-8. DOI
Lee C.H., Khalina A., Lee S.H. Importance of Interfacial Adhesion Condition on Characterization of Plant-Fiber-Reinforced Polymer Composites: A Review. Polymers. 2021;13:438. doi: 10.3390/polym13030438. PubMed DOI PMC