The Role of the Oral Microbiota in the Etiopathogenesis of Oral Squamous Cell Carcinoma

. 2021 Jul 21 ; 9 (8) : . [epub] 20210721

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34442627
Odkazy

PubMed 34442627
PubMed Central PMC8400438
DOI 10.3390/microorganisms9081549
PII: microorganisms9081549
Knihovny.cz E-zdroje

Dysbiosis in the oral environment may play a role in the etiopathogenesis of oral squamous cell carcinoma (OSCC). This review aims to summarize the current knowledge about the association of oral microbiota with OSCC and to describe possible etiopathogenetic mechanisms involved in processes of OSCC development and progression. Association studies included in this review were designed as case-control/case studies, analyzing the bacteriome, mycobiome, and virome from saliva, oral rinses, oral mucosal swabs, or oral mucosal tissue samples (deep and superficial) and comparing the results in healthy individuals to those with OSCC and/or with premalignant lesions. Changes in relative abundances of specific bacteria (e.g., Porphyromonas gingivalis, Fusobacterium nucleatum, Streptococcus sp.) and fungi (especially Candida sp.) were associated with OSCC. Viruses can also play a role; while the results of studies investigating the role of human papillomavirus in OSCC development are controversial, Epstein-Barr virus was positively correlated with OSCC. The oral microbiota has been linked to tumorigenesis through a variety of mechanisms, including the stimulation of cell proliferation, tumor invasiveness, angiogenesis, inhibition of cell apoptosis, induction of chronic inflammation, or production of oncometabolites. We also advocate for the necessity of performing a complex analysis of the microbiome in further studies and of standardizing the sampling procedures by establishing guidelines to support future meta-analyses.

Zobrazit více v PubMed

Rivera C. Essentials of oral cancer. Int. J. Clin. Exp. Pathol. 2015;8:11884–11894. PubMed PMC

Perera M., Al-Hebshi N., Speicher D., Perera I., Johnson N. Emerging role of bacteria in oral carcinogenesis: A review with special reference to perio-pathogenic bacteria. J. Oral Microbiol. 2016;8:32762. doi: 10.3402/jom.v8.32762. PubMed DOI PMC

Kakabadze M., Paresishvili T., Karalashvili L., Chakhunashvili D., Kakabadze Z. Oral microbiota and oral cancer: Review. Oncol. Rev. 2020;14:476. doi: 10.4081/oncol.2020.476. PubMed DOI PMC

Sami A., Elimairi I., Stanton C., Ross R., Ryan C. The role of the microbiome in oral squamous cell carcinoma with insight into the microbiome–treatment axis. Int. J. Mol. Sci. 2020;21:8061. doi: 10.3390/ijms21218061. PubMed DOI PMC

Farah C.S., Shearston K., Nguyen A.P., Kujan O. Premalignant Conditions of the Oral Cavity. Springer; Singapore: 2019. Oral carcinogenesis and malignant transformation; pp. 27–66. DOI

Nowicki S., Gottlieb E. Oncometabolites: Tailoring our genes. FEBS J. 2015;282:2796–2805. doi: 10.1111/febs.13295. PubMed DOI PMC

Sampaio-Maia B., Caldas I.M., Pereira M.L., Pérez-Mongiovi D., Araujo R. The oral microbiome in health and its implication in oral and systemic diseases. Adv. Appl. Microbiol. 2016;97:171–210. doi: 10.1016/bs.aambs.2016.08.002. PubMed DOI

Nejman D., Livyatan I., Fuks G., Gavert N., Zwang Y., Geller L.T., Rotter-Maskowitz A., Weiser R., Mallel G., Gigi E., et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science. 2020;368:973–980. doi: 10.1126/science.aay9189. PubMed DOI PMC

Chattopadhyay I., Verma M., Panda M. Role of oral microbiome signatures in diagnosis and prognosis of oral cancer. Technol. Cancer Res. Treat. 2019;18:1533033819867354. doi: 10.1177/1533033819867354. PubMed DOI PMC

Sun J., Tang Q., Yu S., Xie M., Xie Z., Chen G., Chen L. Role of the oral microbiota in cancer evolution and progression. Cancer Med. 2020;9:6306–6321. doi: 10.1002/cam4.3206. PubMed DOI PMC

Nagy K.N., Sonkodi I., Szöke I., Nagy E., Newman H.N. The microflora associated with human oral carcinomas. Oral Oncol. 1998;34:304–308. doi: 10.1016/S1368-8375(98)80012-2. PubMed DOI

Katz J., Onate M.D., Pauley K.M., Bhattacharyya I., Cha S. Presence of Porphyromonas gingivalis in gingival squamous cell carcinoma. Int. J. Oral Sci. 2011;3:209–215. doi: 10.4248/IJOS11075. PubMed DOI PMC

Hooper S.J., Crean S.J., Lewis M.A.O., Spratt D.A., Wade W.G., Wilson M.J. Viable bacteria present within oral squamous cell carcinoma tissue. J. Clin. Microbiol. 2006;44:1719–1725. doi: 10.1128/JCM.44.5.1719-1725.2006. PubMed DOI PMC

Mager D.L., Haffajee A.D., Devlin P.M., Norris C.M., Posner M.R., Goodson J.M. The salivary microbiota as a diagnostic indicator of oral cancer: A descriptive, non-randomized study of cancer-free and oral squamous cell carcinoma subjects. J. Transl. Med. 2005;3:27. doi: 10.1186/1479-5876-3-27. PubMed DOI PMC

