• Je něco špatně v tomto záznamu ?

Promises and pitfalls of topological data analysis for brain connectivity analysis

L. Caputi, A. Pidnebesna, J. Hlinka

. 2021 ; 238 (-) : 118245. [pub] 20210607

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc22003847

Developing sensitive and reliable methods to distinguish normal and abnormal brain states is a key neuroscientific challenge. Topological Data Analysis, despite its relative novelty, already generated many promising applications, including in neuroscience. We conjecture its prominent tool of persistent homology may benefit from going beyond analysing structural and functional connectivity to effective connectivity graphs capturing the direct causal interactions or information flows. Therefore, we assess the potential of persistent homology to directed brain network analysis by testing its discriminatory power in two distinctive examples of disease-related brain connectivity alterations: epilepsy and schizophrenia. We estimate connectivity from functional magnetic resonance imaging and electrophysiology data, employ Persistent Homology and quantify its ability to distinguish healthy from diseased brain states by applying a support vector machine to features quantifying persistent homology structure. We show how this novel approach compares to classification using standard undirected approaches and original connectivity matrices. In the schizophrenia classification, topological data analysis generally performs close to random, while classifications from raw connectivity perform substantially better; potentially due to topographical, rather than topological, specificity of the differences. In the easier task of seizure discrimination from scalp electroencephalography data, classification based on persistent homology features generally reached comparable performance to using raw connectivity, albeit with typically smaller accuracies obtained for the directed (effective) connectivity compared to the undirected (functional) connectivity. Specific applications for topological data analysis may open when direct comparison of connectivity matrices is unsuitable - such as for intracranial electrophysiology with individual number and location of measurements. While standard homology performed overall better than directed homology, this could be due to notorious technical problems of accurate effective connectivity estimation.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22003847
003      
CZ-PrNML
005      
20220127145809.0
007      
ta
008      
220113s2021 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.neuroimage.2021.118245 $2 doi
035    __
$a (PubMed)34111515
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Caputi, Luigi $u Institute of Computer Science of the Czech Academy of Sciences, Pod Vodárenskou věží 271/2, Prague 182 07, Czech Republic. Electronic address: luigi.caputi@abdn.ac.uk
245    10
$a Promises and pitfalls of topological data analysis for brain connectivity analysis / $c L. Caputi, A. Pidnebesna, J. Hlinka
520    9_
$a Developing sensitive and reliable methods to distinguish normal and abnormal brain states is a key neuroscientific challenge. Topological Data Analysis, despite its relative novelty, already generated many promising applications, including in neuroscience. We conjecture its prominent tool of persistent homology may benefit from going beyond analysing structural and functional connectivity to effective connectivity graphs capturing the direct causal interactions or information flows. Therefore, we assess the potential of persistent homology to directed brain network analysis by testing its discriminatory power in two distinctive examples of disease-related brain connectivity alterations: epilepsy and schizophrenia. We estimate connectivity from functional magnetic resonance imaging and electrophysiology data, employ Persistent Homology and quantify its ability to distinguish healthy from diseased brain states by applying a support vector machine to features quantifying persistent homology structure. We show how this novel approach compares to classification using standard undirected approaches and original connectivity matrices. In the schizophrenia classification, topological data analysis generally performs close to random, while classifications from raw connectivity perform substantially better; potentially due to topographical, rather than topological, specificity of the differences. In the easier task of seizure discrimination from scalp electroencephalography data, classification based on persistent homology features generally reached comparable performance to using raw connectivity, albeit with typically smaller accuracies obtained for the directed (effective) connectivity compared to the undirected (functional) connectivity. Specific applications for topological data analysis may open when direct comparison of connectivity matrices is unsuitable - such as for intracranial electrophysiology with individual number and location of measurements. While standard homology performed overall better than directed homology, this could be due to notorious technical problems of accurate effective connectivity estimation.
650    _2
$a mozek $x diagnostické zobrazování $x patofyziologie $7 D001921
650    _2
$a mapování mozku $7 D001931
650    12
$a konektom $7 D063132
650    _2
$a elektroencefalografie $7 D004569
650    _2
$a epilepsie $x diagnostické zobrazování $x patofyziologie $7 D004827
650    _2
$a lidé $7 D006801
650    _2
$a magnetická rezonanční tomografie $7 D008279
650    12
$a modely neurologické $7 D008959
650    _2
$a nervová síť $x diagnostické zobrazování $x patofyziologie $7 D009415
650    _2
$a schizofrenie $x diagnostické zobrazování $x patofyziologie $7 D012559
650    _2
$a záchvaty $x diagnostické zobrazování $x patofyziologie $7 D012640
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Pidnebesna, Anna $u Institute of Computer Science of the Czech Academy of Sciences, Pod Vodárenskou věží 271/2, Prague 182 07, Czech Republic; National Institute of Mental Health, Topolová 748, Klecany 250 67, Czech Republic; Faculty of Electrical Engineering, Czech Technical University, Technická 1902/2, Prague 166 27, Czech Republic. Electronic address: pidnebesna@cs.cas.cz
700    1_
$a Hlinka, Jaroslav $u Institute of Computer Science of the Czech Academy of Sciences, Pod Vodárenskou věží 271/2, Prague 182 07, Czech Republic; National Institute of Mental Health, Topolová 748, Klecany 250 67, Czech Republic. Electronic address: hlinka@cs.cas.cz
773    0_
$w MED00006575 $t NeuroImage $x 1095-9572 $g Roč. 238, č. - (2021), s. 118245
856    41
$u https://pubmed.ncbi.nlm.nih.gov/34111515 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220113 $b ABA008
991    __
$a 20220127145805 $b ABA008
999    __
$a ok $b bmc $g 1751344 $s 1154996
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 238 $c - $d 118245 $e 20210607 $i 1095-9572 $m Neuroimage $n Neuroimage $x MED00006575
LZP    __
$a Pubmed-20220113

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...