-
Je něco špatně v tomto záznamu ?
Promises and pitfalls of topological data analysis for brain connectivity analysis
L. Caputi, A. Pidnebesna, J. Hlinka
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2020
ProQuest Central
od 1998-05-01 do Před 2 měsíci
Health & Medicine (ProQuest)
od 2002-08-01 do Před 2 měsíci
Psychology Database (ProQuest)
od 2002-08-01 do Před 2 měsíci
ROAD: Directory of Open Access Scholarly Resources
- MeSH
- elektroencefalografie MeSH
- epilepsie diagnostické zobrazování patofyziologie MeSH
- konektom * MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mapování mozku MeSH
- modely neurologické * MeSH
- mozek diagnostické zobrazování patofyziologie MeSH
- nervová síť diagnostické zobrazování patofyziologie MeSH
- schizofrenie diagnostické zobrazování patofyziologie MeSH
- záchvaty diagnostické zobrazování patofyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Developing sensitive and reliable methods to distinguish normal and abnormal brain states is a key neuroscientific challenge. Topological Data Analysis, despite its relative novelty, already generated many promising applications, including in neuroscience. We conjecture its prominent tool of persistent homology may benefit from going beyond analysing structural and functional connectivity to effective connectivity graphs capturing the direct causal interactions or information flows. Therefore, we assess the potential of persistent homology to directed brain network analysis by testing its discriminatory power in two distinctive examples of disease-related brain connectivity alterations: epilepsy and schizophrenia. We estimate connectivity from functional magnetic resonance imaging and electrophysiology data, employ Persistent Homology and quantify its ability to distinguish healthy from diseased brain states by applying a support vector machine to features quantifying persistent homology structure. We show how this novel approach compares to classification using standard undirected approaches and original connectivity matrices. In the schizophrenia classification, topological data analysis generally performs close to random, while classifications from raw connectivity perform substantially better; potentially due to topographical, rather than topological, specificity of the differences. In the easier task of seizure discrimination from scalp electroencephalography data, classification based on persistent homology features generally reached comparable performance to using raw connectivity, albeit with typically smaller accuracies obtained for the directed (effective) connectivity compared to the undirected (functional) connectivity. Specific applications for topological data analysis may open when direct comparison of connectivity matrices is unsuitable - such as for intracranial electrophysiology with individual number and location of measurements. While standard homology performed overall better than directed homology, this could be due to notorious technical problems of accurate effective connectivity estimation.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22003847
- 003
- CZ-PrNML
- 005
- 20220127145809.0
- 007
- ta
- 008
- 220113s2021 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.neuroimage.2021.118245 $2 doi
- 035 __
- $a (PubMed)34111515
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Caputi, Luigi $u Institute of Computer Science of the Czech Academy of Sciences, Pod Vodárenskou věží 271/2, Prague 182 07, Czech Republic. Electronic address: luigi.caputi@abdn.ac.uk
- 245 10
- $a Promises and pitfalls of topological data analysis for brain connectivity analysis / $c L. Caputi, A. Pidnebesna, J. Hlinka
- 520 9_
- $a Developing sensitive and reliable methods to distinguish normal and abnormal brain states is a key neuroscientific challenge. Topological Data Analysis, despite its relative novelty, already generated many promising applications, including in neuroscience. We conjecture its prominent tool of persistent homology may benefit from going beyond analysing structural and functional connectivity to effective connectivity graphs capturing the direct causal interactions or information flows. Therefore, we assess the potential of persistent homology to directed brain network analysis by testing its discriminatory power in two distinctive examples of disease-related brain connectivity alterations: epilepsy and schizophrenia. We estimate connectivity from functional magnetic resonance imaging and electrophysiology data, employ Persistent Homology and quantify its ability to distinguish healthy from diseased brain states by applying a support vector machine to features quantifying persistent homology structure. We show how this novel approach compares to classification using standard undirected approaches and original connectivity matrices. In the schizophrenia classification, topological data analysis generally performs close to random, while classifications from raw connectivity perform substantially better; potentially due to topographical, rather than topological, specificity of the differences. In the easier task of seizure discrimination from scalp electroencephalography data, classification based on persistent homology features generally reached comparable performance to using raw connectivity, albeit with typically smaller accuracies obtained for the directed (effective) connectivity compared to the undirected (functional) connectivity. Specific applications for topological data analysis may open when direct comparison of connectivity matrices is unsuitable - such as for intracranial electrophysiology with individual number and location of measurements. While standard homology performed overall better than directed homology, this could be due to notorious technical problems of accurate effective connectivity estimation.
- 650 _2
- $a mozek $x diagnostické zobrazování $x patofyziologie $7 D001921
- 650 _2
- $a mapování mozku $7 D001931
- 650 12
- $a konektom $7 D063132
- 650 _2
- $a elektroencefalografie $7 D004569
- 650 _2
- $a epilepsie $x diagnostické zobrazování $x patofyziologie $7 D004827
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a magnetická rezonanční tomografie $7 D008279
- 650 12
- $a modely neurologické $7 D008959
- 650 _2
- $a nervová síť $x diagnostické zobrazování $x patofyziologie $7 D009415
- 650 _2
- $a schizofrenie $x diagnostické zobrazování $x patofyziologie $7 D012559
- 650 _2
- $a záchvaty $x diagnostické zobrazování $x patofyziologie $7 D012640
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Pidnebesna, Anna $u Institute of Computer Science of the Czech Academy of Sciences, Pod Vodárenskou věží 271/2, Prague 182 07, Czech Republic; National Institute of Mental Health, Topolová 748, Klecany 250 67, Czech Republic; Faculty of Electrical Engineering, Czech Technical University, Technická 1902/2, Prague 166 27, Czech Republic. Electronic address: pidnebesna@cs.cas.cz
- 700 1_
- $a Hlinka, Jaroslav $u Institute of Computer Science of the Czech Academy of Sciences, Pod Vodárenskou věží 271/2, Prague 182 07, Czech Republic; National Institute of Mental Health, Topolová 748, Klecany 250 67, Czech Republic. Electronic address: hlinka@cs.cas.cz
- 773 0_
- $w MED00006575 $t NeuroImage $x 1095-9572 $g Roč. 238, č. - (2021), s. 118245
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/34111515 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20220113 $b ABA008
- 991 __
- $a 20220127145805 $b ABA008
- 999 __
- $a ok $b bmc $g 1751344 $s 1154996
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 238 $c - $d 118245 $e 20210607 $i 1095-9572 $m Neuroimage $n Neuroimage $x MED00006575
- LZP __
- $a Pubmed-20220113