Zhang L., Liu Y., Zheng H.J., Zhang C.P. The oral microbiota may have influence on oral cancer. Front. Cell Infect. Microbiol. 2020;9:476. doi: 10.3389/fcimb.2019.00476. PubMed DOI PMC

Li Q., Hu Y., Zhou X., Liu S., Han Q., Cheng L. Role of oral bacteria in the development of oral squamous cell carcinoma. Cancers. 2020;12:2797. doi: 10.3390/cancers12102797. PubMed DOI PMC

Ge W., Hu H., Cai W., Xu J., Hu W., Weng X., Qin X., Huang Y., Han W., Hu Y., et al. High-risk stage III colon cancer patients identified by a novel five-gene mutational signature are characterized by upregulation of IL-23A and gut bacterial translocation of the tumor microenvironment. Int. J. Cancer. 2020;146:2027–2035. doi: 10.1002/ijc.32775. PubMed DOI

Fitzsimonds Z.R., Rodriguez-Hernandez C.J., Bagaitkar J., Lamont R.J. From beyond the pale to the pale riders: The emerging association of bacteria with oral cancer. J. Dent. Res. 2020;99:604–612. doi: 10.1177/0022034520907341. PubMed DOI PMC

Perera M., Al-Hebshi N.N., Perera I., Ipe D., Ulett G.C., Speicher D.J., Chen T., Johnson N.W. Inflammatory bacteriome and oral squamous cell carcinoma. J. Dent. Res. 2018;97:725–732. doi: 10.1177/0022034518767118. PubMed DOI

Henrich B., Rumming M., Sczyrba A., Velleuer E., Dietrich R., Gerlach W., Gombert M., Rahn S., Stoye J., Borkhardt A., et al. Mycoplasma Salivarium as a dominant coloniser of fanconi anaemia associated oral carcinoma. PLoS ONE. 2014;9:92297. doi: 10.1371/journal.pone.0092297. PubMed DOI PMC

Khan N., Yılmaz S., Aksoy S., Uzel A., Tosun Ç., Kirmizibayrak P.B., Bedir E. Polyethers isolated from the marine actinobacterium streptomyces cacaoi inhibit autophagy and induce apoptosis in cancer cells. Chem. Biol. Interact. 2019;307:167–178. doi: 10.1016/j.cbi.2019.04.035. PubMed DOI

La Rosa G.R.M., Gattuso G., Pedullà E., Rapisarda E., Nicolosi D., Salmeri M. Association of oral dysbiosis with oral cancer development. Oncol. Lett. 2020;19:3045–3058. doi: 10.3892/ol.2020.11441. PubMed DOI PMC

Kusama K., Inoue H., Miyazaki Y., Kikuchi K., Sakashita H., Ochiai K. Microorganisms and cancer of the oral cavity. Integr. Cancer Sci. Ther. 2016;3:510–515. doi: 10.15761/ICST.1000200. DOI

Deo P.N., Deshmukh R. Oral microbiome: Unveiling the fundamentals. J. Oral Maxillofac. Pathol. 2019;23:122–128. doi: 10.4103/jomfp.JOMFP_304_18. PubMed DOI PMC

Amarnani R., Rapose A. Colon cancer and enterococcus bacteremia co-affection: A dangerous alliance. J. Infect. Public Health. 2017;10:681–684. doi: 10.1016/j.jiph.2016.09.009. PubMed DOI

Maekawa T., Fukaya R., Takamatsu S., Itoyama S., Fukuoka T., Yamada M., Hata T., Nagaoka S., Kawamoto K., Eguchi H., et al. Possible involvement of enterococcus infection in the pathogenesis of chronic pancreatitis and cancer. Biochem. Biophys. Res. Commun. 2018;506:962–969. doi: 10.1016/j.bbrc.2018.10.169. PubMed DOI

Bui F.Q., Johnson L., Roberts J.A., Hung S.C., Lee J., Atanasova K.R., Huang P.R., Yilmaz Ö., Ojcius D.M. Fusobacterium nucleatum infection of gingival epithelial cells leads to NLRP3 inflammasome-dependent secretion of IL-1β and the danger signals ASC and HMGB1. Cell Microbiol. 2016;18:970–981. doi: 10.1111/cmi.12560. PubMed DOI PMC

Uitto V.J., Baillie D., Wu Q., Gendron R., Grenier D., Putnins E.E., Kanervo A., Firth J.D. Fusobacterium nucleatum increases collagenase 3 production and migration of epithelial cells. Infect. Immun. 2005;73:1171–1179. doi: 10.1128/IAI.73.2.1171-1179.2005. PubMed DOI PMC

Geng F., Zhang Y., Lu Z., Zhang S., Pan Y. Fusobacterium nucleatum caused DNA damage and promoted cell proliferation by the Ku70/P53 pathway in oral cancer cells. DNA Cell Biol. 2020;39:144–151. doi: 10.1089/dna.2019.5064. PubMed DOI PMC

Zhang S., Li C., Liu J., Geng F., Shi X., Li Q., Lu Z., Pan Y. Fusobacterium nucleatum promotes epithelial-mesenchymal transiton through regulation of the LncRNA MIR4435-2HG/MiR-296-5p/Akt2/SNAI1 signaling pathway. FEBS J. 2020;287:4032–4047. doi: 10.1111/febs.15233. PubMed DOI PMC

