A New Approach to the Structure-Properties Relationships Determination for Porous Filled Reinforced Materials

. 2022 Oct 18 ; 14 (20) : . [epub] 20221018

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36297967

Grantová podpora
FCH-S-22-8012 Brno University of Technology

This study describes a new mathematical approach to the relationship between mechanical properties (tensile modulus, ultimate strength, and strain), composition as well as structure of porous-filled reinforced composites. The composite system consisted of a polyurethane matrix, a rubber filler, and a small amount of polyethylene terephthalate as a reinforcement. The newly proposed equations are based on a special mixing rule with the same basic form for all studied properties. The mixing rule contains a correction parameter η, which differs in different filler content in the filled part of the composite. Here, a cubic exponential function including the product of suitable structural parameters and exponents ensuring the best fitting and describable by matrix properties were successfully defined to fit the different values of correction parameter. The proposed equations should be a suitable step to obtain a relationship for describing the mechanical behavior of porous-filled and reinforced composites in the case of a small amount of reinforcement.

Zobrazit více v PubMed

Chyliński F., Michalik A., Kozicki M. Effectiveness of Curing Compounds for Concrete. Materials. 2022;15:2699. doi: 10.3390/ma15072699. PubMed DOI PMC

Dojka M., Stawarz M. Bifilm Defects in Ti-Inoculated Chromium White Cast Iron. Materials. 2020;13:3124. doi: 10.3390/ma13143124. PubMed DOI PMC

Amer A.A.R., Abdullah M.M.A.B., Liew Y.M., Aziz I.H., Wysłocki J.J., Tahir M.F.M., Sochacki W., Garus S., Gondro J., Amer H.A.R. Optimizing of the Cementitious Composite Matrix by Addition of Steel Wool Fibers (Chopped) Based on Physical and Mechanical Analysis. Materials. 2021;14:1094. doi: 10.3390/ma14051094. PubMed DOI PMC

Choren J.A., Heinrich S.M., Silver-Thorn M.B. Young’s modulus and volume porosity relationships for additive manufacturing applications. J. Mater. Sci. 2013;48:5103–5112. doi: 10.1007/s10853-013-7237-5. DOI

Lian C., Zhuge Y., Beecham S. The relationship between porosity and strength for porous concrete, Constr. Build. Mater. 2011;25:4294–4298. doi: 10.1016/j.conbuildmat.2011.05.005. DOI

Krzesinska M. Influence of the raw material on the pore structure and elastic properties of compressed expanded graphite blocks. Mater. Chem. Phys. 2004;87:336–344. doi: 10.1016/j.matchemphys.2004.05.030. DOI

Phani K.K., Mukerjee R.N. Elastic properties of porous thermosetting polymers. J. Mater. Sci. 1987;22:3453–3458. doi: 10.1007/BF01161441. DOI

Phani K.K., Niyogi S.K. Elastic modulus-porosity relationship for Si3N4. J. Mater. Sci. Lett. 1987;6:511–515. doi: 10.1007/BF01739269. DOI

Phani K.K., Niyogi S.K. Young’s modulus of porous brittle solids. J. Mater. Sci. 1987;22:257–263. doi: 10.1007/BF01160581. DOI

Wagh A.S., Poeppel R.B., Singh J.P. Open pore description of mechanical properties of ceramics. J. Mater. Sci. 1991;26:3862–3868. doi: 10.1007/BF01184983. DOI

Zhang L., Gao K., Elias A., Dong Z., Chen W. Porosity dependence of elastic modulus of porous Cr3C2 ceramics. Ceram. Int. 2014;40:191–198. doi: 10.1016/j.ceramint.2013.05.122. DOI

Ignatova A.V., Sapozhnikov S.B., Dolganina N.Y. Development of microstructural and voxel based models of deformation and failure of the porous ceramics for assessment of ballistic performance. Int. J. Mech. Sci. 2017;131:672–682. doi: 10.1016/j.ijmecsci.2017.07.036. DOI

Dean E.A., Lopez J.A. Empirical Dependence of Elastic Moduli on Porosity for Ceramic Materials. J. Am. Ceram. Soc. 1983;66:366–370. doi: 10.1111/j.1151-2916.1983.tb10051.x. DOI

Xie F., He X.M., Yu J., Wu M., He X.B., Qu X. Fabrication and characterization of porous Ti–4Mo alloy for biomedical applications. J. Porous Mat. 2016;23:783–790. doi: 10.1007/s10934-016-0133-z. DOI

Xie F., He X.M., Ji X., Wu M., He X.B., Qu X.H. Structural characterisation and mechanical behaviour of porous Ti-7.5Mo alloy fabricated by selective laser sintering for biomedical applications. Mater. Technol. 2017;32:219–224. doi: 10.1080/10667857.2016.1173169. DOI

