Synthesis of Novel Biologically Active Proflavine Ureas Designed on the Basis of Predicted Entropy Changes
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
1/0016/18
Agentúra Ministerstva Školstva, Vedy, Výskumu a Športu SR
00179906
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
34443446
PubMed Central
PMC8398074
DOI
10.3390/molecules26164860
PII: molecules26164860
Knihovny.cz E-resources
- Keywords
- cytostatic activity, cytotoxicity, molecular design, proflavine ureas,
- MeSH
- Chemical Phenomena MeSH
- Entropy * MeSH
- Fibroblasts cytology drug effects MeSH
- Inhibitory Concentration 50 MeSH
- Kinetics MeSH
- Humans MeSH
- Urea chemical synthesis chemistry pharmacology MeSH
- Models, Molecular MeSH
- Proflavine chemical synthesis chemistry pharmacology MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Urea MeSH
- Proflavine MeSH
A novel series of proflavine ureas, derivatives 11a-11i, were synthesized on the basis of molecular modeling design studies. The structure of the novel ureas was obtained from the pharmacological model, the parameters of which were determined from studies of the structure-activity relationship of previously prepared proflavine ureas bearing n-alkyl chains. The lipophilicity (LogP) and the changes in the standard entropy (ΔS°) of the urea models, the input parameters of the pharmacological model, were determined using quantum mechanics and cheminformatics. The anticancer activity of the synthesized derivatives was evaluated against NCI-60 human cancer cell lines. The urea derivatives azepyl 11b, phenyl 11c and phenylethyl 11f displayed the highest levels of anticancer activity, although the results were only a slight improvement over the hexyl urea, derivative 11j, which was reported in a previous publication. Several of the novel urea derivatives displayed GI50 values against the HCT-116 cancer cell line, which suggest the cytostatic effect of the compounds azepyl 11b-0.44 μM, phenyl 11c-0.23 μM, phenylethyl 11f-0.35 μM and hexyl 11j-0.36 μM. In contrast, the novel urea derivatives 11b, 11c and 11f exhibited levels of cytotoxicity three orders of magnitude lower than that of hexyl urea 11j or amsacrine.
See more in PubMed
Gensicka-Kowalewska M., Cholewiński G., Dzierzbicka K. Recent developments in the synthesis and biological activity of acridine/acridone analogues. RSC Adv. 2017;7:15776–15804. doi: 10.1039/C7RA01026E. DOI
Demeunynck M. Antitumour acridines. Expert Opin. Ther. Patents. 2004;14:55–70. doi: 10.1517/13543776.14.1.55. DOI
Lerman L.S. The structure of the DNA-acridine complex. Proc. Natl. Acad. Sci. USA. 1963;49:94–102. doi: 10.1073/pnas.49.1.94. PubMed DOI PMC
Adams A. Crystal structures of acridines complexed with nucleic acids. Curr. Med. Chem. 2002;9:1667–1675. doi: 10.2174/0929867023369259. PubMed DOI
Belmont P., Dorange I. Acridine/acridone: A simple scaffold with a wide range of application in oncology. Expert Opin. Ther. Patents. 2008;18:1211–1224. doi: 10.1517/13543776.18.11.1211. DOI
Blackburn G.M., Gait M.J., Loakes D., Williams D.M. Nucleic Acids in Chemistry and Biology. 3rd ed. The Royal Society of Chemistry; London, UK: 2006.
Belmont P., Bosson J., Godet T., Tiano M. Acridine and acridone derivatives, anticancer properties and synthetic methods: Where are we now? Anti-Cancer Agent. Med. Chem. 2007;7:139–169. doi: 10.2174/187152007780058669. PubMed DOI
Harrison R.J., Gowan S.M., Kelland L.R., Neidle S. Human telomerase inhibition by substituted acridine derivatives. Bioorg. Med. Chem. Lett. 1999;9:2463–2468. doi: 10.1016/S0960-894X(99)00394-7. PubMed DOI
Harrison R.J., Cuesta J., Chessari G., Read M.A., Basra S.K., Reszka A.P., Morrell J., Gowan S.M., Incles C.M., Tanious F.A., et al. Trisubstituted acridine derivatives as potent and selective telomerase inhibitors. J. Med. Chem. 2003;46:4463–4476. doi: 10.1021/jm0308693. PubMed DOI
Hamissa M.F., Niederhafner P., Šafařík M., Telus M., Kolářová L., Koutná L., Šestáková H., Souček R., Šebestík J. Total synthesis of inubosin B. Tetrahedron Lett. 2020;61:152641. doi: 10.1016/j.tetlet.2020.152641. DOI
Gatasheh M.K., Kannan S., Hemalatha K., Imrana N. Proflavine an acridine DNA intercalating agent and strong antimicrobial possessing potential properties of carcinogen. Karbala Int. J. Mod. Sci. 2017;3:272–278. doi: 10.1016/j.kijoms.2017.07.003. DOI
Wainwright M. Acridine—A neglected antibacterial chromophore. J. Antimicrob. Chemoth. 2001;47:1–13. doi: 10.1093/jac/47.1.1. PubMed DOI
Valdés A.F.-C. Acridine and acridinones: Old and new structures with antimalarial activity. Open Med. Chem. J. 2011;5:11–20. doi: 10.2174/1874104501105010011. PubMed DOI PMC
Kožurková M., Sabolová D., Janovec L., Mikeš J., Koval’ J., Ungvarský J., Štefanišinová M., Fedoročko P., Kristian P., Imrich J. Cytotoxic activity of proflavine diureas: Synthesis, antitumor, evaluation and DNA binding properties of 1′,1″-(acridin-3,6-diyl)-3′,3″-dialkyldiureas. Bioorg. Med. Chem. 2008;16:3976–3984. doi: 10.1016/j.bmc.2008.01.026. PubMed DOI
Genheden S., Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov. 2015;10:449–461. doi: 10.1517/17460441.2015.1032936. PubMed DOI PMC
ACD ChemSketch Package 2020.2.0. [(accessed on 27 July 2021)]; Available online: www.acdlabs.com.
Stewart J.J.P. Stewart Computational Chemistry. [(accessed on 27 July 2021)]; Available online: http://openmopac.net.
Molinspiration Cheminformatics Free Web Services Slovensky Grob, Slovakia. [(accessed on 27 July 2021)]; Available online: https://www.molinspiration.com.
Allouche A.-R. Gabedit—A graphical user interface for computational chemistry softwares. J. Comput. Chem. 2011;32:174–182. doi: 10.1002/jcc.21600. PubMed DOI