Cao W., Liu Y., Zhang R., Zhang B., Wang T., Zhu X., Mei L., Chen H., Zhang H., Ming P., et al. Homoharringtonine induces apoptosis and inhibits STAT3 via IL-6/JAK1/STAT3 signal pathway in gefitinib-resistant lung cancer cells. Sci. Rep. 2015;5:8477. doi: 10.1038/srep08477. PubMed DOI PMC

Karpiński T.M. Role of oral microbiota in cancer development. Microorganisms. 2019;7:20. doi: 10.3390/microorganisms7010020. PubMed DOI PMC

Patil S., Rao R.S., Raj A.T. Role of Mycoplasma in the initiation and progression of oral cancer. J. Int. Oral Health. 2015;7:i–ii. PubMed PMC

Yoshida Y. Analysis of the butyrate-producing pathway in Porphyromonas gingivalis. Meth. Mol. Biol. 2021;2210:167–172. doi: 10.1007/978-1-0716-0939-2_16. PubMed DOI

Ramadan A., Land W.G., Paczesny S. Editorial: Danger signals triggering immune response and inflammation. Front. Immunol. 2017;8:979. doi: 10.3389/fimmu.2017.00979. PubMed DOI PMC

Nisticò P., Bissell M.J., Radisky D.C. Epithelial-mesenchymal transition: General principles and pathological relevance with special emphasis on the role of matrix metalloproteinases. Cold Spring Harb. Perspect. Biol. 2012;4 doi: 10.1101/cshperspect.a011908. PubMed DOI PMC

Baraniya D., Jain V., Lucarelli R., Tam V., Vanderveer L., Puri S., Yang M., Al-Hebshi N.N. Screening of health-associated oral bacteria for anticancer properties in vitro. Front. Cell Infect. Microbiol. 2020;10:575656. doi: 10.3389/fcimb.2020.575656. PubMed DOI PMC

Wang L., Ganly I. The oral microbiome and oral cancer. Clin. Lab. Med. 2014;34:711–719. doi: 10.1016/j.cll.2014.08.004. PubMed DOI

Pushalkar S., Mane S.P., Ji X., Li Y., Evans C., Crasta O.R., Morse D., Meagher R., Singh A., Saxena D. Microbial diversity in saliva of oral squamous cell carcinoma. FEMS Immunol. Med. Microbiol. 2011;61:269–277. doi: 10.1111/j.1574-695X.2010.00773.x. PubMed DOI PMC

Schmidt B.L., Kuczynski J., Bhattacharya A., Huey B., Corby P.M., Queiroz E.L.S., Nightingale K., Kerr A.R., DeLacure M.D., Veeramachaneni R., et al. Changes in abundance of oral microbiota associated with oral cancer. PLoS ONE. 2014;9:e98741. doi: 10.1371/journal.pone.0098741. PubMed DOI PMC

Zhao H., Chu M., Huang Z., Yang X., Ran S., Hu B., Zhang C., Liang J. Variations in oral microbiota associated with oral cancer. Sci. Rep. 2017:7. doi: 10.1038/s41598-017-11779-9. PubMed DOI PMC

Yang C.-Y., Yeh Y.-M., Yu H.-Y., Chin C.-Y., Hsu C.-W., Liu H., Huang P.-J., Hu S.-N., Liao C.-T., Chang K.-P., et al. Oral microbiota community dynamics associated with oral squamous cell carcinoma staging. Front. Microbiol. 2018;9 doi: 10.3389/fmicb.2018.00862. PubMed DOI PMC

Al-Hebshi N.N., Nasher A.T., Maryoud M.Y., Homeida H.E., Chen T., Idris A.M., Johnson N.W. Inflammatory bacteriome featuring Fusobacterium nucleatum and Pseudomonas aeruginosa identified in association with oral squamous cell carcinoma. Sci. Rep. 2017;7:1834. doi: 10.1038/s41598-017-02079-3. PubMed DOI PMC

Lee W.-H., Chen H.-M., Yang S.-F., Liang C., Peng C.-Y., Lin F.-M., Tsai L.-L., Wu B.-C., Hsin C.-H., Chuang C.-Y., et al. Bacterial alterations in salivary microbiota and their association in oral cancer. Sci. Rep. 2017;7:16540. doi: 10.1038/s41598-017-16418-x. PubMed DOI PMC

Hooper S.J., Crean S.-J., Fardy M.J., Lewis M.A.O., Spratt D.A., Wade W.G., Wilson M.J. A Molecular analysis of the bacteria present within oral squamous cell carcinoma. J. Med. Microbiol. 2007;56:1651–1659. doi: 10.1099/jmm.0.46918-0. PubMed DOI

Chang C., Geng F., Shi X., Li Y., Zhang X., Zhao X., Pan Y. The Prevalence rate of periodontal pathogens and its association with oral squamous cell carcinoma. Appl. Microbiol. Biotechnol. 2019;103:1393–1404. doi: 10.1007/s00253-018-9475-6. PubMed DOI