Fey T., Stumpf M., Chmielarz A., Colombo P., Greil P., Potoczek M. Microstructure, thermal conductivity and simulation of elastic modulus of MAX-phase (Ti2AlC) gel-cast foams. J. Eur. Ceram. Soc. 2018;38:3424–3432. doi: 10.1016/j.jeurceramsoc.2018.04.012. DOI

Smolin I.Y., Eremin M.O., Makarov P.V., Evtushenko E.P., Kulkov S.N., Buyakova S.P. Brittle Porous Material Mesovolume Structure Models and Simulation of their Mechanical Properties. Int. Conf. Phys. Mesomech. Multilevel Syst. 2014;1623:595–598. doi: 10.1063/1.4899015. DOI

Ryshkewitch E. Compression Strength of Porous Sintered Alumina and Zirconia. 9. To ceramography. J. Am. Ceram. Soc. 1953;36:65–68. doi: 10.1111/j.1151-2916.1953.tb12837.x. DOI

Chen Y., Xu Y.F. Compressive Strength of Fractal-Textured Foamed Concrete. Fractals. 2019;27:1940003. doi: 10.1142/S0218348X19400036. DOI

Bruck H.A., Rabin B.H. Evaluating microstructural and damage effects in rule-of-mixtures predictions of the mechanical properties of Ni-Al2O3 composites. J. Mater. Sci. 1999;34:2241–2251. doi: 10.1023/A:1004509220648. DOI

Chao X.J., Tian W.L., Xu F., Shou D.H. A fractal model of effective mechanical properties of porous composites. Compos. Sci. Technol. 2021;213:108957. doi: 10.1016/j.compscitech.2021.108957. DOI

Khoroshun L.P., Shikula E.N. Nonlinear Straining of Porous Composite Materials. Int. Appl. Mech. 1993;29:983–988. doi: 10.1007/BF00862495. DOI

Choi H.K., Son M.J., Shin E.S., Yu J. Prediction of thermos-poro-elastic properties of porous composites using an expanded unmixing-mixing model. Compos. Struct. 2018;188:387–393. doi: 10.1016/j.compstruct.2018.01.003. DOI

Chan C., Naguib H.E. Development and Characterization of Polypyrrole-Polylactide Conductive Open-Porous Composites. J. Appl. Polym. Sci. 2010;117:3187–3195. doi: 10.1002/app.32197. DOI

Tran A.T., Le Quang H., He Q.-C. Computation of the size-dependent elastic moduli of nano-fibrous and nano-porous composites by FFT. Compos. Sci. Technol. 2016;135:159–171. doi: 10.1016/j.compscitech.2016.09.012. DOI

Katsube N., Wu Y.N. A constitutive theory for porous composite materials. Int. J. Solids Struct. 1998;35:4587–4596. doi: 10.1016/S0020-7683(98)00085-7. DOI

Xu H., Li Q. Effect of carbon nanofiber concentration on mechanical properties of porous magnesium composites: Experimental and theoretical analysis. Mater. Sci. Eng. A. 2017;706:249–255. doi: 10.1016/j.msea.2017.09.024. DOI

Odhiambo J.O., Yoshida M., Otsu A., Yi L.-F., Onda T., Chen Z.-C. Microstructure and tensile properties of in-situ synthesized and hot-extruded aluminum-matrix composites reinforced with hybrid submicron-sized ceramic particles. J. Compos. Mater. 2022;56:1987–2001. doi: 10.1177/00219983221087334. DOI

Poh L., Della C., Ying S., Goh C., Li Y. Micromechanics model for predicting effective elastic moduli of porous ceramic matrices with randomly oriented carbon nanotube reinforcements. AIP Adv. 2015;5:097153. doi: 10.1063/1.4931453. DOI

Alam P. A mixtures model for porous particle-polymer composites. Mech. Res. Commun. 2010;37:389–393. doi: 10.1016/j.mechrescom.2010.04.002. DOI

Cerny M., Jancar J. Composites based on polyurethane-urea and ground rubber from car tyres: Relation between structure and properties. Chem. Pap. 2017;71:1119–1127. doi: 10.1007/s11696-016-0060-0. DOI

Cerny M., Petrus J., Kucera F., Pavlinakova V., Kupka V., Polacek P., Chamradova I. A new approach to the structure-properties relationship evaluation for porous polymer composites. SN App. Sci. 2020;2:640. doi: 10.1007/s42452-020-2479-8. DOI

Lee C.H., Khalina A., Lee S.H. Importance of Interfacial Adhesion Condition on Characterization of Plant-Fiber-Reinforced Polymer Composites: A Review. Polymers. 2021;13:438. doi: 10.3390/polym13030438. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...