Guerrero-Preston R., Godoy-Vitorino F., Jedlicka A., Rodríguez-Hilario A., González H., Bondy J., Lawson F., Folawiyo O., Michailidi C., Dziedzic A., et al. 16S rRNA amplicon sequencing identifies microbiota associated with oral cancer, human papilloma virus infection and surgical treatment. Oncotarget. 2016;7:51320–51334. doi: 10.18632/oncotarget.9710. PubMed DOI PMC

Lim Y., Fukuma N., Totsika M., Kenny L., Morrison M., Punyadeera C. The performance of an oral microbiome biomarker panel in predicting oral cavity and oropharyngeal cancers. Front. Cell Infect. Microbiol. 2018;8 doi: 10.3389/fcimb.2018.00267. PubMed DOI PMC

Chang C., Wang H., Liu J., Pan C., Zhang D., Li X., Pan Y. Porphyromonas gingivalis infection promoted the proliferation of oral squamous cell carcinoma cells through the MiR-21/PDCD4/AP-1 negative signaling pathway. ACS Infect. Dis. 2019;5:1336–1347. doi: 10.1021/acsinfecdis.9b00032. PubMed DOI

Sayehmiri F., Sayehmiri K., Asadollahi K., Soroush S., Bogdanovic L., Jalilian F.A., Emaneini M., Taherikalani M. The prevalence rate of Porphyromonas gingivalis and its association with cancer: A systematic review and meta-analysis. Int. J. Immunopathol. Pharmacol. 2015;28:160–167. doi: 10.1177/0394632015586144. PubMed DOI

Geng F., Liu J., Guo Y., Li C., Wang H., Wang H., Zhao H., Pan Y. persistent exposure to Porphyromonas gingivalis promotes proliferative and invasion capabilities, and tumorigenic properties of human immortalized oral epithelial cells. Front. Cell Infect. Microbiol. 2017;7 doi: 10.3389/fcimb.2017.00057. PubMed DOI PMC

Yilmaz Ö., Jungas T., Verbeke P., Ojcius D.M. Activation of the phosphatidylinositol 3-Kinase/Akt pathway contributes to survival of primary epithelial cells infected with the periodontal pathogen Porphyromonas gingivalis. Infect. Immun. 2004;72:3743–3751. doi: 10.1128/IAI.72.7.3743-3751.2004. PubMed DOI PMC

Nakhjiri S.F., Park Y., Yilmaz O., Chung W.O., Watanabe K., El-Sabaeny A., Park K., Lamont R.J. Inhibition of epithelial cell apoptosis by Porphyromonas gingivalis. FEMS Microbiol. Lett. 2001;200:145–149. doi: 10.1111/j.1574-6968.2001.tb10706.x. PubMed DOI

O’Shea J.J., Schwartz D.M., Villarino A.V., Gadina M., McInnes I.B., Laurence A. The JAK-STAT pathway: Impact on human disease and therapeutic intervention. Annu. Rev. Med. 2015;66:311–328. doi: 10.1146/annurev-med-051113-024537. PubMed DOI PMC

Ru P., Steele R., Hsueh E.C., Ray R.B. Anti-MiR-203 upregulates SOCS3 expression in breast cancer cells and enhances cisplatin chemosensitivity. Genes Cancer. 2011;2:720–727. doi: 10.1177/1947601911425832. PubMed DOI PMC

Yu H., Rao X., Zhang K. Nucleoside diphosphate kinase (Ndk): A pleiotropic effector manipulating bacterial virulence and adaptive responses. Microbiol. Res. 2017;205:125–134. doi: 10.1016/j.micres.2017.09.001. PubMed DOI

Croker B.A., Kiu H., Nicholson S.E. SOCS regulation of the JAK/STAT signalling pathway. Semin. Cell Dev. Biol. 2008;19:414–422. doi: 10.1016/j.semcdb.2008.07.010. PubMed DOI PMC

Al-Rawi N.H., Al-Marzooq F., Al-Nuaimi A.S., Hachim M.Y., Hamoudi R. Salivary microRNA 155, 146a/b and 203: A pilot study for potentially non-invasive diagnostic biomarkers of periodontitis and diabetes mellitus. PLoS ONE. 2020;15:e0237004. doi: 10.1371/journal.pone.0237004. PubMed DOI PMC

Lee J., Roberts J.A.S., Atanasova K.R., Chowdhury N., Yilmaz Ö. A novel kinase function of a nucleoside-diphosphate-kinase homologue in Porphyromonas gingivalis is critical in subversion of host cell apoptosis by targeting heat-shock protein. Cell Microbiol. 2018;20:e12825. doi: 10.1111/cmi.12825. PubMed DOI PMC

Katsogiannou M., Andrieu C., Rocchi P. Heat shock protein 27 phosphorylation state is associated with cancer progression. Front. Genet. 2014:5. doi: 10.3389/fgene.2014.00346. PubMed DOI PMC

Kuboniwa M., Hasegawa Y., Mao S., Shizukuishi S., Amano A., Lamont R.J., Yilmaz Ö.P. Gingivalis accelerates gingival epithelial cell progression through the cell cycle. Microbes. Infect. 2008;10:122–128. doi: 10.1016/j.micinf.2007.10.011. PubMed DOI PMC

Zhou Y., Sztukowska M., Wang Q., Inaba H., Potempa J., Scott D.A., Wang H., Lamont R.J. Noncanonical activation of β-catenin by Porphyromonas gingivalis. Infect. Immun. 2015;83:3195–3203. doi: 10.1128/IAI.00302-15. PubMed DOI PMC

Roche J. The epithelial-to-mesenchymal transition in cancer. Cancers. 2018;10:52. doi: 10.3390/cancers10020052. PubMed DOI PMC

Olsen I., Yilmaz Ö. Possible role of Porphyromonas gingivalis in orodigestive cancers. J. Oral Microbiol. 2019;11:1563410. doi: 10.1080/20002297.2018.1563410. PubMed DOI PMC

Takayama S., Hatori M., Kurihara Y., Kinugasa Y., Shirota T., Shintai S. Inhibition of TGF-Β1 suppresses motility and invasiveness of oral squamous cell carcinoma cell lines via modulation of integrins and down-regulation of matrix-metalloproteinases. Oncol. Rep. 2009;21:205–210. doi: 10.3892/or_00000209. PubMed DOI

Ameena M., Rathy R. Evaluation of tumor necrosis factor: Alpha in the saliva of oral cancer, leukoplakia, and healthy controls—A comparative study. J. Int. Oral. Health. 2019;11:92. doi: 10.4103/jioh.jioh_202_18. DOI

Takeuchi H., Hirano T., Whitmore S.E., Morisaki I., Amano A., Lamont R.J. The serine phosphatase SerB of Porphyromonas gingivalis suppresses IL-8 production by dephosphorylation of NF-ΚB RelA/P65. PLoS Pathog. 2013:9. doi: 10.1371/journal.ppat.1003326. PubMed DOI PMC

Groeger S., Domann E., Gonzales J.R., Chakraborty T., Meyle J. B7-H1 and B7-DC receptors of oral squamous carcinoma cells are upregulated by Porphyromonas gingivalis. Immunobiology. 2011;216:1302–1310. doi: 10.1016/j.imbio.2011.05.005. PubMed DOI

Kelley N., Jeltema D., Duan Y., He Y. The NLRP3 Inflammasome: An overview of mechanisms of activation and regulation. Int. J. Mol. Sci. 2019;20:3328. doi: 10.3390/ijms20133328. PubMed DOI PMC

Lee C.H., Chang J.S.M., Syu S.H., Wong T.S., Chan J.Y.W., Tang Y.C., Yang Z.P., Yang W.C., Chen C.T., Lu S.C., et al. IL-1β promotes malignant transformation and tumor aggressiveness in oral cancer. J. Cell Physiol. 2015;230:875–884. doi: 10.1002/jcp.24816. PubMed DOI

Li Y., Xu Z., Li J., Ban S., Duan C., Liu W. Interleukin-18 expression in oral squamous cell carcinoma: Its role in tumor cell migration and invasion, and growth of tumor cell xenografts. FEBS Open Bio. 2018;8:1953–1963. doi: 10.1002/2211-5463.12532. PubMed DOI PMC

Lamaa A., Le Bras M., Skuli N., Britton S., Frit P., Calsou P., Prats H., Cammas A., Millevoi S. A novel cytoprotective function for the DNA repair protein Ku in regulating P53 MRNA translation and function. EMBO Rep. 2016;17:508–518. doi: 10.15252/embr.201541181. PubMed DOI PMC

Fujiwara N., Kitamura N., Yoshida K., Yamamoto T., Ozaki K., Kudo Y. Involvement of Fusobacterium species in oral cancer progression: A literature review including other types of cancer. Int. J. Mol. Sci. 2020;21:6207. doi: 10.3390/ijms21176207. PubMed DOI PMC

Rai A.K., Panda M., Das A.K., Rahman T., Das R., Das K., Sarma A., Kataki A.C., Chattopadhyay I. Dysbiosis of salivary microbiome and cytokines influence oral squamous cell carcinoma through inflammation. Arch. Microbiol. 2021;203:137–152. doi: 10.1007/s00203-020-02011-w. PubMed DOI

Sasaki M., Yamaura C., Ohara-Nemoto Y., Tajika S., Kodama Y., Ohya T., Harada R., Kimura S. Streptococcus anginosus infection in oral cancer and its infection route. Oral Dis. 2005;11:151–156. doi: 10.1111/j.1601-0825.2005.01051.x. PubMed DOI

Zaki A.N.M., Kadum A.D., Mousa N.K., Kareem A.S.A., Obaid B.H. Cancer infection and its relationship with streptococcus mitis increasing numbers in human mouth. Int. J. Sci. Eng. Res. 2019;5:88–91.

Park O.-J., Kwon Y., Park C., So Y.J., Park T.H., Jeong S., Im J., Yun C.-H., Han S.H. Streptococcus gordonii: Pathogenesis and host response to its cell wall components. Microorganisms. 2020;8:1852. doi: 10.3390/microorganisms8121852. PubMed DOI PMC

Choi S.Y.C., Collins C.C., Gout P.W., Wang Y. Cancer-generated lactic acid: A regulatory, immunosuppressive metabolite? J. Pathol. 2013;230:350–355. doi: 10.1002/path.4218. PubMed DOI PMC

Bandara H.M.H.N., Panduwawala C.P., Samaranayake L.P. Biodiversity of the human oral mycobiome in health and disease. Oral Dis. 2019;25:363–371. doi: 10.1111/odi.12899. PubMed DOI

Zhang D., Wang Y., Shen S., Hou Y., Chen Y., Wang T. The mycobiota of the human body: A spark can start a prairie fire. Gut Microbes. 2020;11:655–679. doi: 10.1080/19490976.2020.1731287. PubMed DOI PMC

Kaźmierczak-Siedlecka K., Dvořák A., Folwarski M., Daca A., Przewłócka K., Makarewicz W. Fungal gut microbiota dysbiosis and its role in colorectal, oral, and pancreatic carcinogenesis. Cancers. 2020;12:1326. doi: 10.3390/cancers12051326. PubMed DOI PMC

Perera M., Al-Hebshi N.N., Perera I., Ipe D., Ulett G.C., Speicher D.J., Chen T., Johnson N.W. A dysbiotic mycobiome dominated by candida albicans is identified within oral squamous-cell carcinomas. J. Oral Microbiol. 2017;9 doi: 10.1080/20002297.2017.1385369. PubMed DOI PMC

Sankari S.L., Mahalakshmi K., Kumar V.N. A comparative study of Candida species diversity among patients with oral squamous cell carcinoma and oral potentially malignant disorders. BMC Res. Notes. 2020;13:488. doi: 10.1186/s13104-020-05336-3. PubMed DOI PMC

Mukherjee P.K., Wang H., Retuerto M., Zhang H., Burkey B., Ghannoum M.A., Eng C. Bacteriome and mycobiome associations in oral tongue cancer. Oncotarget. 2017;8:97273–97289. doi: 10.18632/oncotarget.21921. PubMed DOI PMC

Collette J.R., Zhou H., Lorenz M.C. Candida albicans suppresses nitric oxide generation from macrophages via a secreted molecule. PLoS ONE. 2014;9:e96203. doi: 10.1371/journal.pone.0096203. PubMed DOI PMC

Ramirez-Garcia A., Rementeria A., Aguirre-Urizar J.M., Moragues M.D., Antoran A., Pellon A., Abad-Diaz-De-Cerio A., Hernando F.L. Candida albicans and cancer: Can this yeast induce cancer development or progression? Crit. Rev. Microbiol. 2016;42:181–193. doi: 10.3109/1040841X.2014.913004. PubMed DOI

Palma G., Barbieri A., Bimonte S., Palla M., Zappavigna S., Caraglia M., Ascierto P.A., Ciliberto G., Arra C. Interleukin 18: Friend or foe in cancer. Biochim. Biophys. Acta BBA Rev. Cancer. 2013;1836:296–303. doi: 10.1016/j.bbcan.2013.09.001. PubMed DOI

Samaranayake L.P. Essential Microbiology for Dentistry. 4th ed. Churchill Livingstone; London, UK: 2011.

Wang J., Gao Y., Zhao F. Phage-bacteria interaction network in human oral microbiome. Environ. Microbiol. 2016;18:2143–2158. doi: 10.1111/1462-2920.12923. PubMed DOI

Sharma N., Bhatia S., Sodhi A.S., Batra N. Oral microbiome and health. AIMS Microbiol. 2018;4:42–66. doi: 10.3934/microbiol.2018.1.42. PubMed DOI PMC

Edlund A., Santiago-Rodriguez T.M., Boehm T.K., Pride D.T. Bacteriophage and their potential roles in the human oral cavity. J. Oral Microbiol. 2015;7 doi: 10.3402/jom.v7.27423. PubMed DOI PMC

Gholizadeh P., Eslami H., Yousefi M., Asgharzadeh M., Aghazadeh M., Kafil H.S. Role of oral microbiome on oral cancers, a review. Biomed. Pharmacother. 2016;84:552–558. doi: 10.1016/j.biopha.2016.09.082. PubMed DOI

Rooper L.M., Windon M.J., Hernandez T., Miles B., Ha P.K., Ryan W.R., Zante A.V., Eisele D.W., D’Souza G., Fakhry C., et al. HPV-positive squamous cell carcinoma of the larynx, oral cavity, and hypopharynx. Am. J. Surg. Pathol. 2020;44:691–702. doi: 10.1097/PAS.0000000000001433. PubMed DOI PMC

Yang L.-Q., Xiao X., Li C.-X., Wu W.-Y., Shen X.-M., Zhou Z.-T., Fan Y., Shi L.-J. Human papillomavirus genotypes and P16 expression in oral leukoplakia and squamous cell carcinoma. Int. J. Clin. Exp. Pathol. 2019;12:1022–1028. PubMed PMC

Shillitoe E.J. The microbiome of oral cancer. Crit. Rev. Oncog. 2018;23:153–160. doi: 10.1615/CritRevOncog.2018027422. PubMed DOI

She Y., Nong X., Zhang M., Wang M. Epstein-Barr virus infection and oral squamous cell carcinoma risk: A meta-analysis. PLoS ONE. 2017;12:e0186860. doi: 10.1371/journal.pone.0186860. PubMed DOI PMC

Fauzi F.H., Hamzan N.I., Rahman N.A., Mohamad I., Suraiya S., Kallarakkal T.G., Mohamad S. Detection of human papillomavirus types 16 and 18 in oral squamous cell carcinoma samples in malaysia. Arch. Orofac. Sci. 2019;14:21–29.

Kaminagakura E., Villa L.L., Andreoli M.A., Sobrinho J.S., Vartanian J.G., Soares F.A., Nishimoto I.N., Rocha R., Kowalski L.P. High-risk human papillomavirus in oral squamous cell carcinoma of young patients. Int. J. Cancer. 2012;130:1726–1732. doi: 10.1002/ijc.26185. PubMed DOI

Al-Malkey M., Abass A., Jabbar F., Ismail M. Detection of human papilloma virus in oral squamous cell carcinoma. Int. J. Curr. Res. 2015;7:23707–23711.

Kojima A., Maeda H., Sugita Y., Tanaka S., Kameyama Y. Human papillomavirus type 38 infection in oral squamous cell carcinomas. Oral Oncol. 2002;38:591–596. doi: 10.1016/S1368-8375(01)00112-9. PubMed DOI

Khovidhunkit S.P., Buajeeb W., Sanguansin S., Poomsawat S., Weerapradist W. Detection of human papillomavirus in oral squamous cell carcinoma, leukoplakia and lichen planus in Thai patients. Asian Pac. J. Cancer Prev. 2008;9:771–775. PubMed

Heawchaiyaphum C., Iizasa H., Ekalaksananan T., Burassakarn A., Kiyono T., Kanehiro Y., Yoshiyama H., Pientong C. Epstein-Barr virus infection of oral squamous cells. Microorganisms. 2020;8:419. doi: 10.3390/microorganisms8030419. PubMed DOI PMC

Yen C.-Y., Lu M.-C., Tzeng C.-C., Huang J.-Y., Chang H.-W., Chen R.-S., Liu S.-Y., Liu S.-T., Shieh B., Li C. Detection of EBV infection and gene expression in oral cancer from patients in Taiwan by microarray analysis. J. Biomed. Biotechnol. 2009;2009:904589. doi: 10.1155/2009/904589. PubMed DOI PMC

Prathyusha M., Kattappagari K., Chowdary D., Shekar P., Alivelu D., Reddy B.R. A study on association of epstein barr virus in oral squamous cell carcinoma using polymerase chain reaction technique. J. Dr. NTR Univ. Health Sci. 2019;8:233. doi: 10.4103/JDRNTRUHS.JDRNTRUHS_102_18. DOI

Saravani S., Kadeh H., Miri-Moghaddam E., Zekri A., Sanadgol N., Gholami A. Human cytomegalovirus in oral squamous cell carcinoma in southeast of Iran. Jundishapur J. Microbiol. 2015;8:e21838. doi: 10.5812/jjm.21838. PubMed DOI PMC

Bashir R., Elhag W. Molecular detection of herpes simplex virus types [1 and 2] in oral squamous cell carcinoma (OSCC) at Khartoum. J. Adv. Med. Med. Res. 2018;26:1–6. doi: 10.9734/JAMMR/2018/41717. DOI

Miller C.S., Johnstone B.M. Human papillomavirus as a risk factor for oral squamous cell carcinoma: A meta-analysis, 1982–1997. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2001;91:622–635. doi: 10.1067/moe.2001.115392. PubMed DOI

Yakin M., Seo B., Hussaini H., Rich A., Hunter K. Human papillomavirus and oral and oropharyngeal carcinoma: The essentials. Aust. Dent. J. 2019;64:11–18. doi: 10.1111/adj.12652. PubMed DOI

Tomaić V. Functional roles of E6 and E7 oncoproteins in HPV-induced malignancies at diverse anatomical sites. Cancers. 2016;8:95. doi: 10.3390/cancers8100095. PubMed DOI PMC

Gupta S., Gupta S. Role of human papillomavirus in oral squamous cell carcinoma and oral potentially malignant disorders: A review of the literature. Indian J. Dent. 2015;6:91. doi: 10.4103/0975-962X.155877. PubMed DOI PMC

Wołącewicz M., Becht R., Grywalska E., Niedźwiedzka-Rystwej P. Herpesviruses in head and neck cancers. Viruses. 2020;12:172. doi: 10.3390/v12020172. PubMed DOI PMC

Jalouli J., Jalouli M.M., Sapkota D., Ibrahim S.O., Larsson P.-A., Sand L. Human papilloma virus, herpes simplex virus and epstein barr virus in oral squamous cell carcinoma from eight different countries. Anticancer Res. 2012;32:571–580. PubMed

Meurman J.H. Infectious and dietary risk factors of oral cancer. Oral Oncol. 2010;46:411–413. doi: 10.1016/j.oraloncology.2010.03.003. PubMed DOI

Al-Hebshi N.N., Borgnakke W.S., Johnson N.W. The microbiome of oral squamous cell carcinomas: A functional perspective. Curr. Oral Health Rep. 2019;6:145–160. doi: 10.1007/s40496-019-0215-5. DOI

Allaband C., McDonald D., Vázquez-Baeza Y., Minich J.J., Tripathi A., Brenner D.A., Loomba R., Smarr L., Sandborn W.J., Schnabl B., et al. Microbiome 101: Studying, analyzing, and interpreting gut microbiome data for clinicians. Clin. Gastroenterol. Hepatol. 2019;17:218–230. doi: 10.1016/j.cgh.2018.09.017. PubMed DOI PMC

Amer A., Galvin S., Healy C.M., Moran G.P. The microbiome of potentially malignant oral leukoplakia exhibits enrichment for Fusobacterium, Leptotrichia, Campylobacter, and Rothia species. Front. Microbiol. 2017;8:2391. doi: 10.3389/fmicb.2017.02391. PubMed DOI PMC

Binder Gallimidi A., Fischman S., Revach B., Bulvik R., Maliutina A., Rubinstein A.M., Nussbaum G., Elkin M. Periodontal pathogens Porphyromonas gingivalis and Fusobacterium nucleatum promote tumor progression innan oral-specific chemical carcinogenesis model. Oncotarget. 2015;6:22613–22623. doi: 10.18632/oncotarget.4209. PubMed DOI PMC

Bartnicka D., Gonzalez-Gonzalez M., Sykut J., Koziel J., Ciaston I., Adamowicz K., Bras G., Zawrotniak M., Karkowska-Kuleta J., Satala D., et al. Candida albicans shields the periodontal killer Porphyromonas gingivalis from recognition by the host immune system and supports the bacterial infection of gingival tissue. Int. J. Mol. Sci. 2020;21:1984. doi: 10.3390/ijms21061984. PubMed DOI PMC

Diaz I.D., Xie Z., Sobue T., Thompson A., Biyikoglu B., Ricker A., Ikonomou L., Dongari-Bagtzoglou A. Synergistic interaction between Candida albicans and commensal oral streptococci in a novel in vitro mucosal model. Infect. Immun. 2012;80:620–632. doi: 10.1128/IAI.05896-11. PubMed DOI PMC

Shigeishi H., Sugiyama M., Ohta K. Relationship between the prevalence of oral human papillomavirus DNA and periodontal disease (Review) Biomed. Rep. 2021;14:40. doi: 10.3892/br.2021.1416. PubMed DOI PMC

Glasspoole C., Louise D. Ph.D. Thesis. University of North Carolina; Chapel Hill, NC, USA: 2019. The Role of Periodontal Bacteria and Epigenetic Modifications on Human Papillomavirus Pathogenicity. DOI

Núñez-Acurio D., Bravo D., Aguayo F. Epstein-Barr virus-oral bacterial link in the development of oral squamous cell carcinoma. Pathogens. 2020;9:1059. doi: 10.3390/pathogens9121059. PubMed DOI PMC

Broderick N.A. A common origin for immunity and digestion. Front. Immunol. 2015;6:72. doi: 10.3389/fimmu.2015.00072. PubMed DOI PMC

McFall-Ngai M., Hadfield M.G., Bosch T.C., Carey H.V., Domazet-Lošo T., Douglas A.E., Dubilier N., Eberl G., Fukami T., Gilbert S.F., et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. USA. 2013;110:3229–3236. doi: 10.1073/pnas.1218525110. PubMed DOI PMC

Levin B.R., Antia R. Why we don’t get sick: The within-host population dynamics of bacterial infections. Science. 2001;292:1112–1115. doi: 10.1126/science.1058879. PubMed DOI

Levin B.R., Baquero F., Ankomah P.P., McCall I.C. Phagocytes, antibiotics, and self-limiting bacterial infections. Trends Microbiol. 2017;25:878–892. doi: 10.1016/j.tim.2017.07.005. PubMed DOI

Troisi J., Venutolo G., Tanyà M.P., Carri M.D., Landolfi A., Fasano A. COVID-19 and the gastrointestinal tract: Source of infection or merely a target of the inflammatory process following SARS-CoV-2 infection? World J. Gastroenterol. 2021;27:1406–1418. doi: 10.3748/wjg.v27.i14.1406. PubMed DOI PMC

Howell M.C., Green R., McGill A.R., Dutta R., Mohapatra S., Mohapatra S.S. SARS-CoV-2-induced gut microbiome dysbiosis: Implications for colorectal cancer. Cancers. 2021;13:2676. doi: 10.3390/cancers13112676. PubMed DOI PMC

Saltiel A.R., Olefsky J.M. Inflammatory mechanisms linking obesity and metabolic disease. J. Clin. Invest. 2017;127:1–4. doi: 10.1172/JCI92035. PubMed DOI PMC

Garbarino J., Sturley S.L. Saturated with fat: New perspectives on lipotoxicity. Curr. Opin. Clin. Nutr. Metab. Care. 2009;12:110–116. doi: 10.1097/MCO.0b013e32832182ee. PubMed DOI

Whisner C.M., Aktipis C.A. The Role of the microbiome in cancer initiation and progression: How microbes and cancer cells utilize excess energy and promote one another’s growth. Curr. Nutr. Rep. 2019;8:42–51. doi: 10.1007/s13668-019-0257-2. PubMed DOI PMC

Andrews M.C., Reuben A., Gopalakrishnan V., Wargo J.A. Concepts collide: Genomic, immune, and microbial influences on the tumor microenvironment and response to cancer therapy. Front. Immunol. 2018;9:946. doi: 10.3389/fimmu.2018.00946. PubMed DOI PMC

Woo B.H., Kim D.J., Choi J.I., Kim S.J., Park B.S., Song J.M., Lee J.H., Park H.R. Oral cancer cells sustainedly infected with Porphyromonas gingivalis exhibit resistance to Taxol and have higher metastatic potential. Oncotarget. 2017;8:46981–46992. doi: 10.18632/oncotarget.16550. PubMed DOI PMC

Zhao K., Hu Y. Microbiome harbored within tumors: A new chance to revisit our understanding of cancer pathogenesis and treatment. Signal. Transduct. Target. Ther. 2020;5:136. doi: 10.1038/s41392-020-00244-1. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...